Теорема Курселя. Win/win подход

*St. Petersburg Academic University of the Russian Academy of Sciences

25 Ноября, 2015

Формулы логики в которых разрешено использование:

$$\bigvee, \bigwedge, \neg$$

$$\in, \subseteq, \subset$$

$$inc(v,e) - \mathsf{peбpo}\ e\ \mathsf{инцидентнo}\ \mathsf{вершинe}\ v$$

$$\forall_{v \in V}, \forall_{e \in E}, \forall_{V \subseteq V}, \forall_{e \subseteq E}$$

$$\exists_{v \in V}, \exists_{e \in E}, \exists_{V \subseteq V}, \exists_{e \subseteq E}$$

$$conn(X) = \forall_{Y \subseteq V} [(\exists_{u \in X} u \in Y \land \exists_{v \in X} \neg (v \in Y)) \Rightarrow (\exists_{e \in E} \exists_{u \in X} \exists_{v \in X} inc(u, e) \land inc(v, e) \land u \in Y \land \neg (v \in Y))]$$

Формулы логики в которых разрешено использование:

$$\bigvee, \bigwedge, \neg$$
 \in, \subseteq, \subset

inc(v,e) — ребро e инцидентно вершине v.

$$\forall_{v \in V}, \forall_{e \in E}, \forall_{V \subseteq V}, \forall_{e \subseteq E}$$
$$\exists_{v \in V}, \exists_{e \in E}, \exists_{V \subseteq V}, \exists_{e \subseteq E}$$

$$conn(X) = \forall_{Y \subseteq V} [(\exists_{u \in X} u \in Y \land \exists_{v \in X} \neg (v \in Y)) \Rightarrow (\exists_{e \in E} \exists_{u \in X} \exists_{v \in X} inc(u, e) \land inc(v, e) \land u \in Y \land \neg (v \in Y))]$$

Формулы логики в которых разрешено использование:

$$\bigvee, \bigwedge, \neg$$

$$\in, \subseteq, \subset$$

$$inc(v,e) - \mathsf{peбpo}\ e\ \mathsf{инцидентнo}\ \mathsf{вершинe}\ v.$$

$$\forall_{v \in V}, \forall_{e \in E}, \forall_{V \subseteq V}, \forall_{e \subseteq E}$$

$$\exists_{v \in V}, \exists_{e \in E}, \exists_{V \subseteq V}, \exists_{e \subseteq E}$$

$$conn(X) = \forall_{Y \subseteq V} [(\exists_{u \in X} u \in Y \land \exists_{v \in X} \neg (v \in Y)) \Rightarrow (\exists_{e \in E} \exists_{u \in X} \exists_{v \in X} inc(u, e) \land inc(v, e) \land u \in Y \land \neg (v \in Y))]$$

Формулы логики в которых разрешено использование:

$$\bigvee, \bigwedge, \neg$$

$$\in, \subseteq, \subset$$

$$inc(v,e) - \mathsf{peбpo}\ e\ \mathsf{инцидентнo}\ \mathsf{вершинe}\ v.$$

$$\forall_{v\in V}, \forall_{e\in E}, \forall_{V\subseteq V}, \forall_{e\subseteq E}$$

$$\exists_{v\in V}, \exists_{e\in E}, \exists_{V\subset V}, \exists_{e\in E}$$

$$conn(X) = \forall_{Y \subseteq V} [(\exists_{u \in X} u \in Y \land \exists_{v \in X} \neg (v \in Y)) \Rightarrow (\exists_{e \in E} \exists_{u \in X} \exists_{v \in X} inc(u, e) \land inc(v, e) \land u \in Y \land \neg (v \in Y))]$$

3 раскрашиваемость

$$3 colorability = \exists_{X_1, X_2, X_3 \subseteq V} partition(X_1, X_2, X_3) \land \\ ind(X_1) \land ind(X_2) \land ind(X_3)$$

$$partition(X_1, X_2, X_3) = \forall_{vinV}((v \in X_1) \land \neg(v \in X_2) \land \neg(v \in X_3))$$
$$\lor (\neg(v \in X_1) \land (v \in X_2) \land \neg(vinX_3))$$
$$\lor (\neg(v \in X_1) \land \neg(v \in X_2) \land (vinX_3))]$$

$$indp(X) = \forall_{u,v \in X} \neg adj(u,v)$$

3 раскрашиваемость

$$3 colorability = \exists_{X_1, X_2, X_3 \subseteq V} partition(X_1, X_2, X_3) \land \\ ind(X_1) \land ind(X_2) \land ind(X_3)$$

