EECS 495: Combinatorial Optimization
 Lecture 8 Matroid Intersection

Reading: Schrijver, Chapter 41

Matroid Intersection

Problem:

- Given: matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=$ $\left(S, \mathcal{I}_{2}\right)$ on same ground set S
- Find: max weight (cardinality) common independent set $J \subseteq \mathcal{I}_{1} \cap \mathcal{I}_{2}$

Applications

Generalizes:

- max weight independent set of M (take $M=M_{1}=M_{2}$)
- matching in bipartite graphs

For bipartite graph $G=\left(\left(V_{1}, V_{2}\right), E\right)$, let $M_{i}=\left(E, \mathcal{I}_{i}\right)$ where

- colorful spanning forests: for graph G with edges partitioned into color classes $\left\{E_{1}, \ldots, E_{k}\right\}$, colorful spanning forest is a forest with edges of different colors.
Define M_{1}, M_{2} on ground set E with:

$$
\begin{aligned}
& -\mathcal{I}_{1}=\{F \subset E: F \text { is acyclic }\} \\
& -\mathcal{I}_{2}=\left\{F \subset E: \forall i,\left|F \cap E_{i}\right| \leq 1\right\}
\end{aligned}
$$

Then

- these are matroids (graphic, partition)
- common independent sets $=$ colorful spanning forests

Note: In second two examples, $\left(S, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$ not a matroid, so more general than matroid optimization.
Claim: Matroid intersection of three matroids NP-hard.

Proof: Reduction from directed Hamiltonian path: given digraph $D=(V, E)$ and vertices s, t, is there a path from s to t that goes through each vertex exactly once.
$\mathcal{I}_{i}=\left\{J: \forall v \in V_{i}, v\right.$ incident to \leq one $\left.e \in \stackrel{\text { goes }}{J}\right\}$

- M_{1} graphic matroid of underlying undirected graph
- M_{2} partition matroid in which $F \subseteq E$ indep if each v has at most one incoming edge in F, except s which has none
- M_{3} partition ..., except t which has none

Intersection is set of vertex-disjoint directed paths with one starting at s and one ending at t, so Hamiltonian path iff max cardinality intersection has size $n-1$.

Min-Max Theorem

Natural upper bound: Let $J \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ and $A \subseteq S$. Then

$$
J \cap A \in \mathcal{I}_{1} \text { and } J \cap \bar{A} \in \mathcal{I}_{2}
$$

so

$$
|J|=|J \cap A|+|J \cap \bar{A}| \leq r_{1}(A)+r_{2}(\bar{A})
$$

Claim: (Edmonds, 1970) For matroids M_{1}, M_{2} on S,

$$
\max _{J \in \mathcal{I}_{1} \cap \mathcal{I}_{2}}\{|J|\}=\min _{A \subseteq S}\left\{r_{1}(A)+r_{2}(\bar{A})\right\}
$$

Applications:

- generalizes Konig (in bipartite graphs, max matching $=$ min vertex cover):
Since $r_{i}(F)$ is number of $v \in V_{i}$ covered by F,

$$
\nu(G)=\min _{F \subseteq E}\left(r_{1}(F)+r_{2}(E \backslash F)\right) .
$$

as $v \in V_{1}$ covered by F plus $v \in V_{2}$ covered by $E \backslash F$ form a vertex cover.

- generalizes Konig-Rado (in bipartite graphs, max indep set equals min edge cover):
Edge cover is

$$
\begin{aligned}
& \min _{F \text { spans } M_{1}, M_{2}}|F|=\min _{B_{i} \text { basis of } \mathrm{M}_{\mathrm{i}}}\left|B_{1} \cup B_{2}\right| \\
& =\min _{B_{i} \text { basis of } \mathrm{M}_{\mathrm{i}}}\left(\left|B_{1}\right|+\left|B_{2}\right|-\left|B_{1} \cap B_{2}\right|\right)
\end{aligned}
$$

$$
=r_{1}(E)+r_{2}(E)-\min _{F \subseteq E}\left(r_{1}(F)+r_{2}(E \backslash F)\right.
$$

which is number of vertices minus min vertex cover $=$ max indep set.
$\left[\left[\begin{array}{l}\text { General statement about spanning sets in } \\ \text { matroids. }\end{array}\right]\right]$

- gives nec and suff conditions for existence of colorful spanning tree:

Want

$$
\max _{I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}}|I|=|V|-1
$$

or equivalently

$$
\min _{F \subseteq E}\left(r_{1}(F)+r_{2}(E \backslash F)\right)=|V|-1
$$

Note

$$
r_{1}(F)=|V|-c(F)
$$

where $c(F)$ is num connected comp of $G^{\prime}=(V, F)$, so need

- num colors in $E \backslash F$ at least $c(F)-1$
- iff removing any t colors leaves at most $t+1$ conn comp

Proof

Need:

1. deletion
2. contraction
3. submodularity of rank function

Def: A function f is submodular if for any A, B,

$$
f(A \cup B)+f(A \cap B) \leq f(A)+r(B)
$$

or equivalently if for any $S \subset T$ and $i \notin T$,
$f(S \cup\{i\})-f(S) \geq f(T \cup\{i\})-f(T)$.
[[Compare to concavity.
Claim: Above defns equivalent.

Proof:

\leftarrow : For A, B, if $B \subseteq A$, claim trivial. Else let $B \backslash A=\left\{b_{1}, \ldots, b_{k}\right\}$

- since $J_{A} \subseteq J_{C}$ know $J_{A} \cup\{e\} \in \mathcal{I}$ (downward closure)
- therefore $r(A \cup\{e\})=r(A)+1$

$$
\begin{aligned}
f(A \cup B)-f(A)= & \sum_{i=1}^{k}\left(f\left(A+b_{1}+\ldots+b_{i}\right)\right. \\
& \left.-f\left(A+b_{1}+\ldots+b_{i-1}\right)\right) \\
\leq & \sum_{i=1}^{k}\left(f\left(A \cap B+b_{1}+\ldots+b_{i}\right)\right. \\
= & \left.-f\left(A \cap B+b_{1}+\ldots+b_{i-1}\right)\right) \\
= & f(B)-f(A \cap B)
\end{aligned}
$$

\rightarrow : For $S \subseteq T, i \notin T$, set $A=S \cup\{i\}$ and $B=T$:

$$
\begin{aligned}
f(T+i)+f(S) & =f(A \cup B)+f(A \cap B) \\
& \leq f(A)+f(B) \\
& =f(S+i)+f(T)
\end{aligned}
$$

Claim: $r(\cdot)$ is rank func of a matroid iff

- $r(\emptyset)=0$ and $r(A \cup\{e\})-r(A) \in\{0,1\}$ for all e, A
- $r(\cdot)$ is submodular

Proof:

\leftarrow : First condition obvious. For second, fix $A \subseteq C, e \notin C$. Want:

$$
r(C \cup\{e\})-r(C) \leq r(A \cup\{e\})-r(A)
$$

- since $r(A \cup\{e\})-r(A) \geq 0$ and $r(C \cup$ $\{e\})-r(C) \in\{0,1\}$, may assume $r(C \cup$ $\{e\})-r(C)=1$
- let J_{A}, J_{C} be max indep sets in A, C with $J_{A} \subseteq J_{C}$
- since $r(C \cup\{e\})=r(C)+1$ know $J_{C} \cup$ $\{e\} \in \mathcal{I}$ (exchange property)

