Longest Path in Graphs: 90s and 00s

Salket Saurabh
IMSc and University of Bergen, RAA 2017, St. Petersburg

$\mathbb{k}=\mathbb{P}$ ath

k-Path.

Input: Directed graph G; parameter k.
Question: Does G have a path on at least k vertices?

$\mathbb{k}=\mathbb{P}$ ath

k-Path.

Input: Directed graph G; parameter k.
Question: Does G have a path on at least k vertices?

$\mathbb{k}=\mathbb{P}$ ath

Deterministic

$O^{*}(k!)$
Monien '85
$O^{*}\left(k!2^{k}\right)$
Bodlaender '93
$O^{*}\left((2 \mathrm{e})^{k+o(k)}\right)$
Alon, Yuster and Zwick, '95
$O *\left(4^{k+o(k)}\right) \quad \begin{aligned} & \text { Chen, kneis, Lu, Mo } \\ & \text { Sze and Zhang, '09 }\end{aligned}$
$O^{*}\left(2.851^{k}\right)$ Fomin, Lokshtanov, Panolan and Saurabh, '16 [$\left.O^{*}\left(2.619^{k}\right)\right]$
[-"-, Shachnai and Zehavi, '14]
$O^{*}\left(2.597^{k}\right)$
Zehavi, '15

Deterministic

Other problems: 3-Set k-Packing, 3D k Matching, subcases of Subgraph Isomorphism, Graph Motif, Partial Cover , k-Internal OutBranching, ...
$O^{*}\left(4^{k+o(k)}\right) \quad$ Chen, kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang, '09
$O^{*}\left(2.851^{k}\right)$ Fomin, Lokshtanov, Panolan and Saurabh, '16 $\left[O^{*}\left(2.619^{k}\right)\right]$
[-"-, Shachnai and Zehavi, '14]
$O^{*}\left(2.597^{k}\right)$

Deterministic

Other problems: 3-Set k-Packing, 3D k Matching, subcases of Subgraph Isomorphism, Graph Motif, Partial Cover , k-Internal OutBranching, ...
$O^{*}\left(4^{k+o(k)}\right) \quad$ Chen, kneis, Lu, Molle, Richter, Rossmanith, Sze and Z
$O^{*}\left(2.851^{k}\right)$ Fomin, Loks $\left[O^{*}\left(2.619^{k}\right)\right]$

Mixing: $O^{*}\left(12.155^{k}\right)$
to $O^{*}\left(8.097^{k}\right)$.
$O^{*}\left(2.597^{k}\right)$

Randomized

$O^{*}\left(2^{k}\right) \quad$ Koutis and Williams, '09
$O^{*}\left(1.657^{k}\right)$
Björklund, Husfeldt, Kaski and Koivisto, '10
(Undirected)

(Art?) Tutorial

1. Brute-Force
2. Highlights 3. Color Coding 4. Divide-and-Color 5. Representative Sets

6. Mixing

K=Path: Brute-Force

k-Path.

Input: Directed graph G; parameter k.
Question: Does G have a path on at least k vertices?

Time: $\binom{n}{k} \cdot k$!

K=Path: Brute-Force

k-Path.

Input: Directed graph G; parameter k. Que How can we easily identify a solution?

(Art?) Tutorial

1. Brute-Force

2. Highlights

3. Color Coding

4. Divide-and-Color

5. Representative Sets

6. Mixing

$\mathbb{k}-\mathbb{P a t h}$: Highlights

Color-set: $\{1,2, \ldots, k\} . \bigcirc \bigcirc \bigcirc \bigcirc$
To each vertex, randomly assign a color.

$\mathbb{R}=\mathbb{P}$ ath: Highlights

Color-set: $\{1,2, \ldots, k\} . \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
To each vertex, randomly assign a color.
Highlight a solution.

R-Path: Highlights

00000

The probability of highlighting a solution:
$1 / k^{k}$.

