
IMSc and University of Bergen,
RAA 2017, St. Petersburg

k-Path.
Input: Directed graph G; parameter k.
Question: Does G have a path on at least k vertices?

k=5

k-Path.
Input: Directed graph G; parameter k.
Question: Does G have a path on at least k vertices?

k=5

O*(k!)
O*(k!2k)

O*((2e)k+o(k))

O*(4k+o(k))

O*(2.851k)
[O*(2.619k)]

O*(2.597k)

Monien '85

Bodlaender '93

Alon,	Yuster and	Zwick,	'95

Zehavi,	'15

Fomin,	Lokshtanov,	Panolan and	Saurabh,	'16
[-“-,	Shachnai and	Zehavi,	'14]

Chen,	kneis,	Lu,	Molle,	Richter,	Rossmanith,	

Sze	and	Zhang,	'09

Deterministic

O*(k!)
O*(k!2k)

O*((2e)k+o(k))

O*(4k+o(k))

O*(2.851k)
[O*(2.619k)]

O*(2.597k)

Monien '85

Bodlaender '93

Alon,	Yuster and	Zwick,	'95

Fomin,	Lokshtanov,	Panolan and	Saurabh,	'16
[-“-,	Shachnai and	Zehavi,	'14]

Chen,	kneis,	Lu,	Molle,	Richter,	Rossmanith,	

Sze	and	Zhang,	'09

Deterministic

Other problems: 3-Set k-Packing, 3D k-
Matching, subcases of Subgraph Isomorphism,

Graph Motif, Partial Cover , k-Internal Out-
Branching, …

Zehavi,	'15

O*(k!)
O*(k!2k)

O*((2e)k+o(k))

O*(4k+o(k))

O*(2.851k)
[O*(2.619k)]

O*(2.597k)

Monien '85

Bodlaender '93

Alon,	Yuster and	Zwick,	'95

Fomin,	Lokshtanov,	Panolan and	Saurabh,	'16
[-“-,	Shachnai and	Zehavi,	'14]

Chen,	kneis,	Lu,	Molle,	Richter,	Rossmanith,	

Sze	and	Zhang,	'09

Deterministic

Other problems: 3-Set k-Packing, 3D k-
Matching, subcases of Subgraph Isomorphism,

Graph Motif, Partial Cover , k-Internal Out-
Branching, …

Mixing: O*(12.155k)
to O*(8.097k).

Zehavi,	'15

O*(2k)
O*(1.657k)

Koutis and	Williams,	'09

Björklund,	Husfeldt,	Kaski and	Koivisto,	'10	
(Undirected)

Randomized

Time:	 !" ·k!

k-Path.
Input: Directed graph G; parameter k.
Question: Does G have a path on at least k vertices?

k=5

Time:	 !" ·k!

k-Path.
Input: Directed graph G; parameter k.
Question: Does G have a path on at least k vertices?

k=5
How	can	we	easily	identify	

a	solution?

Color-set:	{1,2,…,k}.
To	each	vertex,	randomly	assign	a	color.

k=5

Color-set:	{1,2,…,k}.
To	each	vertex,	randomly	assign	a	color.

Highlight	a	solution.

k=5

The probability of	highlighting a solution:

1/kk.

k=5

In	each	iteration:
- Remove	irrelevant	edges.

- Is	there	a	path	from	a	vertex	colored	1	to	a	vertex	

colored	k?
k=5

Probability of	highlighting a solution:	1/kk.

→	O*(kk) iterations.

k=5

...

Running	time:	O*(kk).

k=5

Running	time:	O*(kk). [Randomized.]

k=5

Derandomization:
A family F of functions f:[n]→[k] such that for

all I � [n] of size k and function g :I→[k],
there exists f ’� F that ``agrees’’ with g.

Derandomization:
A family F of functions f:[n]→[k] such that for all I�
[n] of size k and function g:I→[k], there exists f’�F
that ``agrees’’ with g.

|F|=O*(kk·2o(k)) in time O*(kk·2o(k)).

Useful to know: k-wise independent sample space;

(n,k)-perfect hash family.

[Alon, Babai and Itai, '86; Alon, Yuster and Zwick, '95].

Koutis and	Williams,	'09:																				
O*(2k). [Randomized.]
Björklund,	Husfeldt,	Kaski and	Koivisto, '10:
O*(1.657k). [Randomized;	Undirected.]

Koutis and	Williams,	'09:																				
O*(2k). [Randomized.]
Björklund,	Husfeldt,	Kaski and	Koivisto, '10:
O*(1.657k). [Randomized;	Undirected.]

