Chapter 1: Dimension
Reduction

llya Razenshteyn (MIT CSAIL)

Motivation

« Compress high-dimensional data while not loosing much

A concrete example:
« Bag of words

» Hashing trick: will see later m

* Theory vs Practlce: p— 10
* Johnson-Lindenstrauss (JL)
* FastJL Upon 3
- Hashing trick time 4

« PCA

Problem statement

- Dataset: n points in R¢, denote by X

« Goal: embed X into R™ with m « d while preserving pairwise
Euclidean distances up to multiplicative (1 + €)

(1—&)-llxg —x2ll; < Mlf (1) = FOII < (A + &) - lxg — x2]l2,

where ||x||, = fo + x5+ -+ x5

- Parameters: fixed n, d, &, minimize m.
- Worst-case vs. data-dependent bounds

Naive bound

* Recall: given X from R% with | X| = n, embed X into R™ while (1 +
g)-preserving pairwise Euclidean distances

« Exercise: get ¢ = 0 with m = n — 1 (meaningful if n « d)
 Tight
« No dependence on d
 Crucially uses the structure of Euclidean distance

Johnson-Lindenstrauss (JL) lemma

e Recall: given X from R% with |X| =n, embed X into R™ while (1 &+
g)-preserving pairwise Euclidean distances

* [Johnson, Lindenstrauss 1984]: one can get
m =0 (logn).

82
* [Alon 2003]: tight up to log(1/¢).
* [Larsen, Nelson 2016]: tight!

 Proof technique: probabilistic method
« Random object is good with positive probability — it exists!

« More specifically: random projections

Detour: normal distribution

* The density of N(0, 1) is: .

— . ,—t?)2
f(t) Ner e
 Properties: if X, X,, ..., X; are i.i.d. N(0, 1)'s, then:
* (X1,X,,...,X4) is spherically symmetrical
c a1 X +a,X, + - ayX, is distributed as ||a]|, - N(0, 1) (2-stability)

« Normalized Gaussian vector is a uniform unit vector

Detour 2: concentration inequalities

* CLT: average of i.i.d. nice random variables converges to a
Gaussian with matching first two moments

« Often, want a finitary statement:
« Example: let X be asum of ni.i.d. £1's.
» Claim: Pr[X > ty/n] < e~ %)
* Lots of statements of this sort, proved very similarly:

 Chernoff
« Hoeffding
« Azuma

* Hinchin...

Oblivious dimension reduction

* A universal distribution on embeddings that works with high
probability for any given dataset!

X

0(logn/e?) A d

0(logn/e?)

Proof of Johnson—Lindenstrauss |

- [Dasgupta, Gupta 2003] Let A be an m x d matrix with i.i.d.
N(0,1) entries

* The main claim: for every ,§ > 0, there exists
m = 0(log(1/68)/&?)
s.t. for every x one has with probability 1 — é:
(1—om-|lxll5 < |Ax|l5 < (1 + &)m - ||x]|3

 Implies JL: set § = 1/10n* and use the union bound
* Crucially use linearity of the map
« A is not explicit, but can be constructed quickly w.h.p.

Proof by picture

N(0,1)

Each entry: ||x]|[, - N(0, 1)

m— ||x|5 - x*(m)

Proof of Johnson—Lindenstrauss Il

- The main claim (reformulated): for every ¢, m
Pr(llAx|I3 € (1 £ &)m - |Ix]13] = 1 — e~ 2E™

 Step 1: elements of Ax are i.i.d. |[x]|, - N(0,1)

- Step 2: ||Ax||5 is distributed as ||x]||5 - x*(m)

. Step 3: Pr[y2(m) € (1 + &)m] = 1 — e 2E™ (see, e.g.,
[Laurent, Massart 2000])

Concrete numbers

Fix § = 0.1, trade-off between

m and ¢

1 / €2 makes the construction

quite impractical
But:

Seldom need to preserve
all the pairwise distances
Random projections are

very useful (will see later)

1 []

0.500

0.100
0.050

0.010
0.005

100

1000

Fast dimension reduction

* Applying a random projection requires O0(dm) time
 Too slow for reducing dimension from, say, 1M to 1K
« Takes 225 ms on one core of Intel Core i5-2500 (C++, using Eigen)

* Never implement your own matrix-vector or matrix-
matrix multiplication

» Specialized libraries (OpenBLAS, Eigen) exploit vectorization,
memory caches, multithreading etc.