$\mathbb{K}=\mathbb{P} a t h:$ Highlights

In each iteration:

- Remove irrelevant edges.
- Is there a path from a vertex colored 1 to a vertex colored k ?

$\mathbb{k}=\mathbb{P}_{\text {ath }}$: Highlights

Probability of highlighting a solution: $1 / k^{k}$.

 $\rightarrow O^{*}\left(k^{k}\right)$ iterations.

$\mathbb{K}=\mathbb{P} a t h:$ Highlights

Running time: $O^{*}\left(k^{k}\right)$.

$\mathbb{k}=$ Patho Highlights

Running time: $O^{*}\left(k^{k}\right)$. [Randomized.]

$\mathbb{K}=\mathbb{P}$ ath: Highlights

Derandomization:

A family F of functions $f:[n] \rightarrow[k]$ such that for all $I \subseteq[n]$ of size k and function $g: I \rightarrow[k]$, there exists f ' $\in F$ that "agrees" with g.

$\mathbb{K}=\mathbb{P}_{\text {ath }}$: Highlights

Derandomization:

A family F of functions $f:[n] \rightarrow[k]$ such that for all $I \subseteq$ [n] of size k and function $g: I \rightarrow[k]$, there exists $f^{\prime} \in F$ that "agrees" with g.
$|F|=O^{*}\left(k^{k \cdot} 2^{o(k)}\right)$ in time $O^{*}\left(k^{k} \cdot 2^{o(k)}\right)$.
Useful to know: k-wise independent sample space; (n, k)-perfect hash family.
[Alon, Babai and Itai, '86; Alon, Yuster and Zwick, '95].

$\mathbb{R}=\mathbb{P a t h}:$ Highlights

Koutis and Williams, '09:

$O^{*}\left(2^{k}\right)$. [Randomized.]
Björklund, Husfeldt, Kaski and Koivisto, '10:
$O^{*}\left(1.657^{k}\right)$. [Randomized; Undirected.]

$\mathbb{K}=\mathbb{P}$ ath: Highlights

Koutis and Williams, '09:

$O^{*}\left(2^{k}\right)$. [Randomized.]
Björklund, Husfeldt, Kaski and Koivisto, '10:
$O^{*}\left(1.657^{k}\right)$. [Randomized; Undirected.]
Polynomial identity testing.
(incl. algebraic interpretation of ideas presented in this talk.)

$\mathbb{k}=$ Patha: Highlights

Koutis and Williams, '09:

$O^{*}\left(2^{k}\right)$ 【Randomized.]
Bjö

Do we really need to

'10:

order our colors?

(Art?) Tutorial

1. Brute-Force

2. Highlights

3. Color Coding
4. Divide-and-Color
5. Representative Sets

6. Mixing

Alon, Yuster and Zwick, '95

K=Path: Color Coding

Again: Color-set: $\{1,2, \ldots, k\}$. ○○○○○

To each vertex, randomly assign a color.

R-Path: Color Coding

Again: Color-set: $\{1,2, \ldots, k\}$. ○○○○○

To each vertex, randomly assign a color.

Easier request: Colorful solution.

$\mathbb{k}=$ Path: Color Coding

The probability of coloring a solution correctly:

$$
k!/ k^{k} \approx 1 / e^{k} .
$$

$\mathbb{R}=\mathbb{P a t h}:$ Color Coding

In each iteration:

- $\mathrm{M}[v, S]$: Is there an S-colorful path that ends at v ?

$\mathbb{R}=\mathbb{P a t h}:$ Color Coding

In each iteration:

- $\mathrm{M}[v, S]$: Is there an S-colorful path that ends at v ?
- $\mathrm{M}[v, S]=\mathrm{V}_{(u, v) \in E} \mathrm{M}[u, S \backslash\{\operatorname{color}(v)\}]$

RePath: Color Coding

In each iteration:

- $\mathrm{M}[v, S]$: Is there an S-colorful path that ends at v ?
- $\mathrm{M}[v, S]=\mathrm{V}_{(u, v) \in E} \mathrm{M}[u, S \backslash\{\operatorname{color}(v)\}]$
$k=5$
Running time: $O^{*}\left(2^{k}\right)$.

