EECS 495: Combinatorial Optimization
 Lecture 5 Matching: TDI, Cunningham-Marsh

Reading: Schrijver, Chapter 25

Recap

Primal P :
$\max c^{T} x$ s.t. $A x \leq b$
Dual D :
$\min b^{T} y$ s.t. $A^{T} y=c$ and $y \geq 0$
Def: A linear system $\{A x \leq b\}$ is totally dual integral (TDI) if for any integral cost vector for the primal such that max $c^{T} x, A x \leq b$ is finite, there exists an integral optimal dual solution.

Theorem 0.1 (Edmonds-Giles, 1979): If a system $\{A x \leq b\}$ is TDI and b is integral, then $\{A x \leq b\}$ is integral (i.e., the extreme points are integral).

Theorem 0.2 (Giles-Pullyblank, 1979): For a rational polyhedron \mathcal{P}, there exist A and b with A integral such that $\mathcal{P}=\{x: A x \leq b\}$ and the system is TDI.

Def: A set of vectors $\left\{a_{i}: a_{i} \in \mathcal{Z}^{n}\right\}$ is a Hilbert basis if for any integral $c \in$ cone $\left(a_{i}\right)=$ $\left\{\sum_{i} \lambda_{i} a_{i}: \lambda_{i} \geq 0\right\}$, there exist non-negative integers μ_{i} such that $c=\sum_{i} \mu_{i} a_{i}$.

Theorem 0.3 The rational system $A x \leq b$ is TDI iff for each face (actually sufficient to check for each extreme point), tight constraints form a Hilbert basis.

Theorem 0.4 Any rational polyhedral cone $C=\left\{\sum_{i} \lambda_{i} a_{i}: \lambda_{i} \geq 0, \lambda_{i} \in \mathcal{R}\right\}$ with $\left\{a_{i}\right\}$ integral has a finite integral Hilbert basis.

Note: In fact don't need to assume $\left\{a_{i}\right\}$ integral, follows from rationality of cone.

Integrality of Polytopes

Theorem 0.5 (Edmonds-Giles, 1979): If a system $\{A x \leq b\}$ is TDI and b is integral, then $\{A x \leq b\}$ is integral (i.e., the extreme points are integral).

Proof: By contradiction.

- Consider extreme point x^{*} of P s.t. $x_{j}^{*} \notin$ \mathcal{Z} for some j.
- Let c be integral vector s.t. x^{*} unique opt by picking rational vector in cone at x^{*} and scaling.
- Consider $\hat{c}=c+\frac{1}{q} e_{j}$ (inside cone for large enough q).
- Since $q \hat{c}^{T} x^{*}-q c^{T} x^{*}=x_{j}^{*} \notin \mathcal{Z}$, either $q \hat{c}^{T} x^{*}$ or $q c^{T} x^{*}$ not integral.
- By duality and fact that b is integral, one of corresponding dual soln \hat{y} or y not integral.
- Contradicts TDI since both $q \hat{c}$ and $q c$ integral.

Matching Polytope

Def: The matching polytope \mathcal{P}_{M} is the convex hull of incidence vectors $\chi(M) \in\{0,1\}^{|E|}$ of matchings M where $\chi(M)_{e}=1$ if $e \in M$ and 0 otherwise.

Def: \mathcal{P} (\mathcal{P}_{2} from last lecture) is:

