Longest Path in Graphs: 90's and 00's

Saket Saurabh IMSc and University of Bergen, RAA 2017, St. Petersburg

k-Path.Input: Directed graph *G*; parameter *k*.Question: Does *G* have a path on at least *k* vertices?

k-Path.Input: Directed graph *G*; parameter *k*.Question: Does *G* have a path on at least *k* vertices?

k-Path

Deterministic

$O^*(k!)$	Monien '85
$O^{*}(k!2^{k})$	Bodlaender '93
$O^{*}((2e)^{k+o(k)})$	Alon, Yuster and Zwick, '95
$O^{*}(4^{k+o(k)})$	Chen, kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang, '09
$O^*(2.851^k)$ Fomin, Lokshtanov, Panolan and Saurabh, '16	
$[O^*(2.619^k)]$	[-"-, Shachnai and Zehavi, '14]
$O^{*}(2.597^{k})$	Zehavi, '15

Deterministic

Other problems: 3-Set *k*-Packing, 3D *k*-Matching, subcases of Subgraph Isomorphism, Graph Motif, Partial Cover , *k*-Internal Out-Branching, ...

Chen, kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang, '09

 $O^*(2.851^k)$ Fomin, Lokshtanov, Panolan and Saurabh, '16 $[O^*(2.619^k)]$ [-"-, Shachnai and Zehavi, '14]

 $O^{*}(4^{k+o(k)})$

Zehavi, '15

Deterministic

Other problems: 3-Set *k*-Packing, 3D *k*-Matching, subcases of Subgraph Isomorphism, Graph Motif, Partial Cover , *k*-Internal Out-Branching, ...

$$O^*(4^{k+o(k)})$$
 Chen, kneis, Lu, Molle, Richter, Rossmanith, Sze and Z

 $O^*(2.851^k)$
 Fomin, Loks

 $[O^*(2.619^k)]$
 Mixing: $O^*(12.155^k)$
 $O^*(2.597^k)$
 Zehavi, '15

Randomized

$O^{*}(2^{k})$	Koutis and Williams, '09
<i>O</i> *(1.657 ^{<i>k</i>})	Björklund, Husfeldt, Kaski and Koivisto, '10 (Undirected)

(Art?) Tutorial

- **1. Brute-Force**
- 2. Highlights
- **3. Color Coding**
- 4. Divide-and-Color
- 5. Representative Sets
- 6. Mixing

k-Path: Brute-Force

k-Path.Input: Directed graph *G*; parameter *k*.Question: Does *G* have a path on at least *k* vertices?

k-Path: Brute-Force

- **1. Brute-Force**
- 2. Highlights
- **3. Color Coding**
- 4. Divide-and-Color
- **5. Representative Sets**
- 6. Mixing

Color-set: {1,2,...,k}.

To each vertex, randomly assign a color.

Color-set: {1,2,...,k}.

To each vertex, randomly assign a color.

Highlight a solution.

The probability of highlighting a solution: $1/k^k$.

In each iteration:

- Remove irrelevant edges.
- Is there a path from a vertex colored 1 to a vertex colored k?

Probability of highlighting a solution: $1/k^k$. $\rightarrow O^*(k^k)$ iterations.

) 🔘 🔘 🔘

Running time: $O^*(k^k)$.

Running time: $O^*(k^k)$. [Randomized.]

Derandomization:

A family *F* of functions $f:[n] \rightarrow [k]$ such that for all $I \subseteq [n]$ of size *k* and function $g:I \rightarrow [k]$, there exists $f' \in F$ that ``agrees'' with *g*.

Derandomization:

A family F of functions $f:[n] \rightarrow [k]$ such that for all $I \subseteq [n]$ of size k and function $g:I \rightarrow [k]$, there exists $f' \in F$ that ``agrees'' with g.

$|F|=O^{*}(k^{k}\cdot 2^{o(k)})$ in time $O^{*}(k^{k}\cdot 2^{o(k)})$.

Useful to know: k-wise independent sample space; (n,k)-perfect hash family.

[Alon, Babai and Itai, '86; Alon, Yuster and Zwick, '95].

Koutis and Williams, '09: $O^*(2^k)$. [Randomized.] Björklund, Husfeldt, Kaski and Koivisto, '10: $O^*(1.657^k)$. [Randomized; Undirected.]