It=Path: Color Coding

Probability of coloring a sol correctly: $1 / e^{k}$.

 $\rightarrow O^{*}\left(e^{k}\right)$ iterations.

$\mathbb{R}=\mathbb{P a t h}:$ Color Coding

Running time: $O^{*}\left((2 e)^{k}\right)$.

$\mathbb{R}=\mathbb{P a t h}:$ Color Coding

Running time: $O^{*}\left((2 e)^{k}\right)$. [Randomized.]

K-Path: Collor Coding

Derandomization:

A family F of functions $f:[n] \rightarrow[k]$ such that for all $I \subseteq[n]$ of size k, there exists $f^{\prime} \in F$ such that $\left.f^{\prime}\right|_{I}$ is an injective function.

$\mathbb{R}=\mathbb{P a t h}:$ Color Coding

Derandomization:

A family F of functions $f:[n] \rightarrow[k]$ such that for all $I \subseteq$ [n] of size k, there exists $f^{\prime} \in F$ such that $\left.f^{\prime}\right|_{I}$ is an injective function.

$|F|=O^{*}\left(e^{k+o(k)}\right)$ in time $O^{*}\left(e^{k+o(k)}\right)$.

Useful to know: (n, k, l)-splitter; (n, k)-perfect hash family; δ-balanced (n, k)-perfect hash family. [Naor, Schulman and Srinivasan, '95; Alon, Yuster and Zwick, '95; Alon and Gutner, '10].

RePath: Color Coding

Running time: $O^{*}\left((2 e)^{k+o(k)}\right)$. [Deterministic.]

RePath: Color Coding

Running time: $O^{*}\left((2 e)^{k+o(k)}\right)$. [Deterministic.]

(Art?) Tutorial

1. Brute-Force

2. Highlights

3. Color Coding

4. Divide-and-Color

5. Representative Sets

6. Mixing Chen, Kneis, Lu, Mölle, Richter, Rossmanith, Sze and Zhang, '09

$\mathbb{k}=\mathbb{P} a t h:$ Divide-and-Color

Color-set: $\{\mathbf{R}, \mathrm{B}\}$.

To each vertex, randomly assign a color.

$\mathbb{k}=\mathbb{P} a t h:$ Divide-and-Color

Color-set: $\{\mathbf{R}, \mathrm{B}\}$.

To each vertex, randomly assign a color. Easier request: Divide a solution ($[k / 2\rceil,[k / 2])$.

$\mathbb{k}=\mathbb{P} a t h:$ Divide-and-Color

Color-set: $\{\mathbf{R}, \mathrm{B}\}$.

To each vertex, randomly assign a color. Easier request: Divide a solution ($[k / 2\rceil,[k / 2\rfloor)$.

Multiple paths: For all $u, v \in V$, does there exist a (u, v)-path?

$\mathbb{k}=\mathbb{P} a t / \ln :$ Divide-and-Color

The probability of dividing a solution:
$1 / 2^{k}$.

$\mathbb{R}=\mathbb{P}$ ath: Divide-and-Color

In each iteration:

- Red graph: solve [k/2]-Path (recursive call).

$\mathbb{R}=\mathbb{P}$ ath: Divide-and-Color

In each iteration:

- Red graph: solve [k/2]-Path (recursive call).

```
\((x, y) ;(x, z) ;(p, q)\).
```


$\mathbb{R}=\mathbb{P}$ ath: Divide-and-Color

In each iteration:

- $(x, y) ;(x, z) ;(p, q)$.
- Blue graph: solve $\lfloor k / 2\rfloor$-Path (recursive call).