Polynomial	identity	testing.
(incl.	algebraic	interpretation	of	ideas

presented	in	this	talk.)	

Koutis and	Williams,	'09:																				
O*(2k). [Randomized.]
Björklund,	Husfeldt,	Kaski and	Koivisto, '10:
O*(1.657k). [Randomized;	Undirected.]Do	we	really	need	to

order	our	colors?

Again:	Color-set:	{1,2,…,k}.
To	each	vertex,	randomly	assign	a	color.

k=5

Again:	Color-set:	{1,2,…,k}.
To	each	vertex,	randomly	assign	a	color.

Easier	request:	Colorful	solution.
k=5

The	probability of	coloring	a	solution

correctly:

k!/kk ≈ 1/ek.

k=5

k=5

In	each	iteration:
- M[v,S]:	Is	there	an	S-colorful	path	that	ends	at	v?

k=5

In	each	iteration:
- M[v,S]:	Is	there	an	S-colorful	path	that	ends	at	v?
- M[v,S] =	V

(u,v)�E M[u,S\{color(v)}]

In	each	iteration:
- M[v,S]:	Is	there	an	S-colorful	path	that	ends	at	v?
- M[v,S] =	V

(u,v)�E M[u,S\{color(v)}]

k=5

Running	time:	O*(2k).

Probability of	coloring	a	sol	correctly:	1/ek.

→	O*(ek) iterations.

k=5

...

Running	time:	O*((2e)k).

k=5

Running	time:	O*((2e)k). [Randomized.]

k=5

Derandomization:
A family F of functions f:[n]→[k] such that

for all I � [n] of size k, there exists f’ � F
such that f’ |I is an injective function.

Derandomization:
A family F of functions f:[n]→[k] such that for all I�
[n] of size k, there exists f’� F such that f’ |I is an

injective function.

|F|=O*(ek+o(k)) in time O*(ek+o(k)).
Useful to know: (n,k,l)-splitter; (n,k)-perfect hash

family; d-balanced (n,k)-perfect hash family. [Naor,

Schulman and Srinivasan, '95; Alon, Yuster and Zwick,

'95; Alon and Gutner, '10].

Running	time:	O*((2e)k+o(k)). [Deterministic.]

k=5

Running	time:	O*((2e)k+o(k)). [Deterministic.]

k=5
Do	we	really	need	to

color the	entire	solution	
correctly	at	once?

Color-set:	{R,B}.
To	each	vertex,	randomly	assign	a	color.

k=5

Color-set:	{R,B}.
To	each	vertex,	randomly	assign	a	color.

Easier	request:	Divide	a	solution	(⌈k/2⌉,⌊k/2⌋).
k=5

Color-set:	{R,B}.
To	each	vertex,	randomly	assign	a	color.

Easier	request:	Divide	a	solution	(⌈k/2⌉,⌊k/2⌋).

Multiple paths: For all u,v�V, does there
exist a (u,v)-path?

The	probability of	dividing	a	solution:

1/2k.

k=5

In	each	iteration:
- Red	graph:	solve	⌈k/2⌉-Path (recursive	call).

k=5

In	each	iteration:
- Red	graph:	solve	⌈k/2⌉-Path (recursive	call).

k=5x
y

z

p
q

(x,y); (x,z); (p,q).

In	each	iteration:
- (x,y);(x,z);(p,q).
- Blue	graph:	solve	⌊k/2⌋-Path (recursive	call).

k=5

In	each	iteration:
- (x,y);(x,z);(p,q).
- Blue	graph:	solve	⌊k/2⌋-Path (recursive	call).

(a,b);(c,d);(c,e);(f,g);(f,i);(h,g);(h,j);(l,m).

a

b

c

d
e

f

g
h

i j

l

m k=5

In	each	iteration:
- (x,y);(x,z);(p,q).
- (a,b);(c,d);(c,e);(f,g);(f,i);(h,g);(h,j);(l,m).
- Glue:	(a,b),(g,d)	where	(b,g)�E.

a

b

c
de

f
g

h

i j

l
mx

y

z

p

q

In	each	iteration:
- (x,y);(x,z);(p,q).
- (a,b);(c,d);(c,e);(f,g);(f,i);(h,g);(h,j);(l,m).
- Glue:	(a,b),(g,d)	where	(b,g)�E.

a

b

c
de

f
g

h

i j

l
mx

y

z

p

q

(x,g)

In	each	iteration:
- (x,y);(x,z);(p,q).
- (a,b);(c,d);(c,e);(f,g);(f,i);(h,g);(h,j);(l,m).
- Glue:	(a,b),(g,d)	where	(b,g)�E.

a

b

c
de

f
g

h

i j

l
mx

y

z

p

q

(x,g);(x,i)

Probability of	coloring	a	sol	correctly:	1/2k.

