EECS 495: Combinatorial Optimization

Matroids

Lecture 6

Reading: Schrijver, Chapter 39

Matroids

[[Abstracts linear algebra and graph theory.]]
Key set systems to keep in mind:

e subsets of vectors of R"

e subsets of edges of G = (V. E)

Def: A matroid M = (S,7Z) is a finite ground
set S together with a collection of sets Z C 2°
satisfying:

e downward closed: if I € Z and J C I,
then J € Z, and

e exchange property: if I, J € Z and |J| >
|I|, then there exists an element z € J\ I
st. TU{z} €.

Terminology:

o [ € T independent, I & T dependent
e circuit is a minimal dependent set of M
e basis is a maximal independent set

e [ is a spanning set if for some basis B,
BCI

Example: Uniform matroids U*: Given by
|S|=n,ZT={1CS:|I| <k}

Check two properties and see this is a ma-
troid.

What are the...

e bases: sets of size k
e circuits: sets of size k + 1

e spanning sets: sets of size at least k

Example: Linear matroids: Let F be a field,
A € F™™ an m X n matrix over F, S =
{1,...,n} be index set of columns of A. Then
I C S is independent if the corresponding
columns are linearly independent.

Check two properties and see this is a ma-
troid.

What are the...

e bases: minimal sets of vectors that span
space spanned by A

e circuits: vectors that span space space
spanned by A with one extra

e spanning sets: vectors that span space
spanned by A

Note: Linear matroids can be representated
as:

A= [L|B]

since

e If not full row rank, can remove redun-
dant rows, and



e get above form with row operations and
column swaps.

Example: Graphic Matroids: Let G =
(V,E) be a graph and S = FE. Aset F CE
is independent if it is acyclic.

Check two properties and see this is a ma-
troid.

What are the...

e bases: minimum spanning trees
e circuits: subgraphs with one cycle

e spanning sets: connected subgraphs that
contain every vertex

Example: Matching Matroids: The match-
ing matroid M = (V,Z) for graph G = (V, E)
has U C V independent if there’s a matching
in G that covers all of U.

Check two properties and see this is a ma-
troid. For exchange,

e Consider I, J € T with |I] < |J|.

e Let M;, M; be matchings for I,J and
suppose M doesn’t cover anything in J'\
I.

e Consider matching defined by symmetric
diff of M; and M.

e Note each v € J\ I starts an alternating
path.

e Some such paths don’t end in I\ J since
|J\I| > |I\J|. Let P be one such path.

e P doesn’t end in JNI since those vertices
have degree 0 or 2, so P ends not in [.

e Now M; symmetric diff with P is a
matching that covers all of I and one ex-
tra vertex in J \ 1.

What are the...

e bases: minimum spanning trees
e circuits: subgraphs with one cycle

e spanning sets: connected subgraphs that
contain every vertex

Note: All bases of a matroid M must have
same cardinality.

Def: The rank function of M isr: 2% — Z,
given by r(U) = maxcy ez |1]-

Note: Corresponds to rank of matrix in lin-
ear matroids, hence name.

Def: (Alternate defn of matroid): M =
(S,7) is a matroid if there’s a rank function
r: 2% — Z, such that

e r(U) C|U| for all U,
e monotonicity: T C U — r(T) < r(U),

e submodularity: YA, B C S,r(AN B) +
r(AU B) < r(A) + r(B) (equivalently,
VC C D,VYj ¢ D,r(DU{j}) —r(D) <
r(CU{j}) —r(0)),
in which case we can take Z = {U : r(U) =
Ul

Duality

Def: Given matroid M = (S,Z), the dual
matroid M* = (S,7%) is defined by I* =
{I C S|S\ I is a spanning set of M}.

Note: (M*)* = M.
Claim: M* is a matroid.
Proof: Clearly downward closed. For ex-

change, consider I, J € T* with [I| < |J|.

e S\ J contains base B of M



e then B\ I C B’ C S\ I for some basis
B/

e and J\I Z B’since otherwise (as BNI C
I\Jand (B\I)N(J\I)=0):

|B| = |BNOI|+[B\
< [INJI+ B\
<[J\I[+|B\ |
<|B|
contradicting all bases have same size.

e thus 3z € J\ I with 2 ¢ B’ so TU{z} €
A

Claim: The rank function ry; satisfies
ra(U) = Ul +rp(S\U) — rp(5).

Proof: Let B and B* denote collections of
bases of M and M*. Then:

e (U) = max{|U N Af} = max{|U \ B[}
= U] = min{[BN U}
= Ul = 7w (5) + max{|B\ U]}
=|U| —rp(S) +ryu(S\U).
Example: Graphic matroid.

e Dual is: set of edges that when removed
leave graph connected.

e Dual is graphic iff graph is planar,

e in which case dual is graphic matroid of
planar dual.

Representation

Def: For a field F', a matroid M is repre-
sentable over I if it can be expressed as a
linear matroid with matrix A and linear in-
dependence taken over F'.

Example: Uniform matroid UZ not binary:

e if so, would have matrix with columns
1/2 being (0,1) and (1,0) and remaining
two vectors with entries in 0, 1 neither all
zZero.

e only three such non-zero vectors, so can’t
have all pairs indep.
of

Question: representation Uz?

(1,0),(0,1),(1,—-1),(1,1) in R.
Def: A binary matroid is a matroid repre-
sentable over GF(2).

Def: A regular matroid is representable over
any field.

Example: Graphic matroids are regular.

Proof: Take A to be vertex/edge incidence
matrix with +1/ — 1 in each column in any
order.

e Minimally dependent sets sum to zero
perhaps with multiplying by —1.

e Works over any field with +1 as multi-
plicative identity and —1 additive inverse
of +1.

Note: so far have graphic C binary C regular
C linear.