$\mathbb{k}=\mathbb{P} a t h:$ Divide-and-Color

In each iteration:

- (x, y); $(x, z) ;(p, q)$.
- Blue graph: solve $\lfloor k / 2\rfloor$-Path (recursive call).
$(a, b) ;(c, d) ;(c, e) ;(f, g) ;(f, i) ;(h, g) ;(h, j) ;(l, m)$.
$k=5$

$\mathbb{R}=\mathbb{P}$ ath: Divide-and-Color

In each iteration:

- $(x, y) ;(x, z) ;(p, q)$.

- Glue: $(\alpha, \beta),(\gamma, \delta)$ where $(\beta, \gamma) \in E$.

$\mathbb{k}=\mathbb{P} a t h:$ Divide-and-Color

In each iteration:
 (x, g)

- (x, y); $(x, z, z ;(p, q)$.

- Glue: $(\alpha, \beta),(\gamma, \delta)$ where $(\beta, \gamma) \in E$.

$\mathbb{k}=\mathbb{P} a t h:$ Divide-and-Color

In each iteration:
 $(x, g) ;(x, i)$

- (x, y); $(x, z, z ;(p, q)$.

- Glue: $(\alpha, \beta),(\gamma, \delta)$ where $(\beta, \gamma) \in E$.

$\mathbb{R}=\mathbb{P a t h}:$ Divide-and-Color

Probability of coloring a sol correctly: $1 / 2^{k}$.

 $\rightarrow O^{*}\left(2^{k}\right)$ iterations.

$\mathbb{k}=\mathbb{P} a t h:$ Divide-and-Color

Runnin $O *\left(4^{k}\right)$.

$\mathbb{R}=\mathbb{P}$ ath: Divide-and-Color

Running time: $O^{*}\left(4^{k}\right)$. [Randomized.]

$\mathbb{k}=\mathbb{P} a t h:$ Divide-and-Color

Derandomization:

A family F of functions $f:[n] \rightarrow[2]$ such that for all $I \subseteq[n]$ of size k and function $g: I$ $\rightarrow[2]$, there exists $f^{\prime} \in F$ that "agrees" with

$\mathbb{R}=\mathbb{P}_{\text {ath }}$: Divide-and-Color

Derandomization:

A family F of functions $f:[n] \rightarrow[2]$ such that for all $I \subseteq$ $[n]$ of size k and function $g: I \rightarrow[2]$, there exists $f^{\prime} \in F$ that "agrees" with g.

$|F|=O^{*}\left(2^{k+o(k)}\right)$ in time $O^{*}\left(2^{k+o(k)}\right)$.

Useful to know: (n, k)-universal set; (n, k, p)-universal set. [Naor, Schulman and Srinivasan, '95; Fomin, Lokshtanov, Panolan and Saurabh, '16].

$\mathbb{K}=\mathbb{P}_{\text {ath }}$: Divide-and-Color

Running time: $O^{*}\left(4^{k+o(k)}\right)$. [Deterministic.]

$\mathbb{R}=\mathbb{P}$ ath: Divide-and-Color

Running time: $O^{*}\left(4^{k+o(k)}\right)$. [Deterministic.]

Do we really need to divide the entire solution at once? (Cannot we add one vertex at a time?)

(Art?) Tutorial

1. Brute-Force

2. Highlights

 3. Color Coding 4. Divide-and-Color- Extra Example

5. Representative Sets

6. Mixing

Zehavi, '16

Extra Example: Lomg Cycle

Long Cycle.

Input: Directed graph G; parameter k.
Question: Does G have a cycle on at least k vertices?

Finding a large pattern.

Extra Example: Lomg Cycle

Long Cycle.

Input: Directed graph G; parameter k.
Question: Does G have a cycle on at least k vertices?

Running time:

Deterministic. $O^{*}\left(\max \left\{\mathbf{P}(\mathbf{2 k}), 4^{k+o(k)}\right\}\right)$
Randomized. $O^{*}\left(4^{k}\right)$.
Zehavi, '16

$$
\text { solve } 2 k \text {-Path }
$$

Extra Example: Lomg Cycle

Long Cycle.