Koutis and Williams, '09: $O^*(2^k)$. [Randomized.] Björklund, Husfeldt, Kaski and Koivisto, '10: $O^*(1.657^k)$. [Randomized; Undirected.]

Polynomial identity testing.

(incl. algebraic interpretation of ideas presented in this talk.)

- **1. Brute-Force**
- 2. Highlights

6. Mixing

- **3. Color Coding**
- 4. Divide-and-Color
- **5. Representative Sets**

Alon, Yuster and Zwick, '95

Again: Color-set: $\{1, 2, ..., k\}$. $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ To each vertex, randomly assign a color.

Again: Color-set: {1,2,...,k}. ● ● ● ● ● ● ● To each vertex, randomly assign a color. Easier request: Colorful solution.

The probability of coloring a solution correctly:

 $k!/k^k \approx 1/e^k$.

In each iteration:

- M[v,S]: Is there an S-colorful path that ends at v?

In each iteration:

- M[v,S]: Is there an S-colorful path that ends at v?
- $M[v,S] = V_{(u,v) \in E} M[u,S \setminus \{color(v)\}]$

In each iteration:

- M[v,S]: Is there an S-colorful path that ends at v?
- $M[v,S] = V_{(u,v) \in E} M[u,S \setminus \{color(v)\}]$

Probability of coloring a sol correctly: $1/e^k$. $\rightarrow O^*(e^k)$ iterations.

Running time: $O^*((2e)^k)$.

Running time: $O^*((2e)^k)$. [Randomized.]

Derandomization:

A family F of functions $f:[n] \rightarrow [k]$ such that for all $I \subseteq [n]$ of size k, there exists $f' \in F$ such that $f'|_I$ is an injective function.

Derandomization:

A family *F* of functions $f:[n] \rightarrow [k]$ such that for all $I \subseteq [n]$ of size *k*, there exists $f' \in F$ such that $f'|_I$ is an injective function.

$|F|=O^*(e^{k+o(k)})$ in time $O^*(e^{k+o(k)})$.

Useful to know: (n,k,l)-splitter; (n,k)-perfect hash family; δ -balanced (n,k)-perfect hash family. [Naor, Schulman and Srinivasan, '95; Alon, Yuster and Zwick, '95; Alon and Gutner, '10].

Running time: $O^*((2e)^{k+o(k)})$. [Deterministic.]

k-Path: Color Coding

Running time: $O^*((2e)^{k+o(k)})$. [Deterministic.]

(Art?) Tutorial

- **1. Brute-Force**
- 2. Highlights
- **3. Color Coding**
- 4. Divide-and-Color

- 5. Representative Sets
- 6. Mixing Chen, Kneis, Lu, Mölle, Richter, Rossmanith, Sze and Zhang, '09

Color-set: $\{\mathbf{R},\mathbf{B}\}$.

To each vertex, randomly assign a color.

Color-set: $\{\mathbf{R},\mathbf{B}\}$.

To each vertex, randomly assign a color. **Easier request:** Divide a solution ([k/2], [k/2]).

Color-set: $\{\mathbf{R},\mathbf{B}\}$.

To each vertex, randomly assign a color. **Easier request:** Divide a solution ([k/2], [k/2]).

Multiple paths: For all $u, v \in V$, does there exist a (u,v)-path?

The probability of dividing a solution: $1/2^k$.

In each iteration:

- **Red graph**: solve [k/2]-Path (recursive call).

In each iteration:

- **Red graph**: solve [k/2]-Path (recursive call).

(x,y); (x,z); (p,q).

In each iteration:

- (x,y);(x,z);(p,q).
- **Blue graph**: solve $\lfloor k/2 \rfloor$ -Path (recursive call).

In each iteration:

- (x,y);(x,z);(p,q).
- **Blue graph**: solve [*k*/2]-Path (recursive call).

In each iteration:

- (x,y);(x,z);(p,q).
- (a,b);(c,d);(c,e);(f,g);(f,i);(h,g);(h,j);(l,m).
- Glue: $(\alpha,\beta),(\gamma,\delta)$ where $(\beta,\gamma) \in E$.

In each iteration: (*x*,*g*)

- $(x,y);(x,\underline{z});(p,q).$
- $(a,b);(c,d);(c,e);(\underline{f},g);(f,i);(h,g);(h,j);(l,m).$
- Glue: $(\alpha,\beta),(\gamma,\delta)$ where $(\beta,\gamma) \in E$.

