
Massachusetts Institute of Technology Handout 15
18.433: Combinatorial Optimization April 19th, 2007
Michel X. Goemans

Lecture notes on the arborescence problem

Given a digraph D = (V, A) and a special root vertex r ∈ V , an r-arborescence (or just
arborescence) is a spanning tree (when viewed as an undirected graph) directed away from
r. Thus, in a r-arborescence, every vertex is reachable from the root r. As an r-arborescence
has no arc incoming to the root, we assume that D has no such arc.

r-arborescences can be viewed as sets simultaneously independent in two matroids. Let
G denote the undirected counterpart of D obtained by disregarding the directions of the
arcs. Note that if we have both arcs a1 = (u, v) and a2 = (v, u) in D then we get two
undirected edges also labelled a1 and a2 between u and v in G. Define M1 = (A, I(M1)) the
graphic matroid corresponding to G, and M2 = (A, I(M2)) the partition matroid in which
independent sets are those with at most one arc incoming to every vertex v 6= r. In other
words, we let I(M2) = {F : |F ∩ δ−(v)| ≤ 1 for all v ∈ V \ {r}} where δ−(v) denotes the set
{(u, v) ∈ A} of arcs incoming to v. Thus, any r-arborescence is independent in both matroids
F1 and F2. Conversely, any set T independent in both M1 and M2 and of cardinality |V |− 1
(so that it is a base in both matroids) is an r-arborescence.

The minimum cost r-arborescence is the problem of, given a directed graph D = (V, A),
a root vertex r ∈ V and a cost ca for every arc a ∈ A, finding an r-arboresnce in D of
minimum total cost. This can thus be viewed as a weighted matroid intersection problem
and we could use the full machinery of matroid intersection algorithms and results. However,
here, we are going to develop a simpler algorithm using notions similar to the Hungarian
method for the assignment problem. We will assume that the costs are nonnegative.

As an integer program, the problem can be formulated as follows. Letting xa be 1 for
the arcs of an r-arborescence, we have the formulation:

OPT = min
∑

a∈A

caxa

subject to: ∑

a∈δ−(S)

xa ≥ 1 ∀S ⊆ V \ {r}

∑

a∈δ−(v)

xa = 1 ∀v ∈ V \ {r}

xa ∈ {0, 1} a ∈ A.

In this formulation δ−(S) represents the set of arcs {(u, v) ∈ A : u /∈ S, v ∈ S}. One
can check that any feasible solution to the above corresponds to the incidence vector of
an r-arborescence. Notice that this optimization problem has an exponential number of
constraints. We are going to show that we can relax both the integrality restrictions to

Lecture notes on the arborescence problem 2

xa ≥ 0 and also remove the equality constraints
∑

a∈δ−(v) xa = 1 and still there will be an

r-arboresence that will be optimum for this relaxed (now linear) program. The relaxed linear
program (still with an exponential number of constraints) is:

LP = min
∑

a∈A

caxa

subject to:

(P)
∑

a∈δ−(S)

xa ≥ 1 ∀S ⊆ V \ {r}

xa ≥ 0 a ∈ A.

The dual of this linear program is:

LP = max
∑

S⊆V \{r}

yS

subject to:

(D)
∑

S:a∈δ−(S)

yS ≤ ca

yS ≥ 0 S ⊆ V \ {r}.

The algorithm will be constructing an arborescence T (and the corresponding incidence
vector x with xa = 1 whenever a ∈ T and 0 otherwise) and a feasible dual solution y which
satisfy complementary slackness, and this will show that T corresponds to an optimum
solution of (P), and hence is an optimum arborescence. Complementary slackness says:

1. yS > 0 =⇒ |T ∩ δ−(S)| = 1, and

2. a ∈ T =⇒
∑

S:a∈δ−(S) yS = ca.

The algorithm will proceed in 2 phases. In the first phase, it will construct a dual feasible
solution y and a set F of arcs which has a directed path from the root to every vertex. This
may not be an r-arborescence as there might be too many arcs. The arcs in F will satisfy
condition 2 above (but not condition 1). In the second phase, the algorithm will remove
unnecessary arcs, and will get an r-arborescence satisfying condition 1.

Phase 1 is initialized with F = ∅ and yS = 0 for all S. While F does not contain a directed
path to every vertex in V , the algorithm selects a set S such that (i) inside S, F is strongly
connected (i.e. every vertex can reach every vertex) and (ii) F ∩δ−(S) = ∅. This set S exists
since we can contract all strongly connected components and in the resulting acyclic digraph,
there must be a vertex (which may be coming from the shrinking of a strongly connected
component) with no incoming arc (otherwise tracing back from that vertex we would either
get to the root or discover a new directed cycle (which we could shrink)). Now we increase

Lecture notes on the arborescence problem 3

yS as much as possible until a new inequality, say for arc ak,
∑

S:ak∈δ−(S) yS ≤ cak
becomes

an equality. In so doing, the solution y remains dual feasible and still satisfies condition 2.
We can now add ak to F without violating complementary slackness condition 2, and then
we increment k (which at the start we initialized at k = 1). And we continue by selecting
another set S, and so on, until every vertex is reachable from r in F . We have now such a
set F = {a1, a2, · · · , ak} and a dual feasible solution y satisfying condition 2.

In step 2, we eliminate as many arcs as possible, but we consider them in reverse order

they were added to F . Thus, we let i go from k to 1, and if F \ {ai} still contains a directed
path from r to every vertex, we remove ai from F , and continue. We then output the
resulting set T of arcs.

The first claim is that T is an arborescence. Indeed, we claim it has exactly |V | − 1 arcs
with precisely one arc incoming to every vertex v ∈ V \ {r}. Indeed, if not, there would be
two arcs ai and aj incoming to some vertex v; say that i < j. In the reverse delete step, we
should have removed aj; indeed any vertex reachable from r through aj could be reached
through ai as well (unless ai is unnecessary in which case we could get rid of ai later on).

The second (and final) claim is that the complementary slackness condition 1 is also
satisfied. Indeed, assume not, and assume that we have a set S with yS > 0 and |T∩δ−(S)| >
1. S was chosen at some point by the algorithm and at that time we added ak ∈ δ−(S) to
F . As there were no other arcs in δ−(S) prior to adding ak to F , it means that all other arcs
in T ∩ δ−(S) must be of the form aj with j > k. In addition, when S was chosen, F was
already strongly connected within S; this means that from any vertex inside S, one can go
to any other vertex inside S using arcs ai with i < k. We claim that when aj was considered
for removal, it should have been removed. Indeed, assume that aj is needed to go to vertex
v, and that along the path P to v the last vertex in S is w ∈ S. Then we could go to v
by using ak which leads somewhere in S then take arcs ai with i < k (none of which have
been removed yet as i < k < j) to w ∈ S and then continue along path P . So aj was not
really necessary and should have been removed. This shows that complementary slackness
condition 1 is also satisfied and hence the arborescence built is optimal.

