EECS 495: Combinatorial Optimization Matroid Intersection

Lecture 8

Reading: Schrijver, Chapter 41

Matroid Intersection

Problem:

- Given: matroids $M_1 = (S, \mathcal{I}_1)$ and $M_2 = (S, \mathcal{I}_2)$ on same ground set S
- Find: max weight (cardinality) common independent set J ⊆ I₁ ∩ I₂

Applications

Generalizes:

- max weight independent set of M (take $M = M_1 = M_2$)
- matching in bipartite graphs

For bipartite graph $G = ((V_1, V_2), E)$, let $M_i = (E, \mathcal{I}_i)$ where

 $\mathcal{I}_i = \{J : \forall v \in V_i, v \text{ incident to} \le \text{one } e \in \widetilde{J}\}$

Then

- these are matroids (partition matroids)
- common independent sets = matchings of G

• colorful spanning forests: for graph G with edges partitioned into color classes $\{E_1, \ldots, E_k\}$, colorful spanning forest is a forest with edges of different colors.

Define M_1, M_2 on ground set E with:

$$-\mathcal{I}_1 = \{F \subset E : F \text{ is acyclic}\}\$$

$$-\mathcal{I}_2 = \{F \subset E : \forall i, |F \cap E_i| \le 1\}$$

Then

- these are matroids (graphic, partition)
- common independent sets = colorful spanning forests

Note: In second two examples, $(S, \mathcal{I}_1 \cap \mathcal{I}_2)$ not a matroid, so more general than matroid optimization.

Claim: Matroid intersection of three matroids NP-hard.

Proof: Reduction from directed Hamiltonian path: given digraph D = (V, E) and vertices s, t, is there a path from s to t that goes through each vertex exactly once.

- M_1 graphic matroid of underlying undirected graph
- M_2 partition matroid in which $F \subseteq E$ indep if each v has at most one incoming edge in F, except s which has none
- M_3 partition ..., except t which has none

Intersection is set of vertex-disjoint directed paths with one starting at s and one ending at t, so Hamiltonian path iff max cardinality intersection has size n - 1.

Min-Max Theorem

Natural upper bound: Let $J \in \mathcal{I}_1 \cap \mathcal{I}_2$ and $A \subseteq S$. Then

$$J \cap A \in \mathcal{I}_1$$
 and $J \cap \overline{A} \in \mathcal{I}_2$

 \mathbf{SO}

$$|J| = |J \cap A| + |J \cap \overline{A}| \le r_1(A) + r_2(\overline{A})$$

Claim: (Edmonds, 1970) For matroids M_1, M_2 on S,

$$\max_{J \in \mathcal{I}_1 \cap \mathcal{I}_2} \{ |J| \} = \min_{A \subseteq S} \{ r_1(A) + r_2(\overline{A}) \}.$$

Applications:

• generalizes Konig (in bipartite graphs, max matching = min vertex cover):

Since $r_i(F)$ is number of $v \in V_i$ covered by F,

$$\nu(G) = \min_{F \subseteq E} (r_1(F) + r_2(E \setminus F)).$$

as $v \in V_1$ covered by F plus $v \in V_2$ covered by $E \setminus F$ form a vertex cover.

• generalizes Konig-Rado (in bipartite graphs, max indep set equals min edge cover):

Edge cover is

$$\min_{F \text{ spans } M_1, M_2} |F| = \min_{B_i \text{ basis of } M_i} |B_1 \cup B_2|$$
$$= \min_{B_i \text{ basis of } M_i} (|B_1| + |B_2| - |B_1 \cap B_2|)$$

$$= r_1(E) + r_2(E) - \min_{F \subseteq E} (r_1(F) + r_2(E \setminus F))$$

which is number of vertices minus min vertex cover $= \max$ indep set.

 $\begin{bmatrix} General \ statement \ about \ spanning \ sets \ in \\ matroids. \end{bmatrix}$

• gives nec and suff conditions for existence of colorful spanning tree:

Want

$$\max_{I \in \mathcal{I}_1 \cap \mathcal{I}_2} |I| = |V| - 1,$$

or equivalently

$$\min_{F \subseteq E} (r_1(F) + r_2(E \setminus F)) = |V| - 1.$$

Note

$$r_1(F) = |V| - c(F)$$

where c(F) is num connected comp of G' = (V, F), so need

- num colors in $E \setminus F$ at least c(F) 1
- iff removing any t colors leaves at most t + 1 conn comp

\mathbf{Proof}

Need:

- 1. deletion
- 2. contraction
- 3. submodularity of rank function

Def: A function f is submodular if for any A, B,

$$f(A \cup B) + f(A \cap B) \le f(A) + r(B)$$

or equivalently if for any $S \subset T$ and $i \notin T$,

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T).$$

[[Compare to concavity.

]]

Claim: Above defns equivalent.

Proof:

 $\leftarrow: \text{ For } A, B, \text{ if } B \subseteq A, \text{ claim trivial. Else let} \\ B \setminus A = \{b_1, \dots, b_k\}$

$$f(A \cup B) - f(A) = \sum_{i=1}^{k} (f(A + b_1 + \dots + b_i)) - f(A + b_1 + \dots + b_{i-1}))$$

$$\leq \sum_{i=1}^{k} (f(A \cap B + b_1 + \dots + b_i)) - f(A \cap B + b_1 + \dots + b_{i-1}))$$

$$= f(B) - f(A \cap B)$$

 \rightarrow : For $S \subseteq T$, $i \notin T$, set $A = S \cup \{i\}$ and B = T:

$$f(T+i) + f(S) = f(A \cup B) + f(A \cap B)$$

$$\leq f(A) + f(B)$$

$$= f(S+i) + f(T)$$

Claim: $r(\cdot)$ is rank func of a matroid iff

- $r(\emptyset) = 0$ and $r(A \cup \{e\}) r(A) \in \{0, 1\}$ for all e, A
- $r(\cdot)$ is submodular

Proof:

←: First condition obvious. For second, fix $A \subseteq C$, $e \notin C$. Want:

$$r(C \cup \{e\}) - r(C) \le r(A \cup \{e\}) - r(A).$$

- since $r(A \cup \{e\}) r(A) \ge 0$ and $r(C \cup \{e\}) r(C) \in \{0, 1\}$, may assume $r(C \cup \{e\}) r(C) = 1$
- let J_A, J_C be max indep sets in A, C with $J_A \subseteq J_C$
- since $r(C \cup \{e\}) = r(C) + 1$ know $J_C \cup \{e\} \in \mathcal{I}$ (exchange property)

• since $J_A \subseteq J_C$ know $J_A \cup \{e\} \in \mathcal{I}$ (down-ward closure)

• therefore
$$r(A \cup \{e\}) = r(A) + 1$$

 \rightarrow : exercise.