$$partition(X_1, X_2, X_3) = \forall_{vinV}((v \in X_1) \land \neg(v \in X_2) \land \neg(v \in X_3))$$
$$\lor (\neg(v \in X_1) \land (v \in X_2) \land \neg(vinX_3))$$
$$\lor (\neg(v \in X_1) \land \neg(v \in X_2) \land (vinX_3))]$$

$$indp(X) = \forall_{u,v \in X} \neg adj(u,v)$$

3 раскрашиваемость

$$3 colorability = \exists_{X_1, X_2, X_3 \subseteq V} partition(X_1, X_2, X_3) \land \\ ind(X_1) \land ind(X_2) \land ind(X_3)$$

$$partition(X_1, X_2, X_3) = \forall_{vinV}((v \in X_1) \land \neg(v \in X_2) \land \neg(v \in X_3))$$
$$\lor (\neg(v \in X_1) \land (v \in X_2) \land \neg(vinX_3))$$
$$\lor (\neg(v \in X_1) \land \neg(v \in X_2) \land (vinX_3))]$$

$$indp(X) = \forall_{u,v \in X} \neg adj(u,v)$$

Theorem

Пусть $\varphi-MSO_2$ формула и G— граф на n-вершинах, интерпритация всех свободных переменных формулы φ задана в графе G. Предположим задано древесное разложение графа G ширины t. Тогда существует алгоритм, который проверяет выполнимость φ в G за время $f(||\varphi||,t)\cdot n$ для некоторой вычислимой функции f.

Найти вершинное покрытие содержащее не более k вершин

$$|X| \le k \land \forall_{e \in E} \exists_{x \in X} inc(x, e)$$

Не является MSO_2 формулой!

$$\exists_{x_1, x_2, \dots x_k} \forall_{e \in E} \bigvee_{i=1}^k inc(x_i, e)$$

Длина формулы зависит от k, поэтому получаем только $f(t,k)\cdot n$ алгоритм.

Theorem

Пусть $\varphi-MSO_2$ формула и G— граф на n-вершинах, интерпритация всех свободных переменных формулы φ задана в графе G. Предположим задано древесное разложение графа G ширины t. Тогда существует алгоритм, который проверяет выполнимость φ в G за время $f(||\varphi||,t)\cdot n$ для некоторой вычислимой функции f.

Найти вершинное покрытие содержащее не более k вершин.

$$|X| \le k \land \forall_{e \in E} \exists_{x \in X} inc(x, e)$$

He является MSO_2 формулой!

$$\exists_{x_1, x_2, \dots x_k} \forall_{e \in E} \bigvee_{i=1}^k inc(x_i, e)$$

Длина формулы зависит от k, поэтому получаем только $f(t,k)\cdot n$ алгоритм.

Theorem

Пусть $\varphi-MSO_2$ формула и G— граф на n-вершинах, интерпритация всех свободных переменных формулы φ задана в графе G. Предположим задано древесное разложение графа G ширины t. Тогда существует алгоритм, который проверяет выполнимость φ в G за время $f(||\varphi||,t)\cdot n$ для некоторой вычислимой функции f.

Найти вершинное покрытие содержащее не более k вершин.

$$|X| \le k \land \forall_{e \in E} \exists_{x \in X} inc(x, e)$$

Не является MSO_2 формулой!

$$\exists_{x_1, x_2, \dots x_k} \forall_{e \in E} \bigvee_{i=1}^k inc(x_i, e)$$

Длина формулы зависит от k, поэтому получаем только $f(t,k)\cdot n$ алгоритм.

Theorem

Пусть $\varphi-MSO_2$ формула с p свободными переменными $X_1,X_2,\ldots X_p$ и $\alpha(x_1,x_2,x_3,\ldots x_p)$ аффинная функция. Предположим нам дан граф G на n вершинах вместе c древесным разложением ширины t. Будем считать, что нам также задана интерпритация всех свободных переменных формулы φ , кроме переменных $X_1,X_2,\ldots X_p$. Тогда существует алгоритм который за время $f(||\varphi,t||)\cdot n$ находит минимальное и максимальное значение функции $\alpha(|X_1|,|X_2|,\ldots,|X_p|)$, где $X_1,X_2,\ldots X_p$ выполняют формулу $\varphi(\cdot)$, то есть $\varphi(X_1,X_2,\ldots X_p)=true.$ f— некоторая вычислимая функция.