→	O*(2k) iterations.
...

k=5

Running	time:	
O*(4k).

2k

2k/2

2k/4

…1 1 1 1 1 1 1 1 1 1

Running	time:	O*(4k). [Randomized.]

k=5

Derandomization:
A family F of functions f : [n]→[2] such that

for all I � [n] of size k and function g : I
→[2], there exists f’�F that ``agrees’’ with

g.

Derandomization:
A family F of functions f:[n]→[2] such that for all I�
[n] of size k and function g: I→[2], there exists f’�F
that ``agrees’’ with g.

|F|=O*(2k+o(k)) in time O*(2k+o(k)).

Useful to know: (n,k)-universal set; (n,k,p)-universal
set. [Naor, Schulman and Srinivasan, '95; Fomin,

Lokshtanov, Panolan and Saurabh, '16].

Running	time:	O*(4k+o(k)). [Deterministic.]

k=5

Running	time:	O*(4k+o(k)). [Deterministic.]

k=5
Do we really need to divide
the entire solution at once?
(Cannot we add one vertex
at a time?)

Long Cycle.
Input: Directed graph G; parameter k.
Question: Does G have a cycle on at least k vertices?

k=511Finding a large pattern.

Long Cycle.
Input: Directed graph G; parameter k.
Question: Does G have a cycle on at least k vertices?

Running time:
Deterministic. O*(max{P(2k), 4k+o(k)})
Randomized. O*(4k). Zehavi, '16

solve 2k-Path

Long Cycle.
Input: Directed graph G; parameter k.
Question: Does G have a cycle on at least k vertices?

Zehavi, '16

Running time:
Deterministic. O*(max{P(2k), 4k+o(k)})
Randomized. O*(4k).

Determine whether G has a t-cycle for t� {k,…,2k}.
Step 1.

Step 2 (multiple times).
i. To each vertex, assign a color (R/B).

Step 2 (multiple times).
i. To each vertex, assign a color (R/B).
ii. For all u,v� R:

a) P - shortest (u,v)-path in G[R] (BFS).
If |V(P)|≠k: Next iteration.

u vk
P

Step 2 (multiple times).
i. To each vertex, assign a color (R/B).
ii. For all u,v� R:

a) P - shortest (u,v)-path in G[R] (BFS).
If |V(P)|≠k: Next iteration.

b) If there is a (v,u)-path in G\(V(P)\{u,v}):
Accept.

u vk
P

Step 2 (multiple times).
i. To each vertex, assign a color (R/B).
ii. For all u,v� R:

a) P - shortest (u,v)-path in G[R] (BFS).
If |V(P)|≠k: Next iteration.

b) If there is a (v,u)-path in G\(V(P)\{u,v}):
Accept.

iii. Reject.

ii. For all u,v� R:
a) P - shortest (u,v)-path in G[R](BFS).
If |V(P)|≠k: Next iteration.

b) If there is a (v,u)-path in G\(V(P)\{u,v}): Accept.

u vk
S

w

T
k

R

A shortest cycle on at least k vertices:

ii. For all u,v� R:
a) P - shortest (u,v)-path in G[R](BFS).
If |V(P)|≠k: Next iteration.

b) If there is a (v,u)-path in G\(V(P)\{u,v}): Accept.

u v

w

T
k

R

ii. For all u,v� R:
a) P - shortest (u,v)-path in G[R](BFS).
If |V(P)|≠k: Next iteration.

b) If there is a (v,u)-path in G\(V(P)\{u,v}): Accept.

u v

w

T
k

R
P
≤ k

ii. For all u,v� R:
a) P - shortest (u,v)-path in G[R](BFS).
If |V(P)|≠k: Next iteration.

b) If there is a (v,u)-path in G\(V(P)\{u,v}): Accept.

u v

w

T
k

R
P
≤ k

too short!

ii. For all u,v� R:
a) P - shortest (u,v)-path in G[R](BFS).
If |V(P)|≠k: Next iteration.

b) If there is a (v,u)-path in G\(V(P)\{u,v}): Accept.

u v
< kP

w

T
k

R

ii. For all u,v� R:
a) P - shortest (u,v)-path in G[R](BFS).
If |V(P)|≠k: Next iteration.

b) If there is a (v,u)-path in G\(V(P)\{u,v}): Accept.

u v
< kP

w

T
k

R

too short!

Goal:
DP:	add	one	vertex	at	a	time	(color	coding).		

k=5

Goal:
DP:	add	one	vertex	at	a	time	(color	coding).