Input: Directed graph G; parameter k.
Question: Does G have a cycle on at least k vertices?

Running time:

Deterministic. $O^{*}\left(\max \left\{\mathbf{P}(\mathbf{2 k}), 4^{k+o(k)}\right\}\right)$
Randomized. $O^{*}\left(4^{k}\right)$.
Zehavi, '16
Step 1.
Determine whether G has a t-cycle for $t \in\{k, \ldots, 2 k\}$.

Extra Example: Lomg Cycle

Step 2 (multiple times).
i. To each vertex, assign a color (R / B).

Extra Example: Lomg Cycle

Step 2 (multiple times).

i. To each vertex, assign a color (R / B).
ii. For all $u, v \in \mathrm{R}$:
a) \boldsymbol{P} - shortest (u, v)-path in $G[\mathrm{R}]$ (BFS). If $|V(\boldsymbol{P})| \neq k$: Next iteration.

Extra Example: Lomg Cycle

Step 2 (multiple times).
i. To each vertex, assign a color (R / B).
ii. For all $u, v \in \mathrm{R}$:
a) \boldsymbol{P} - shortest (u, v)-path in $G[\mathrm{R}]$ (BFS).

If $|V(\boldsymbol{P})| \neq k$: Next iteration.
b) If there is a (v, u)-path in $G(V(P) \backslash\{u, v\})$: Accept.

Extra Example: Lomg Cycle

Step 2 (multiple times).
i. To each vertex, assign a color (R/B).
ii. For all $u, v \in \mathrm{R}$:
a) \boldsymbol{P} - shortest (u, v)-path in $G[\mathrm{R}]$ (BFS).

If $|V(\boldsymbol{P})| \neq k$: Next iteration.
b) If there is a (v, u)-path in $G(V(\boldsymbol{P}) \backslash\{u, v\})$: Accept.
iii. Reject.

Extra Example: Lomg Cycle

ii. For all $u, v \in \mathrm{R}$:

a) \boldsymbol{P} - shortest (u, v)-path in $G[\mathrm{R}](\mathrm{BFS})$. If $|V(\boldsymbol{P})| \neq k$: Next iteration.
b) If there is a (v, u)-path in $G(V(\boldsymbol{P}) \backslash\{u, v\})$: Accept.

A shortest cycle on at least k vertices:

Extra Example: Lomg Cycle

ii. For all $u, v \in \mathrm{R}$:

a) \boldsymbol{P} - shortest (u, v)-path in $G[\mathrm{R}](\mathrm{BFS})$. If $|V(\boldsymbol{P})| \neq k$: Next iteration.
b) If there is a (v, u)-path in $G(V(\boldsymbol{P}) \backslash\{u, v\})$: Accept.

Extra Example: Lomg Cycle

ii. For all $u, v \in \mathrm{R}$:

a) \boldsymbol{P} - shortest (u, v)-path in $G[\mathrm{R}](\mathrm{BFS})$. If $|V(\boldsymbol{P})| \neq k$: Next iteration.
b) If there is a (v, u)-path in $G(V(\boldsymbol{P}) \backslash\{u, v\})$: Accept.

Extra Example: Lomg Cycle

ii. For all $u, v \in \mathrm{R}$:

a) \boldsymbol{P} - shortest (u, v)-path in $G[\mathrm{R}](\mathrm{BFS})$. If $|V(\boldsymbol{P})| \neq k$: Next iteration.
b) If there is a (v, u)-path in $G(V(\boldsymbol{P}) \backslash\{u, v\})$: Accept.

Extra Example: Lomg Cycle

ii. For all $u, v \in \mathrm{R}$:

a) \boldsymbol{P} - shortest (u, v)-path in $G[\mathrm{R}](\mathrm{BFS})$. If $|V(\boldsymbol{P})| \neq k$: Next iteration.
b) If there is a (v, u)-path in $G(V(\boldsymbol{P}) \backslash\{u, v\})$: Accept.