$$vcover(X) = \forall_{e \in E} \exists_{x \in X} inc(x, e)$$

$$\alpha(X) = |X|$$

Theorem

Пусть $\varphi-MSO_2$ формула с p свободными переменными $X_1,X_2,\ldots X_p$ и $\alpha(x_1,x_2,x_3,\ldots x_p)$ аффинная функция. Предположим нам дан граф G на n вершинах вместе с древесным разложением ширины t. Будем считать, что нам также задана интерпритация всех свободных переменных формулы φ , кроме переменных $X_1,X_2,\ldots X_p$. Тогда существует алгоритм который за время $f(||\varphi,t||)\cdot n$ находит минимальное и максимальное значение функции $\alpha(|X_1|,|X_2|,\ldots,|X_p|)$, где $X_1,X_2,\ldots X_p$ выполняют формулу $\varphi(\cdot)$, то есть $\varphi(X_1,X_2,\ldots X_p)=true.$ f— некоторая вычислимая функция.

$$vcover(X) = \forall_{e \in E} \exists_{x \in X} inc(x, e)$$

$$\alpha(X) = |X|$$

Вершинное покрытие

- ullet Вершинное покрытие $\leq k \Rightarrow tw(G) \leq k$
- ullet Найдем древесное разложение размера 4k+4
- ullet Решим задачу за время $O^*(2^{tw}) = O^*(2^{4k+4})$

Вершинное покрытие

- ullet Вершинное покрытие $\leq k \Rightarrow tw(G) \leq k$
- ullet Найдем древесное разложение размера 4k+4
- ullet Решим задачу за время $O^*(2^{tw}) = O^*(2^{4k+4})$

Вершинное покрытие

- ullet Вершинное покрытие $\leq k \Rightarrow tw(G) \leq k$
- ullet Найдем древесное разложение размера 4k+4
- ullet Решим задачу за время $O^*(2^{tw}) = O^*(2^{4k+4})$

Theorem (Excluded grid theorem)

Существует функция $g(t) = O(t^{98+o(1)})$ такая, что любой граф с древесной шириной больше g(t) содержит решетку $t \times t$.

Theorem (Planar Excluded Grid Theorem)

Пусть $t\geq 0$. Любой планарный граф G с древесной шириной не менее 9t/2 содержит решетку $t\times t$ в качестве минора. Более того, для любого ε существует $O(n^2)$ алгоритм, который по заданному n-вершинному планарному графу и целому t или выдает древесное разложение графа G ширины не более $9/2+\varepsilon$ или находит минор решетку $t\times t$ в G.

Corollary

Ширина древесного разложения планарного графа G на n вершинах не превосходит $\frac{9}{2}\lceil\sqrt{n+1}\rceil$. Более того, для любого ε , древесное разложение ширины не более $(\frac{9}{2}+\varepsilon)\lceil\sqrt{n+1}\rceil$ может быть построенои за $O(n^2)$ время.

Theorem (Excluded grid theorem)

Существует функция $g(t) = O(t^{98+o(1)})$ такая, что любой граф с древесной шириной больше g(t) содержит решетку $t \times t$.

Theorem (Planar Excluded Grid Theorem)

Пусть $t\geq 0$. Любой планарный граф G с древесной шириной не менее 9t/2 содержит решетку $t\times t$ в качестве минора. Более того, для любого ε существует $O(n^2)$ алгоритм, который по заданному n-вершинному планарному графу и целому t или выдает древесное разложение графа G ширины не более $9/2+\varepsilon$ или находит минор решетку $t\times t$ в G.

Corollary

Ширина древесного разложения планарного графа G на n вершинах не превосходит $\frac{9}{2}\lceil\sqrt{n+1}\rceil$. Более того, для любого ε , древесное разложение ширины не более $(\frac{9}{2}+\varepsilon)\lceil\sqrt{n+1}\rceil$ может быть построенои за $O(n^2)$ время.

Theorem (Excluded grid theorem)

Существует функция $g(t) = O(t^{98+o(1)})$ такая, что любой граф с древесной шириной больше g(t) содержит решетку $t \times t$.

Theorem (Planar Excluded Grid Theorem)

Пусть $t\geq 0$. Любой планарный граф G с древесной шириной не менее 9t/2 содержит решетку $t\times t$ в качестве минора. Более того, для любого ε существует $O(n^2)$ алгоритм, который по заданному n-вершинному планарному графу и целому t или выдает древесное разложение графа G ширины не более $9/2+\varepsilon$ или находит минор решетку $t\times t$ в G.

Corollary

Ширина древесного разложения планарного графа G на n вершинах не превосходит $\frac{9}{2}\lceil\sqrt{n+1}\rceil$. Более того, для любого ε , древесное разложение ширины не более $(\frac{9}{2}+\varepsilon)\lceil\sqrt{n+1}\rceil$ может быть построенои за $O(n^2)$ время.