In each iteration: (x,g);(x,i)

- $(x,y);(x,\underline{z});(p,q).$
- (a,b);(c,d);(c,e);(f,g);(f,i);(h,g);(h,j);(l,m).
- Glue: $(\alpha,\beta),(\gamma,\delta)$ where $(\beta,\gamma) \in E$.

Probability of coloring a sol correctly: $1/2^k$. $\rightarrow O^*(2^k)$ iterations.

Running time: $O^*(4^k)$. [Randomized.]

Derandomization:

A family F of functions $f: [n] \rightarrow [2]$ such that for all $I \subseteq [n]$ of size k and function g: I $\rightarrow [2]$, there exists $f' \in F$ that ``agrees'' with

Derandomization:

A family F of functions $f:[n] \rightarrow [2]$ such that for all $I \subseteq [n]$ of size k and function $g: I \rightarrow [2]$, there exists $f' \in F$ that ``agrees'' with g.

$|F|=O^*(2^{k+o(k)})$ in time $O^*(2^{k+o(k)})$.

Useful to know: (*n*,*k*)-universal set; (*n*,*k*,*p*)-universal set. [Naor, Schulman and Srinivasan, '95; Fomin, Lokshtanov, Panolan and Saurabh, '16].

Running time: $O^*(4^{k+o(k)})$. [Deterministic.]

Running time: $O^*(4^{k+o(k)})$. [Deterministic.]

(Art?) Tutorial

- **1. Brute-Force**
- 2. Highlights
- **3. Color Coding**
- 4. Divide-and-Color
 - Extra Example
- 5. Representative Sets

6. Mixing

Long Cycle. Input: Directed graph G; parameter k. Question: Does G have a cycle on at least k vertices?

Long Cycle. **Input:** Directed graph G; parameter k. **Question:** Does G have a cycle on **at least** k vertices?

solve 2k-Path

Long Cycle.
Input: Directed graph G; parameter k.
Question: Does G have a cycle on at least k vertices?

Running time: Deterministic. $O^*(\max{\{\mathbf{P}(2k), 4^{k+o(k)}\}})$ Randomized. $O^*(4^k)$.

Zehavi, '16

Step 1.

Determine whether G has a *t*-cycle for $t \in \{k, ..., 2k\}$.

Step 2 (multiple times).

i. To each vertex, assign a color (R/B).

Step 2 (multiple times).

- i. To each vertex, assign a color (R/B).
- ii. For all $u, v \in \mathbf{R}$:
 - a) **P** shortest (u,v)-path in $G[\mathbb{R}]$ (BFS). If $|V(\mathbb{P})| \neq k$: Next iteration.

Step 2 (multiple times).

- i. To each vertex, assign a color (R/B).
- ii. For all $u, v \in \mathbf{R}$:
 - a) *P* shortest (*u*,*v*)-path in *G*[**R**] (BFS).
 If | *V*(*P*) | ≠*k*: Next iteration.
 b) If there is a (*v*,*u*)-path in *G*\(*V*(*P*)\{*u*,*v*}):

Accept.

Step 2 (multiple times).

- i. To each vertex, assign a color (R/B).
- ii. For all $u, v \in \mathbf{R}$:
 - a) **P** shortest (u,v)-path in $G[\mathbb{R}]$ (BFS). If $|V(\mathbb{P})| \neq k$: Next iteration.
 - b) If there is a (v,u)-path in $G \setminus (V(\mathbf{P}) \setminus \{u,v\})$: Accept.

iii. Reject.

A shortest cycle on at least k vertices:

- **1. Brute-Force**
- 2. Highlights
- **3. Color Coding**
- 4. Divide-and-Color

- **5. Representative Sets**
- 6. Mixing Fomin, Lokshtanov, Panolan and Saurabh, '16

k-Path: Representative Sets

Goal: DP: add one vertex at a time (color coding).

Goal:

DP: add one vertex at a time (color coding). **Tool:** erase redundancy; new step \rightarrow new application (div-and-col).

Goal:

DP: add one vertex at a time.Tool: erase redundancy.Coloring?

Coloring?

Implicit in the proof of the construction of the tool (black box).

Tool: erase redundancy. Computation of a **representative family**.

What is redundant?

What is redundant?

What is redundant?