Extra Example: Lomg Cycle

ii. For all $u, v \in \mathrm{R}$:
a) \boldsymbol{P} - shortest (u, v)-path in $G[\mathrm{R}](\mathrm{BFS})$. If $|V(\boldsymbol{P})| \neq k$: Next iteration.
b) If there is a (v, u)-path in $G(V(\boldsymbol{P}) \backslash\{u, v\})$: Accept.

too short!

(Art?) Tutorial

1. Brute-Force

2. Highlights

 3. Color Coding 4. Divide-and-Color
5. Representative Sets
6. Mixing

Fomin, Lokshtanov, Panolan and Saurabh, '16

$\mathbb{k}=\mathbb{P a t h}:$ Representative Sets

Goal:
 DP: add one vertex at a time (color coding).

$\mathbb{k}=\mathbb{P a t h}:$ Representative Sets

Goal:

DP: add one vertex at a time (color coding). Tool: erase redundancy; new step \rightarrow new application (div-and-col).

$\mathbb{k}=\mathbb{P} a t h:$ Representative Sets

Goal:

DP: add one vertex at a time.
Tool: erase redundancy.
Coloring?

$\mathbb{R}=$ Path: Representative Sets

Coloring?

Implicit in the proof of the construction of the tool (black box).

$\mathbb{K}=\mathbb{P a t h}:$ Representative Sets

Tool: erase redundancy. Computation of a representative family.

Partial solutions

$\mathbb{R}=$ Path: Representative Sets

What is redundant?

$$
k=5 ; n=7
$$

Partial solutions: 3-paths ending at v.

$\mathbb{k}=$ Path: Representative Sets

What is redundant?

$k=5 ; n=7$
Partial solutions: 3-paths ending at v.

$\{\quad\}$ \{
$\left\{E_{2}\right.$
$=\}\left\{E_{3}\right.$
p

$\mathbb{k}=$ Path: Representative Sets

What is redundant?

$k=5 ; n=7$
Partial solutions: 3 -paths ending at v.

$\mathbb{k}=$ Path: Representative Sets

What is redundant?

$k=5 ; n=7$
Partial solutions: 3-paths ending at v.

$\mathbb{K}=\mathbb{P a t h}:$ Representative Sets

Representative family:

Let S be a family of p-sets.
A subfamily S^{\prime} of $S k$-represents S if:
For all disjoint $X \in S$ and $Y \subseteq V$ of size $k-$
p,
there exists

$\mathbb{K}=\mathbb{P a t h}:$ Representative Sets

DP:

- $\mathrm{M}[v, p]$: The family of vertex-sets of paths on p vertices that end at v.
- $\mathrm{M}[v, p]=\mathrm{U}_{(u, v) \in E} \mathrm{M}[u, p-1]+\{v\}$.

$\mathbb{K}=\mathbb{P a t h}:$ Representative Sets

DP:

- M[v,p]: Representative family of the family of vertex-sets of paths on p vertices that end at v.
- $\mathrm{M}[v, p]=k$-represent $\left(\mathrm{U}_{(u, v) \in E} \mathrm{M}[u, p-1]\right.$

$\mathbb{K}=\mathbb{P a t h}:$ Representative Sets

$\mathrm{M}[v, p]=k$-represent $\left(\mathrm{U}_{(u, v) \in E} \mathrm{M}[u, p-1]+\{v\}\right)$.

Running time: [randomized/deterministic]

 k-representative family of size $\binom{k}{p} \underline{2}^{o(k)} \log n$ can be computed in time $O\left(|\mathcal{S}|(k /(k-p))^{k-p} \underline{2}^{o(k)} \log n\right)$.

$\mathbb{k}=\mathbb{P a t h}:$ Representative Sets

$\mathrm{M}[v, p]=k$-represent $\left(\mathrm{U}_{(u, v) \in E} \mathrm{M}[u, p-1]+\{v\}\right)$.