Theorem (Planar Excluded Grid Theorem for edge contractions)

Для любого связного планарного графа G и $t\geq 0$, если $tw(G)\geq 9t+5$, то G содержит триангулированную решетку в качестве стягивания. Для любого ε , существует алгоритм с временем работы $O(n^2)$ находяший триангулировнную решетку или выдающий древесное разложение размера не больше $(9+\varepsilon)t+5$.

Theorem (Planar Excluded Grid Theorem for edge contractions)

Для любого связного планарного графа G и $t\geq 0$, если $tw(G)\geq 9t+5$, то G содержит триангулированную решетку в качестве стягивания. Для любого ε , существует алгоритм с временем работы $O(n^2)$ находяший триангулировнную решетку или выдающий древесное разложение размера не больше $(9+\varepsilon)t+5$.

ullet Вершинное покрытие решетки t imes t не меньше $t^2/2$

- По заданному древесному разложению можно найти вершинное покрытие за время $O^*(2^{tw})$
- ullet Размер вершинного покрытия минора H не превосходит размер вершинного покрытия первоначального графа
 - C1 Размер любого решения для решетки $t \times t$ не менее $\Omega(t^2)$
 - **С2** Если задано древесное разложение ширины t, то задача может быть решена за время $2^O(t)n^O(1)$.
 - **C3** Задача является монотонной относительно миноров, то есть если G содержит решения размера не больше k, тогда любой минор графа G содержит решение не больше k.

- \bullet Вершинное покрытие решетки $t \times t$ не меньше $t^2/2$
- По заданному древесному разложению можно найти вершинное покрытие за время $O^*(2^{tw})$
- Размер вершинного покрытия минора H не превосходит размер вершинного покрытия первоначального графа
 - C1 Размер любого решения для решетки $t \times t$ не менее $\Omega(t^2)$
 - **С2** Если задано древесное разложение ширины t, то задача может быть решена за время $2^O(t)n^O(1)$.
 - **C3** Задача является монотонной относительно миноров, то есть если G содержит решения размера не больше k, тогда любой минор графа G содержит решение не больше k.

- ullet Вершинное покрытие решетки t imes t не меньше $t^2/2$
- По заданному древесному разложению можно найти вершинное покрытие за время $O^*(2^{tw})$
- Размер вершинного покрытия минора H не превосходит размер вершинного покрытия первоначального графа
 - C1 Размер любого решения для решетки $t \times t$ не менее $\Omega(t^2$
 - **С2** Если задано древесное разложение ширины t, то задача может быть решена за время $2^O(t)n^O(1)$.
 - С3 Задача является монотонной относительно миноров, то есть если G содержит решения размера не больше k, тогда любой минор графа G содержит решение не больше k.

- ullet Вершинное покрытие решетки t imes t не меньше $t^2/2$
- По заданному древесному разложению можно найти вершинное покрытие за время $O^*(2^{tw})$
- Размер вершинного покрытия минора H не превосходит размер вершинного покрытия первоначального графа
 - C1 Размер любого решения для решетки $t \times t$ не менее $\Omega(t^2)$
 - **С2** Если задано древесное разложение ширины t, то задача может быть решена за время $2^O(t)n^O(1)$.
 - С3 Задача является монотонной относительно миноров, то есть если G содержит решения размера не больше k, тогда любой минор графа G содержит решение не больше k.

- ullet Вершинное покрытие решетки $t \times t$ не меньше $t^2/2$
- По заданному древесному разложению можно найти вершинное покрытие за время $O^*(2^{tw})$
- ullet Размер вершинного покрытия минора H не превосходит размер вершинного покрытия первоначального графа
 - **C1** Размер любого решения для решетки $t \times t$ не менее $\Omega(t^2)$
 - **С2** Если задано древесное разложение ширины t, то задача может быть решена за время $2^{O}(t)n^{O}(1)$.

- ullet Вершинное покрытие решетки t imes t не меньше $t^2/2$
- По заданному древесному разложению можно найти вершинное покрытие за время $O^*(2^{tw})$
- Размер вершинного покрытия минора H не превосходит размер вершинного покрытия первоначального графа
 - C1 Размер любого решения для решетки $t \times t$ не менее $\Omega(t^2)$
 - **C2** Если задано древесное разложение ширины t, то задача может быть решена за время $2^O(t)n^O(1)$.
 - **C3** Задача является монотонной относительно миноров, то есть если G содержит решения размера не больше k, тогда любой минор графа G содержит решение не больше k.

Thank you for your attention!