- $x_{e} \geq 0, e \in E$
- $x(\delta(v))=\sum_{e \in \delta(v)} x_{e} \leq 1, v \in V$
- $x(E(U))=\sum_{e \in E(U)} x_{e} \leq \frac{|U|-1}{2}, U \subseteq$ $V,|U|$ odd
$\left[\left[\begin{array}{l}\text { Edmonds gave algorithmic proof of this; } \\ \text { we use Cunningham-Marsh, argue that } \\ \mathcal{P}_{2} \text { is TDI. }\end{array}\right]\right]$
Primal:
$\max c^{T} x$ s.t.
$\sum_{e \in \delta(v)} x_{e} \leq 1, \forall v \in V$
$\sum_{e \in E(U)} x_{e} \leq \frac{|U|-1}{2}, \forall U \subseteq V,|U|$ odd
$x_{e} \geq 0, \forall e \in E$
Dual (variables y_{v} for $v \in V, z_{U}$ for $U \subseteq V$ odd):
$\min \sum_{v} y_{v}+\sum_{|U| \text { odd }} \frac{|U|-1}{2} z_{U}$ s.t.
$y_{u}+y_{v}+\sum_{|U| \text { odd }, e \in E(U)} z_{U} \geq c_{e}, \forall e \in E$
$y, z \geq 0$
[[TDI says...
Theorem 0.6 (Cunningham-Marsh, 1978) For all $c \in \mathcal{Z}^{|E|}$, there exists an integral dual solution y, z with value $D(y, z) \leq \nu(c)$ (where $\nu(v)$ is max cost matching).
$\left[\left[\begin{array}{l}\text { Why's this prove TDI, i.e., why are we } \\ \text { not implicitly assuming primal value is } \\ \nu(c) \text { and hence primal is the matching } \\ \text { polytope? I think because duality says pri- } \\ \text { mal can't be more than dual... }\end{array}\right]\right]$
Proof: By induction on $|V|+|E|+\sum_{e} c_{e}$ (recall c integral).
- Assume $c_{e} \geq 1$ (else delete e) and G connected (else prove for components).
- Base case $\left(|V|=2,|E|=1, c_{e} \geq 1\right)$: set $y_{u}=c_{e}$ and $y_{v}, z_{U}=0$.
- Case 1: $\exists v \in V$ s.t. every max cost matching for c covers v.
- Modify costs $c_{e}^{\prime}=c_{e}$ for $e \notin \delta(v)$ and $c_{e}^{\prime}=c_{e}-1$ for $e \in \delta(v)$.
- Note $\nu\left(c^{\prime}\right)=\nu(c)-1$.
- By induction, exist integral y^{\prime}, z^{\prime} feasible for dual with c^{\prime} s.t. $D\left(y^{\prime}, z^{\prime}\right) \leq \nu\left(c^{\prime}\right)$.
- Let $y_{v}=y_{v}^{\prime}+1$ and $y_{u}=y_{u}^{\prime}$ for $u \neq v$, and $z=z^{\prime}$.
- Note y, z feasible since only constraints for $e \in \delta(v)$ changed, and for those both c_{e} and y_{v} increased by 1 from c_{e}^{\prime} and y_{v}^{\prime}.
- Note further that $D(y, z)=$ $D\left(y^{\prime} z^{\prime}\right)+1 \leq \nu\left(c^{\prime}\right)+1=\nu(c)$.
- Case 2: $\forall v, \exists$ max cost matching for c that does not cover v.
- Let $c_{e}^{\prime}=c_{e}-1$ for all $e \in E$.
- We show all max matchings M for c^{\prime} miss at least one vertex.
- Let M be max matching for c^{\prime} with $|M|$ as large as possible.
- Suppose M covers all vertices.
- Let N be max matching for c that does not cover some vertex.
- $c^{\prime}(N)=c(N)-|N|>c(N)-|M| \geq$ $c(M)-|M|=c^{\prime}(M)=\nu\left(c^{\prime}\right)$ (first inequality because M covers all vertices and N misses at least one)
- Case 2a: Suppose \exists max matching M for c^{\prime} s.t. $|M|=\frac{|V|-1}{2}$ (i.e., $|V|$ odd and M misses exactly one vertex).
- By induction, exist integral y^{\prime}, z^{\prime} s.t. $D\left(y^{\prime}, z^{\prime}\right) \leq \nu\left(c^{\prime}\right)$.
- Let $z_{V}=z_{V}^{\prime}+1$ and $z_{U}=z_{U}^{\prime}$ for all other $U \subset V ; y=y^{\prime}$.
$-z_{V}$ in every constraint and both z_{V} and c_{e} increased by one, so y, z feasible.
- Also, $D(y, z)=D\left(y^{\prime}, z^{\prime}\right)+\frac{|V|-1}{2} \leq$ $\nu\left(c^{\prime}\right)+\frac{|V|-1}{2} \leq \nu(c)$ (last inequality follows because can use matching for c^{\prime} as matching for c)
- Case 2b: All max cost matchings for c^{\prime} miss at least two vertices.
- Let M be max cost matching for c^{\prime} with unmatched vertices u and v s.t. $|M|$ maximized and $d(u, v)$ minimized.
- Note $d(u, v) \geq 2$ and let t be second node on shortest path from u to v. Note t matched in M (otherwise can add edge ($u, t)$).
- Let N be max matching for c, $c(N)=\nu(c)$ such that t unmatched in N.
- Let P be component of t in $M \Delta N$ and $M^{\prime}=M \Delta P$ and $N^{\prime}=N \Delta P$
- Note M^{\prime}, N^{\prime} are matchings and $\left|M^{\prime}\right| \leq|M|$ (last edge of path connecting to t is in M).
- However,
$c(M)+c(N)=c(M \Delta P)+$ $c(N \Delta P) \rightarrow$
$c^{\prime}(M)+|M|+c(N)=$
$c^{\prime}(M \Delta P)+|M \Delta P|+c(N \Delta P) \rightarrow$
$c^{\prime}(M)+|M| \leq c^{\prime}(M \Delta P)+|M \Delta P|$ since $c(N)=\nu(c) \geq c(N \Delta P)$.
- Since $c^{\prime}(M)=\nu\left(c^{\prime}\right) \geq c^{\prime}(M \Delta P)$ and $|M| \geq|M \Delta P|$, must be equalities.
- t unmatched in M^{\prime}.
- P can't cover both u and v since neither covered by M and only one can be endpoint of path if covered by N.
- either u or v unmatched by M^{\prime}, say u
- then $d(u, t)<d(u, v),|M|=\left|M^{\prime}\right|$, and $c^{\prime}\left(M^{\prime}\right)=c^{\prime}(M)=\nu\left(c^{\prime}\right)$ contradicting our choice of M, u, v.