Running time: [randomized/deterministic]

 k-representative family of size $\binom{k}{p} \underline{\underline{o l}}^{o(k)} \log n$ can be computed in time $O\left(|\mathcal{S}|(k /(k-p))^{k-p} \underline{\underline{2}}^{o(k)} \log n\right)$.$O^{*}\left(\max \left\{\mid \mathrm{M}[\cdot, p-1] \cdot(k /(k-p))^{k-p} \underline{2}^{o(k)}\right\}\right)$
p

$\mathbb{k}=\mathbb{P a t h}:$ Representative Sets

$\mathrm{M}[v, p]=k$-represent $\left(\mathrm{U}_{(u, v) \in E} \mathrm{M}[u, p-1]+\{v\}\right)$.

Running time: [randomized/deterministic]

 k-representative family of size $\binom{k}{p} \underline{2}^{o(k)} \log n$ can be computed in time $O\left(|\mathcal{S}|(k /(k-p))^{k-p} \underline{\underline{2}}^{o(k)} \log n\right)$.$O^{*}\left(\max _{p}\left\{\binom{k}{p-1} \underline{2^{o(k)} \cdot} \cdot(k /(k-p))^{k-p} \underline{2^{o(k)}}\right\}\right)$

$$
=O^{*}\left(2.851^{k}\right)
$$

$\mathbb{k}=$ Path: Representative Sets

$\mathrm{M}[v, p]=k$-represent $\left(\mathrm{U}_{(u, v) \in E} \mathrm{M}[u, p-1]+\{v\}\right)$.

R
What is the bottleneck of
$O^{*}\left(\max _{p}\left\{\binom{k}{p-1} \underline{\left.\left.2^{o(k)} \cdot(k /(k-p))^{k-p} \underline{2^{o(k)}}\right\}\right)}\right\}\right.$

$$
=O^{*}\left(2.851^{k}\right)
$$

(Apt?) Tutorial

colour mixing

1. Brute-Force

2. Highlights
3. Color Coding
4. Divide-and-Color

5. Representative Sets

6. Mixing

Zehavi, '15

Running time: $O^{*}\left(2.597^{k}\right)$.

Intuition:

Layer 1.
Correct coloring of a solution.

Running time: $O^{*}\left(2.597^{k}\right)$.

Intuition:

Layer 2. Correct coloring of a solution.

\square

Running time: $O^{*}\left(2.597^{k}\right)$.

Intuition:

Layer 3 (DP). Family of p-paths that end at v.

Intuition:

Layer 3 (DP). Family of p-paths that end at v.

First part of the computation:

$$
? \text { ? ? ? ? ? ? ? ? ? ? }
$$

Second part of the computation: end at v.

The worst time to compute a representative family:
\square

More general def. + computation of representative sets.
Given the blue set, it is easy to find the dark and light blue sets.

Balanced cutting: $\bigcirc \rightarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

$\mathbb{R}=\mathbb{P a t h}:$ Conclusion

- Directed k-Path: highlighting; color coding; divide-and-color; representative sets; mixing.
- Directed Long Cycle.

RePath: Conclusion

Directed k-Path: highlighting; color coding; divide-and-color; representative sets; mixing.

- Directed Long Cycle.
- Other problems: 3-Set k-Packing, 3D k-Matching, subcases of Subgraph Isomorphism, Graph Motif, Partial Cover, k-Internal Out-Branching, ...

$\mathbb{K}=\mathbb{P}$ ath: Conclusion

- Directed k-Path: highlighting; color coding; divide-and-color; representative sets; mixing.
- Directed Long Cycle.

Open problems:

- Directed k-Path: $O^{*}\left(2^{k}\right)$ (deterministic).
- Directed Long Cycle: $O^{*}\left(4^{k}\right)$ (deterministic).
- Directed k-Path: $O^{*}\left((4-\varepsilon)^{k}\right)$ (deterministic; polynomial space).

Thank you for your attention.

Questions?

