Introduction

Ilya Razenshteyn (MIT CSAIL)

Geometric structure of data

Datasets often have (implicit or explicit) geometric structure
bag of words
feature vectors

Scale

High-dimensional data requires a new theory

- Twitter example: 200B tweets per year, 100K dimensions
- Massive high-dimensional geometric data (100 is high too)
- Computational geometry: typically, exponential dependence on the dimension
- Curse of dimensionality

The toolbox

- Efficient representations of data
- Randomized hashing
- Sketching (summarization)
- Dimension reduction
- Metric embeddings
-...

Plan

- Dimension reduction: theory and practice
- Nearest Neighbor Search: theory
- Nearest Neighbor Search: practice
- Fast linear algebra (big maybe)
- Michael will cover streaming and sketching

Meta

- Heavily biased towards my PhD research
- Complicated proofs but practical algorithms
- See, e.g., https://falconn-lib.org/
- Not everything I will say has a proof
- Randomness is the key to everything
- Most important: flavor of modern algorithms research
- Interact!
- Lots of cool open problems

But let's first take a detour...

Chapter 0: Measure Concentration

How to think about high dimensions?

- How to think about geometric objects in R^{d} when d is large?
- Counterintuitively:
- Geometry barely helps
- Probability and analysis are extremely useful
- Concentration of measure is ubiquitous

Case study

- Case study: as many as possible points in such that all pairwise distances are
- Exactly 1
- Between $1-\varepsilon$ and $1+\varepsilon$
- For $d=2$, the answer is 3 for both
-What happens if $d \rightarrow \infty$?

The exact case

- Maximum number of equidistant points in R^{d} is $d+1$
- Let points be $v_{0}, v_{1}, \ldots, v_{t}$
- Exercise: show that $v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{t}-v_{0}$ are linearly independent
- Hence, $t \leq d+1$
- Tight: a regular simplex

The approximate case

- Unlike the exact case, can have as many as $2^{\Omega\left(\varepsilon^{2} d\right)}$ points with pairwise distances between $1-\varepsilon$ and $1+\varepsilon$
- Counterintuitive!
- A special case of dimension reduction (will see later)

The probabilistic method

- To prove that some object exists, show that a random object has desired properties with positive probability
- Pioneered by Paul Erdős
- Allows to import probabilistic techniques into combinatorics and geometry
- Alon, Spencer, "Probabilistic Method", 319pp.

Are random points ~ equidistant?

- Want: n points in R^{d} with distances between $1-\varepsilon$ and $1+\varepsilon$
- With $n=2^{\Omega\left(\varepsilon^{2} d\right)}$
- Proof idea: choose n points uniformly and independently from $S^{d-1} \subset R^{d}$, with high probability pairwise distances are close, rescale
- Simple but powerful trick: use union bound
- Pr [some pair is bad] $\leq n^{2} \cdot \operatorname{Pr}[$ a fixed pair is bad] $<(?) 1$
- Enough to understand the distribution of distances between two random points!

Concentration of measure on the sphere

- Let $x, y \in S^{d-1} \subset R^{d}$ be two uniform random points
- Understand the random variable $\|x-y\|$
- The same if $y=(1,0,0, \ldots, 0)$, and x is random
- Thus, need to understand x_{1} for a random $x \in S^{d-1}$

The distribution of x_{1}

- Exercise: compute it for $d=3$ and get surprised Almost all the mass is in the stripe of width $\Theta\left(\frac{1}{\sqrt{d}}\right)$ around 0

Almost everything is near an equator...

Any equator!

Near-orthogonal vectors

- With probability $1-1 / 10 n^{2}$, one has $\left|x_{1}\right| \leq O\left(\sqrt{\frac{\log n}{d}}\right)$
- At most ε if $n \leq 2^{O\left(\varepsilon^{2} d\right)}$

Fast forward: dimension reduction

- Given n points in R^{d}, map them into $R^{d \prime}$ with $d^{\prime} \ll d$ such that pairwise distances are preserved up to $1 \pm \varepsilon$
- The above argument shows that for a regular simplex we can obtain $d^{\prime}=O\left(\frac{\log n}{\varepsilon^{2}}\right)$
- Johnson-Lindenstrauss lemma: the same bound for an arbitrary set of points (will see later today)

What to think of it?

- Quite counter-intuitive, and might not make sense when you first think about it...

The number of heads

- Toss 1000 fair coins
- What is the number of heads?
- With high probability,

$$
\frac{d}{2} \pm O(\sqrt{d})
$$

- Enables error-correcting codes etc.

$$
d=1000
$$

The hypercube

Central limit theorem

- Let $X_{1}, \mathrm{X}_{2}, \ldots, X_{d}$ — independent random variables with zero mean and variance one
- Then, $\frac{X_{1}+X_{2}+\cdots+X_{d}}{\sqrt{d}} \rightarrow N(0,1)$
- Weak convergence
- Lots of work put into showing similar results, when X_{i} 's are (mildly) dependent
- And understanding the rate of convergence ("finitary" statements)

A bit more advanced material...

Isoperimetric inequality

- Shape in R^{d} of unit volume with the smallest surface
- A ball of an appropriate radius
- What if we live on a unit sphere?
- $\mu\left(A_{\varepsilon}\right)$ is minimized for a fixed $\mu(A)$ iff A is a spherical cap of appropriate size [Levy]
- Corollary: if $\mu(A)=1 / 2$, then $\mu\left(A_{\varepsilon}\right) \geq$
 $1-e^{-\Omega\left(\varepsilon^{2} d\right)}$

Concentration of Lipschitz functions

- Let $f: S^{d-1} \rightarrow R$ such that $|f(x)-f(y)| \leq\|x-y\|$
- Then, f is sharply concentrated around the median
- $\mu(f(x) \leq \operatorname{med} f)=1 / 2$
- $f(x)>\operatorname{med} f+\varepsilon$ implies x is at distance at least ε
- Use the previous slide to get:
- $\mu(f(x)>\operatorname{med} f+\varepsilon) \leq e^{-\Omega\left(\varepsilon^{2} d\right)}$

What to read next?

- Matousek, "Lectures on Discrete Geometry"
- Ball, "An Elementary Introduction to Modern Convex Geometry"
- Milman, Talagrand, ...

