Reading: Schrijver, Chapter 25

Recap

Primal P: max $c^T x$ s.t. $Ax \le b$ Dual D: min $b^T y$ s.t. $A^T y = c$ and $y \ge 0$

Def: A linear system $\{Ax \leq b\}$ is totally dual integral (TDI) if for any integral cost vector for the primal such that max $c^T x$, $Ax \leq b$ is finite, there exists an integral optimal dual solution.

Theorem 0.1 (Edmonds-Giles, 1979): If a system $\{Ax \leq b\}$ is TDI and b is integral, then $\{Ax \leq b\}$ is integral (i.e., the extreme points are integral).

Theorem 0.2 (Giles-Pullyblank, 1979): For a rational polyhedron \mathcal{P} , there exist A and b with A integral such that $\mathcal{P} = \{x : Ax \leq b\}$ and the system is TDI.

Def: A set of vectors $\{a_i : a_i \in \mathbb{Z}^n\}$ is a *Hilbert basis* if for any integral $c \in cone(a_i) = \{\sum_i \lambda_i a_i : \lambda_i \ge 0\}$, there exist non-negative integers μ_i such that $c = \sum_i \mu_i a_i$.

Theorem 0.3 The rational system $Ax \leq b$ is TDI iff for each face (actually sufficient to check for each extreme point), tight constraints form a Hilbert basis. **Theorem 0.4** Any rational polyhedral cone $C = \{\sum_i \lambda_i a_i : \lambda_i \ge 0, \lambda_i \in \mathcal{R}\}$ with $\{a_i\}$ integral has a finite integral Hilbert basis.

Note: In fact don't need to assume $\{a_i\}$ integral, follows from rationality of cone.

Integrality of Polytopes

Theorem 0.5 (Edmonds-Giles, 1979): If a system $\{Ax \leq b\}$ is TDI and b is integral, then $\{Ax \leq b\}$ is integral (i.e., the extreme points are integral).

Proof: By contradiction.

- Consider extreme point x^* of P s.t. $x_j^* \notin \mathcal{Z}$ for some j.
- Let c be integral vector s.t. x^* unique opt by picking rational vector in cone at x^* and scaling.
- Consider $\hat{c} = c + \frac{1}{q}e_j$ (inside cone for large enough q).
- Since $q\hat{c}^T x^* qc^T x^* = x_j^* \notin \mathcal{Z}$, either $q\hat{c}^T x^*$ or $qc^T x^*$ not integral.
- By duality and fact that b is integral, one of corresponding dual soln \hat{y} or y not integral.
- Contradicts TDI since both $q\hat{c}$ and qc integral.

Matching Polytope

Def: The matching polytope \mathcal{P}_M is the convex hull of incidence vectors $\chi(M) \in \{0,1\}^{|E|}$ of matchings M where $\chi(M)_e = 1$ if $e \in M$ and 0 otherwise.

Def: \mathcal{P} (\mathcal{P}_2 from last lecture) is:

- $x_e \ge 0, e \in E$
- $x(\delta(v)) = \sum_{e \in \delta(v)} x_e \le 1, v \in V$
- $x(E(U)) = \sum_{e \in E(U)} x_e \leq \frac{|U|-1}{2}, U \subseteq V, |U| \text{ odd}$

 $\begin{bmatrix} Edmonds \ gave \ algorithmic \ proof \ of \ this; \\ we \ use \ Cunningham-Marsh, \ argue \ that \\ \mathcal{P}_2 \ is \ TDI. \end{bmatrix}$

Primal:

 $\begin{aligned} \max c^T x \text{ s.t.} \\ \sum_{e \in \delta(v)} x_e &\leq 1, \forall v \in V \\ \sum_{e \in E(U)} x_e &\leq \frac{|U|-1}{2}, \forall U \subseteq V, |U| \text{ odd} \\ x_e &\geq 0, \forall e \in E \end{aligned}$

Dual (variables y_v for $v \in V$, z_U for $U \subseteq V$ odd):

 $\min \sum_{v} y_v + \sum_{|U| \text{ odd}} \frac{|U|-1}{2} z_U \text{ s.t.}$ $y_u + y_v + \sum_{|U| \text{ odd}, e \in E(U)} z_U \ge c_e, \forall e \in E$ $y, z \ge 0$

 $[[TDI \ says...$

Theorem 0.6 (Cunningham-Marsh, 1978) For all $c \in \mathbb{Z}^{|E|}$, there exists an integral dual solution y, z with value $D(y, z) \leq \nu(c)$ (where $\nu(v)$ is max cost matching).

 $\begin{bmatrix} Why's \ this \ prove \ TDI, \ i.e., \ why \ are \ we\\ not \ implicitly \ assuming \ primal \ value \ is\\ \nu(c) \ and \ hence \ primal \ is \ the \ matching\\ polytope? \ I \ think \ because \ duality \ says \ pri-\\mal \ can't \ be \ more \ than \ dual... \end{bmatrix}$

Proof: By induction on $|V| + |E| + \sum_e c_e$ (recall *c* integral).

