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Datasets often have (implicit or explicit) geometric structure

Data analysis task

Geometric problem Example: find a cluster of similar documents



• Twitter example: 200B tweets per year, 100K dimensions

• Massive high-dimensional geometric data (100 is high too)

• Computational geometry: typically, exponential
dependence on the dimension

• Curse of dimensionality

…

High-dimensional data 
requires a new theory



• Efficient representations 
of data
• Randomized hashing

• Sketching (summarization)

• Dimension reduction

• Metric embeddings

• …
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• Dimension reduction: theory and practice

• Nearest Neighbor Search: theory

• Nearest Neighbor Search: practice

• Fast linear algebra (big maybe)

• Michael will cover streaming and sketching



• Heavily biased towards my PhD research

• Complicated proofs but practical algorithms
• See, e.g., https://falconn-lib.org/

• Not everything I will say has a proof

• Randomness is the key to everything

• Most important: flavor of modern algorithms research

• Interact!

• Lots of cool open problems







• How to think about geometric objects in 𝑅𝑑 when 𝑑 is large?

• Counterintuitively:
• Geometry barely helps

• Probability and analysis are extremely useful

• Concentration of measure is ubiquitous



• Case study: as many as possible points in 𝑅𝑑

such that all pairwise distances are
• Exactly 1

• Between 1 − 𝜀 and 1 + 𝜀

• For 𝑑 = 2, the answer is 3 for both

• What happens if 𝑑 → ∞?



• Maximum number of equidistant points in 𝑅𝑑 is 𝑑 + 1

• Let points be 𝑣0, 𝑣1, …, 𝑣𝑡
• Exercise: show that 𝑣1 − 𝑣0, 𝑣2 − 𝑣0, …, 𝑣𝑡 − 𝑣0 are linearly 

independent

• Hence, 𝑡 ≤ 𝑑 + 1

• Tight: a regular simplex



• Unlike the exact case, can have as many as 2Ω(𝜀
2𝑑) points 

with pairwise distances between 1 − 𝜀 and 1 + 𝜀

• Counterintuitive!

• A special case of dimension reduction (will see later)



• To prove that some object exists, show that a random 
object has desired properties with positive probability

• Pioneered by Paul Erdős

• Allows to import probabilistic techniques into combinatorics
and geometry

• Alon, Spencer, “Probabilistic Method”, 319pp.



• Want: 𝑛 points in 𝑅𝑑 with distances between 1 − 𝜀 and 1 + 𝜀

• With 𝑛 = 2Ω(𝜀
2𝑑)

• Proof idea: choose 𝑛 points uniformly and independently 
from 𝑆𝑑−1 ⊂ 𝑅𝑑, with high probability pairwise distances are 
close, rescale

• Simple but powerful trick: use union bound

• Pr some pair is bad ≤ 𝑛2 ⋅ Pr a fixed pair is bad < (? )1

• Enough to understand the distribution of distances between 
two random points!



• Let 𝑥, 𝑦 ∈ 𝑆𝑑−1 ⊂ 𝑅𝑑 be two 
uniform random points

• Understand the random variable 
𝑥 − 𝑦

• The same if 𝑦 = (1, 0, 0, … , 0), and 
𝑥 is random

• Thus, need to understand 𝑥1 for a 
random 𝑥 ∈ 𝑆𝑑−1



𝑥1

• Exercise: compute it for 𝑑 = 3 and get surprised

Almost all the mass 
is in the stripe of 

width Θ
1

𝑑
around 0







• With probability 1 − 1/10𝑛2, one has 𝑥1 ≤ 𝑂
log 𝑛

𝑑

• At most 𝜀 if 𝑛 ≤ 2O(𝜀
2𝑑)



• Given 𝑛 points in 𝑅𝑑, map them into 𝑅𝑑′ with 𝑑′ ≪ 𝑑 such 
that pairwise distances are preserved up to 1 ± 𝜀

• The above argument shows that for a regular simplex we can 

obtain 𝑑′ = 𝑂
log 𝑛

𝜀2

• Johnson–Lindenstrauss lemma: the same bound for an 
arbitrary set of points (will see later today)



• Quite counter-intuitive, and might not make sense when you 
first think about it…



• Toss 1000 fair coins

• What is the number of heads?

• With high probability, 
𝑑

2
± 𝑂( 𝑑)

• Enables error-correcting codes 
etc.





• Let 𝑋1, X2, … , 𝑋𝑑 — independent random variables with zero 
mean and variance one

• Then, 
𝑋1+𝑋2+⋯+𝑋𝑑

𝑑
→ 𝑁(0,1)

• Weak convergence

• Lots of work put into showing similar results, when 𝑋𝑖 ’s are 
(mildly) dependent

• And understanding the rate of convergence (“finitary” 
statements)





• Shape in 𝑅𝑑 of unit volume with the 
smallest surface
• A ball of an appropriate radius

• What if we live on a unit sphere?

• 𝜇(𝐴𝜀) is minimized for a fixed 𝜇(𝐴) iff 𝐴
is a spherical cap of appropriate size 
[Levy]

• Corollary: if 𝜇 𝐴 = 1/2, then 𝜇 𝐴𝜀 ≥
1 − 𝑒−Ω(𝜀

2𝑑)



• Let 𝑓: 𝑆𝑑−1 → 𝑅 such that 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑥 − 𝑦

• Then, 𝑓 is sharply concentrated around the median

• 𝜇 𝑓 𝑥 ≤ med 𝑓 = 1/2

• 𝑓 𝑥 > med 𝑓 + 𝜀 implies 𝑥 is at distance at least 𝜀

• Use the previous slide to get:

• 𝜇 𝑓 𝑥 > med 𝑓 + 𝜀 ≤ 𝑒−Ω(𝜀
2𝑑)



• Matousek, “Lectures on Discrete Geometry”

• Ball, “An Elementary Introduction to Modern Convex 
Geometry”

• Milman, Talagrand, …