What is redundant?

p,

k-Path: Representative Sets

Representative family:

Let S be a family of p-sets. A subfamily S' of S *k*-represents S if: For all disjoint $X \in S$ and $Y \subseteq V$ of size k-

there exists $X' \in S'$ disjoint from Y.

DP:

- M[v,p]: The family of vertex-sets of paths on p vertices that end at v.

-
$$M[v,p] = U_{(u,v) \in E} M[u,p-1] + \{v\}.$$

DP:

- M[v,p]: Representative family of the family of vertex-sets of paths on p vertices that end at v.
- M[v,p] = k-represent $(U_{(u,v)} \in EM[u,p-1])$

$$M[v,p] = k$$
-represent $(U_{(u,v) \in E} M[u,p-1] + \{v\})$.

Running time: [randomized/deterministic] *k*-representative family of size $\binom{k}{p} 2^{o(k)} \log n$ can be computed in time $O(|\mathcal{S}|(k/(k-p))^{k-p} 2^{o(k)} \log n)$.

$$M[v,p] = k$$
-represent $(U_{(u,v) \in E} M[u,p-1] + \{v\}).$

Running time: [randomized/deterministic] *k*-representative family of size $\binom{k}{p} \underline{2^{o(k)}} \log n$ can be computed in time $O(|\mathcal{S}|(k/(k-p))^{k-p} \underline{2^{o(k)}} \log n)$.

$$O^*(\max_{p} \{ |\mathbf{M}[\cdot,p-1]| \cdot (k/(k-p))^{k-p} 2^{o(k)} \})$$

$$M[v,p] = k$$
-represent $(U_{(u,v)} \in E} M[u,p-1] + \{v\}).$

Running time: [randomized/deterministic] *k*-representative family of size $\binom{k}{p} 2^{o(k)} \log n$ can be computed in time $O(|\mathcal{S}|(k/(k-p))^{k-p} 2^{o(k)} \log n)$.

$$O^{*}(\max_{p} \{ \binom{k}{p-1} \underbrace{2^{o(k)} \cdot (k/(k-p))^{k-p} \underbrace{2^{o(k)}}_{p} \}) = O^{*}(2.851^{k})$$

$$M[v,p] = k$$
-represent $(U_{(u,v) \in E} M[u,p-1] + \{v\}).$

$$O^*(\max_{p} \{ \binom{k}{p-1} \underbrace{2^{o(k)} \cdot (k/(k-p))^{k-p} \underbrace{2^{o(k)}}_{p} \}) = O^*(2.851^k)$$

(Art?) Tutorial

- **1. Brute-Force**
- 2. Highlights
- **3. Color Coding**
- 4. Divide-and-Color
- **5. Representative Sets**
- 6. Mixing

Running time: $O^*(2.597^k)$.

Intuition:

Layer 1. Correct coloring of a solution.

Running time: $O^*(2.597^k)$.

Intuition:

Layer 2. Correct coloring of a solution.

Running time: $O^*(2.597^k)$.

Intuition:

Layer 3 (DP). Family of *p*-paths that end at *v*.

Intuition:

Layer 3 (DP). Family of *p*-paths that end at *v*.

First part of the computation:

Second part of the computation:

Intuition:

Layer 3 (DP). Family of *p*-paths that end at *v*.

The worst time to compute a representative family:

More general def. + computation of representative sets.

Given the blue set, it is easy to find the dark and light blue sets.

k-Path: Conclusion

- Directed *k*-Path: highlighting; color coding; divideand-color; representative sets; mixing.
- Directed Long Cycle.

k-Path: Conclusion

- Directed *k*-Path: highlighting; color coding; divideand-color; representative sets; mixing.
- Directed Long Cycle.
- Other problems: 3-Set *k*-Packing, 3D *k*-Matching, subcases of Subgraph Isomorphism, Graph Motif, Partial Cover, *k*-Internal Out-Branching, ...

k-Path: Conclusion

- Directed *k*-Path: highlighting; color coding; divideand-color; representative sets; mixing.
- Directed Long Cycle.

Open problems:

- Directed *k*-Path: $O^*(2^k)$ (deterministic).
- Directed Long Cycle: $O^*(4^k)$ (deterministic).
- Directed *k*-Path: $O^*((4-\varepsilon)^k)$ (deterministic;

polynomial space).

Thank you for your attention.

Questions?