- Assume $c_e \ge 1$ (else delete e) and G connected (else prove for components).
- Base case $(|V| = 2, |E| = 1, c_e \ge 1)$: set $y_u = c_e$ and $y_v, z_U = 0$.
- Case 1: $\exists v \in V$ s.t. every max cost matching for c covers v.
 - Modify costs $c'_e = c_e$ for $e \notin \delta(v)$ and $c'_e = c_e - 1$ for $e \in \delta(v)$.
 - Note $\nu(c') = \nu(c) 1$.
 - By induction, exist integral y', z'feasible for dual with c' s.t. $D(y', z') \le \nu(c')$.
 - Let $y_v = y'_v + 1$ and $y_u = y'_u$ for $u \neq v$, and z = z'.
 - Note y, z feasible since only constraints for $e \in \delta(v)$ changed, and for those both c_e and y_v increased by 1 from c'_e and y'_v .
 - Note further that $D(y, z) = D(y'z') + 1 \le \nu(c') + 1 = \nu(c).$
- Case 2: $\forall v, \exists$ max cost matching for c that does not cover v.
- Let $c'_e = c_e 1$ for all $e \in E$.
- We show all max matchings *M* for *c'* miss at least one vertex.
- Let M be max matching for c' with |M| as large as possible.
- Suppose *M* covers all vertices.
- Let N be max matching for c that does not cover some vertex.
- $c'(N) = c(N) |N| > c(N) |M| \ge c(M) |M| = c'(M) = \nu(c')$ (first inequality because M covers all vertices and N misses at least one)

11

- Case 2a: Suppose \exists max matching M for c' s.t. $|M| = \frac{|V|-1}{2}$ (i.e., |V| odd and M misses exactly one vertex).
 - By induction, exist integral y', z's.t. $D(y', z') \le \nu(c')$.
 - Let $z_V = z'_V + 1$ and $z_U = z'_U$ for all other $U \subset V$; y = y'.
 - z_V in every constraint and both z_V and c_e increased by one, so y, z feasible.
 - Also, $D(y, z) = D(y', z') + \frac{|V|-1}{2} \le \nu(c') + \frac{|V|-1}{2} \le \nu(c)$ (last inequality follows because can use matching for c' as matching for c)
- Case 2b: All max cost matchings for c' miss at least two vertices.
 - Let M be max cost matching for c' with unmatched vertices u and v s.t. |M| maximized and d(u, v) minimized.
 - Note $d(u, v) \ge 2$ and let t be second node on shortest path from u to v. Note t matched in M (otherwise can add edge (u, t)).
 - Let N be max matching for c, $c(N) = \nu(c)$ such that t unmatched in N.
 - Let P be component of t in $M\Delta N$ and $M' = M\Delta P$ and $N' = N\Delta P$
 - Note M', N' are matchings and $|M'| \leq |M|$ (last edge of path connecting to t is in M).
 - However,
 - $c(M) + c(N) = c(M\Delta P) + c(N\Delta P) \rightarrow$ $c'(M) + |M| + c(N) = c'(M\Delta P) + |M\Delta P| + c(N\Delta P) \rightarrow$ $c'(M) + |M| \le c'(M\Delta P) + |M\Delta P|$ since $c(N) = \nu(c) \ge c(N\Delta P)$.

- Since $c'(M) = \nu(c') \ge c'(M\Delta P)$ and $|M| \ge |M\Delta P|$, must be equalities.
- -t unmatched in M'.
- P can't cover both u and v since neither covered by M and only one can be endpoint of path if covered by N.
- either u or v unmatched by M', say u
- then d(u,t) < d(u,v), |M| = |M'|, and $c'(M') = c'(M) = \nu(c')$ contradicting our choice of M, u, v.

Note: Matching polytope has exponentially many constraints. Has a separation oracle based on minimum odd cut in suitable graph (reading project).

Question: (open): Can one give a compact polyhedral description of the matching polytope, e.g., by suitable lifting of variables? (part of reading project to discuss lifting of variables.)

Matroids

[[Abstracts linear algebra and graph theory.]] Key set systems to keep in mind:

- subsets of vectors of \mathcal{R}^n
- subsets of edges of G = (V, E)

Def: A matroid $M = (S, \mathcal{I})$ is a finite ground set S together with a collection of sets $\mathcal{I} \subseteq 2^S$ satisfying:

- downward closed: if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$, and
- exchange property: if $I, J \in \mathcal{I}$ and |J| > |I|, then there exists an element $z \in J \setminus I$ s.t. $I \cup \{z\} \in \mathcal{I}$.

Terminology:

- $I \in \mathcal{I}$ independent, $I \notin \mathcal{I}$ dependent
- circuit is a minimal dependent set of M
- *basis* is a maximal independent set
- I is a spanning set if for some basis B, $B \subseteq I$

Example: Uniform matroids U_n^k : Given by $|S| = n, \mathcal{I} = \{I \subseteq S : |I| \le k\}.$

Check two properties and see this is a matroid.

What are the...

- bases: sets of size k
- circuits: sets of size k + 1
- spanning sets: sets of size at least k

Example: Linear matroids: Let F be a field, $A \in F^{m \times n}$ an $m \times n$ matrix over $F, S = \{1, \ldots, n\}$ be index set of columns of A. Then $I \subseteq S$ is independent if the corresponding columns are linearly independent.

Check two properties and see this is a matroid.

What are the...

- bases: minimal sets of vectors that span space spanned by A
- circuits: vectors that span space space spanned by A with one extra
- spanning sets: vectors that span space spanned by A

Example: Graphic Matroids: Let G = (V, E) be a graph and S = E. A set $F \subseteq E$ is independent if it is acyclic.

Check two properties and see this is a matroid.

What are the...

- bases: minimum spanning trees
- circuits: subgraphs with one cycle
- spanning sets: connected subgraphs that contain every vertex

Note: All bases of a matroid M must have same cardinality.

Def: The rank function of M is $r: 2^S \to \mathcal{Z}_+$ given by $r(U) = \max_{I \subseteq U, I \in \mathcal{I}} |I|$.

Note: Corresponds to rank of matrix in linear matroids, hence name.