Tool:	erase	redundancy;	new	step	→	new	

application	(div-and-col).

Goal:
DP:	add	one	vertex	at	a	time.

Tool:	erase	redundancy.	
Coloring?

?

Coloring?
Implicit	in	the	proof	of	the	construction	of	

the	tool	(black	box).		

Tool:	erase	redundancy.
Computation	of	a	representative	family.

Partial	solutions
…

What	is	redundant?

Partial	solutions:	3-paths	ending	at	v.
v

{ } { } { } { }
v v v

k =	5;		n =	7

P1 P2 P3 P4

What	is	redundant?

Partial	solutions:	3-paths	ending	at	v.
v

{ } { } { } { }
v v v

k =	5;		n =	7

}} }}{ {{ {
…

P1 P2 P3 P4

E1 E2 E3 E4

What	is	redundant?

Partial	solutions:	3-paths	ending	at	v.
v

{ } { } { } { }
v v v

k =	5;		n =	7

}} }}{ {{ {
…

P1 P2 P3 P4

E1 E2 E3 E4

What	is	redundant?

Partial	solutions:	3-paths	ending	at	v.

{ } { } { }
v v v

k =	5;		n =	7

}} }}{ {{ {
…

P2 P3 P4

E1 E2 E3 E4

Representative	family:
Let	Տ be	a	family	of	p-sets.
A	subfamily	Տ’ of Տ k-represents Տ if:
For all disjoint X�Տ and Y�V of size k–
p,
there	exists	X’�Տ’ disjoint	from	Y.

DP:
- M[v,p]:	The	family	of	vertex-sets	of	paths	on	

p vertices	that	end	at	v.
- M[v,p] =	U(u,v)�E M[u,p-1]+{v}.

DP:
- M[v,p]: Representative family of the family

of vertex-sets of paths on p vertices that end

at v.
- M[v,p] =	k-represent(U(u,v)�E M[u,p-1]

+{v}).

M[v,p] =	k-represent(U(u,v)�E M[u,p-1] +{v}).

Running	time:	[randomized/deterministic]
k-representative	family	of	size																										can	

be	computed	in	time																																																.	

Running	time:	[randomized/deterministic]
k-representative	family	of	size																										can	

be	computed	in	time																																																.	

O*(max{|M[·,p-1]|·(k/(k-p))k-p2o(k)})

M[v,p] =	k-represent(U(u,v)�E M[u,p-1] +{v}).

p

Running	time:	[randomized/deterministic]
k-representative	family	of	size																										can	

be	computed	in	time																																																.	

O*(max{ '
()* 2o(k)·(k/(k-p))k-p2o(k)})

= O*(2.851k)

M[v,p] =	k-represent(U(u,v)�E M[u,p-1] +{v}).

p

Running	time:	[randomized/deterministic]
k-representative	family	of	size																										can	

be	computed	in	time																																																.	

O*(max{ '
()* 2o(k)·(k/(k-p))k-p2o(k)})

= O*(2.851k)

M[v,p] =	k-represent(U(u,v)�E M[u,p-1] +{v}).

p

What is the bottleneck of
this technique?

Running time: O*(2.597k).

Intuition:

k/4
Layer 1.
Correct

coloring of

a solution.

Running time: O*(2.597k).

Intuition:

Layer 2. Correct coloring of a solution.

Running time: O*(2.597k).

Intuition:
Layer 3 (DP). Family of p-paths that end at v.

Intuition:

First part of the

computation:

Second part of

the computation:

Layer 3 (DP). Family of p-paths that
end at v.

The worst time to compute a representative family:

Intuition: Layer 3 (DP). Family of p-paths that
end at v.

More general def. + computation of representative sets.

Given the blue set, it is easy to find the dark and light

blue sets.

Balanced cutting: . . .

- Directed k-Path: highlighting; color coding; divide-
and-color; representative sets; mixing.

- Directed Long Cycle.

- Directed k-Path: highlighting; color coding; divide-
and-color; representative sets; mixing.

- Directed Long Cycle.
- Other problems: 3-Set k-Packing, 3D k-Matching,

subcases of Subgraph Isomorphism, Graph Motif,
Partial Cover , k-Internal Out-Branching, …

- Directed k-Path: highlighting; color coding; divide-
and-color; representative sets; mixing.

- Directed Long Cycle.

Open problems:
- Directed k-Path: O*(2k) (deterministic).
- Directed Long Cycle: O*(4k) (deterministic).
- Directed k-Path: O*((4-e)k) (deterministic;

polynomial space).

