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Geometric structure of data

Datasets often have (implicit or explicit) geometric structure

bag of words feature vectors
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Geometric problem

Example: find a cluster of similar documents




High-dimensional data
requires a new theory

Scale

« Twitter example: 200B tweets per year, 100K dimensions
* Massive high-dimensional geometric data (100 is high too)

« Computational geometry: typically, exponential
dependence on the dimension

 Curse of dimensionality
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The toolbox

- Efficient representations
of data
- Randomized hashing
Sketching (summarization)
Dimension reduction
Metric embeddings




Plan

« Dimension reduction: theory and practice

* Nearest Neighbor Search: theory

* Nearest Neighbor Search: practice

* Fast linear algebra (big maybe)

« Michael will cover streaming and sketching



Meta

« Heavily biased towards my PhD research

« Complicated proofs but practical algorithms
 See, e.g., https://falconn-lib.org/

* Not everything | will say has a proof

« Randomness is the key to everything

« Most important: flavor of modern algorithms research
* Interact!

» Lots of cool open problems



But let’s first take a detour...



Chapter O: Measure
Concentration



How to think about high dimensions?

- How to think about geometric objects in R* when d is large?

« Counterintuitively:

- Geometry barely helps
« Probability and analysis are extremely useful

- Concentration of measure is ubiquitous



Case study

 Case study: as many as possible points in
such that all pairwise distances are

« Exactly 1
e Between1—cand 1+ ¢

 For d = 2, the answer is 3 for both
« What happensif d - oo?




The exact case

- Maximum number of equidistant points in R%is d + 1
e Let points be v, vy, ..., V¢

 Exercise: show that v; — vy, v, — vy, ..., v — vy are linearly
independent

* Hence, t <d+1
 Tight: a regular simplex



The approximate case

- Unlike the exact case, can have as many as 22¢°D points
with pairwise distances between 1 —ecand 1 + ¢

 Counterintuitive!
* A special case of dimension reduction (will see later)



The probabilistic method

- To prove that some object exists, show that a random
object has desired properties with positive probability

 Pioneered by Paul Erdos

* Allows to import probabilistic techniques into combinatorics
and geometry

 Alon, Spencer, “Probabilistic Method”, 319pp.



Are random points ~ equidistant?

- Want: n points in R% with distances between 1 —cand 1 + ¢
.« With n = 29D

 Proof idea: choose n points uniformly and independently

from $¢~1 c R4, with high probability pairwise distances are
close, rescale

 Simple but powerful trick: use union bound
e Pr[some pair is bad] < n? - Pr[a fixed pair is bad] < (?)1

* Enough to understand the distribution of distances between
two random points!



Concentration of measure on the sphere

e Letx,y € S%71 < R? be two
uniform random points

« Understand the random variable
X =yl

« Thesameify = (1,0,0,...,0), and
x is random

* Thus, need to understand x, for a
random x € S¢-1




The distribution of x4

 Exercise: compute it for d = 3 and get surprised

Almost all the mass d=1000
s in the stripe of
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Almost everything is near an equator...
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Near-orthogonal vectors

» With probability 1 — 1/10n?, one has |x;| < 0( loi”)

« At most ¢ if n < 20E*d)



Fast forward: dimension reduction

« Given n points in R, map them into R with d’ « d such
that pairwise distances are preserved upto 1+«

* The above argument shows that for a regular simplex we can
obtain d' = 0 (log")

c2
* Johnson-Lindenstrauss lemma: the same bound for an
arbitrary set of points (will see later today)




What to think of it

 Quite counter-intuitive, and might not make sense when you
first think about it...



The number of heads

* Toss 1000 fair coins
« What is the number of heads?
« With high probablllty

— + 0(Va)

« Enables error-correcting codes
etc.

d =1000




The hypercube

<§ix/3>




Central limit theorem

e Let X, X,, ..., X; — independent random variables with zero
mean and variance one

* Then, X1+X2\/%"+Xd - N(0,1)

- Weak convergence

» Lots of work put into showing similar results, when X;’s are
(mildly) dependent

» And understanding the rate of convergence (“finitary”
statements)




A bit more advanced material...



Isoperimetric inequality

- Shape in R? of unit volume with the
smallest surface
A ball of an appropriate radius

« What if we live on a unit sphere?

* u(A.) is minimized for a fixed u(A) iff A
IS a spherical cap of appropriate size
[Levy]

« Corollary: if u(4) = 1/2, then u(4;,) =
1 — e—ﬂ(szd)




Concentration of Lipschitz functions

e Let £:S% 1 > Rsuchthat |[f(x) — f(»)| < |lx — vl

* Then, f is sharply concentrated around the median
* u(f(x) <medf) =1/2

* f(x) > med f + € implies x is at distance at |least ¢

« Use the previous slide to get:
e u(f(x) > med f +¢) < e D



What to read nexit?e

« Matousek, “Lectures on Discrete Geometry”

« Ball, “An Elementary Introduction to Modern Convex
Geometry”

* Milman, Talagrand, ...