Note: Matching polytope has exponentially many constraints. Has a separation oracle based on minimum odd cut in suitable graph (reading project).
Question: (open): Can one give a compact polyhedral description of the matching polytope, e.g., by suitable lifting of variables? (part of reading project to discuss lifting of variables.)

Matroids

[[Abstracts linear algebra and graph theory.]] Key set systems to keep in mind:

- subsets of vectors of \mathcal{R}^{n}
- subsets of edges of $G=(V, E)$

Def: A matroid $M=(\mathcal{S}, \mathcal{I})$ is a finite ground set \mathcal{S} together with a collection of sets $\mathcal{I} \subseteq 2^{\mathcal{S}}$ satisfying:

- downward closed: if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$, and
- exchange property: if $I, J \in \mathcal{I}$ and $|J|>$ $|I|$, then there exists an element $z \in J \backslash I$ s.t. $I \cup\{z\} \in \mathcal{I}$.

Terminology:

- $I \in \mathcal{I}$ independent, $I \notin \mathcal{I}$ dependent
- circuit is a minimal dependent set of M
- basis is a maximal independent set
- I is a spanning set if for some basis B, $B \subseteq I$

Example: Uniform matroids U_{n}^{k} : Given by $|S|=n, \mathcal{I}=\{I \subseteq S:|I| \leq k\}$.

Check two properties and see this is a matroid.

What are the...

- bases: sets of size k
- circuits: sets of size $k+1$
- spanning sets: sets of size at least k

Example: Linear matroids: Let F be a field, $A \in F^{m \times n}$ an $m \times n$ matrix over $F, S=$ $\{1, \ldots, n\}$ be index set of columns of A. Then $I \subseteq S$ is independent if the corresponding columns are linearly independent.
Check two properties and see this is a matroid.
What are the...

- bases: minimal sets of vectors that span space spanned by A
- circuits: vectors that span space space spanned by A with one extra
- spanning sets: vectors that span space spanned by A

Example: Graphic Matroids: Let $G=$ (V, E) be a graph and $S=E$. A set $F \subseteq E$ is independent if it is acyclic.
Check two properties and see this is a matroid.
What are the...

- bases: minimum spanning trees
- circuits: subgraphs with one cycle
- spanning sets: connected subgraphs that contain every vertex

Note: All bases of a matroid M must have same cardinality.
Def: The rank function of M is $r: 2^{S} \rightarrow \mathcal{Z}_{+}$ given by $r(U)=\max _{I \subseteq U, I \in \mathcal{I}}|I|$.
Note: Corresponds to rank of matrix in linear matroids, hence name.