« The above takes 920 ms if done (relatively) naively

« Can we do dimension reduction faster?
« Will improve to <5 ms by better algorithms

The plan

* [Ailon, Chazelle 2006]: fast random projection
 For “dense” vectors can uniformly subsample coordinates
« Reduction from the general case to the dense case

The dense case

* Trying to preserve the norm of a d-dimensional vector x
« Can assume w.l.o.g. that [|x], =1

e Assume that all the entries of x are at most T
« Best case: t = 1/+/d; worst case: 7 = 1

e Intuition: if the energy is spread, then subsampling works!
- By Hoeffding inequality, need to sample
m = 0(dt?log(1/68)/&?)
coordinates to (1 + ¢)-preserve the norm w/prob. 1 -4
- Between m = 0(log(1/68)/¢?) and m = 0(d - log(1/68)/&?)

Reduction to the dense case

* First idea: apply a random rotation

 Preserves the norm of any vector

- Makes any fixed vector dense w.h.p. (energy of a random unit
vector is spread)

 But, applying a random rotation takes time 0(d?)
 Crucial idea: complete randomness is unnecessary

* Will see a distribution on rotations that has the above two
properties, but takes only 0(d logd) time to apply

Pseudo-random rotations

* Introduced in [Ailon, Chazelle 2006] - [} FI _
ip signs

 Fast Hadamard Transform
* Preserves distances
« Can be computed in time O(d logd)
« “Mixes well”

2.

a1

=

g | ‘
! |

T ||| I ||I
-1 ‘
0 5 10 15

Hadamard transform

e Defined recursivel :
y Each entry of Hx' is:
*Hy = (1) +x,+x, 1 txg
° H — i . (Hk Hk) \/H
k+1 — \/E Hk _Hk

- Exercise: can multiply by H, 4 in time O(d log d)
By Khintchin’s inequality: with probability 1 — 6 the entries

of Hx' are bounded by 0 <\/1°g(5/6))

« What we use: all entries are +1//d

Overall

e We reduce dimension to

logg - log1
0 o))

c2

in time O(d logd).

« Implementation details:
« Don't ever try to implement your own FFT, use FFTW...
e ... unless it pays off! FFTW turns out to be sub-optimal for FHT
« Use https://github.com/falconn-lib/ffht [R, Schmidt 2015]

« Again, not so useful by itself, but the FHT idea is used a lot!

Lower bounds

. . logn : : :
[Alon 2003]: need () (82 log(l/g)) dimensions (tight for that
example)

« [Larsen, Nelson 2016]: need Q(

logn

>) dimensions

Dimension reduction for £,

* Dimension reduction for £,? (||x||; = |x¢| + |x5| + -+ + [x4])

» [Brinkman, Charikar 2003]: not as great! Need dimension n(/2%)
for distortion D

* [Lee, Naor 2004]: a simple example (the diamond graph)

- [Batson, Spielman, Srivastava 2009]: can achieve
dimension 0(n/&?) (via spectral sparsifiers)

 Weaker notions of dimension reduction [Kushilevitz,
Ostrovsky, Rabani 2000], [Indyk 2000]

Hashing trick (a.k.a. CountSketch)

d T Y z
F +y
+x + 2z

Good expectation and variance, but bad
concentration, still useful in practice
(streaming, similarity search,
randomized linear algebra)

Size in bits®

* Johnson-Lindenstrauss gives 0(nlogn/s%) real numbers

« Can obtain essentially the same number of bits! [Indyk,
Wagner 2017] [Indyk, Wagner, R 2017]

Principal component analysis (PCA)

 Great practical heuristic for dimension reduction

* Fit a Gaussian to data
* Not only dimension reduction, but de-noising as well!

PCA 1

Dataset:

n

d

nA

Assume: the mean of
rows is the zero vector

d

d

PCA 2

« Matrix A*A is symmetric positive semi-definite, hence its
eigenvalues 1,(4) =2 1,(4) = -+ = 14(A) = 0 are real and non-
negative

e Let vy, v, ..., vz € RY be an orthonormal eigenbasis (v;
corresponds to 4;(4))

e For 1 < k < d, project the dataset onto the span of
V1, VUp, ..., Vg

Properties of PCA

* The direction v; maximizes the variance of the projection

* v, maximizes the variance conditional on being orthogonal
to v,

« If dataset lies in a low-dimensional space (modulo small
noise), PCA should discover it

 Quite often, most of the variance can be “explained” by a few
directions; in this case, PCA works very well

PCA for MNIST

« 60000 28x28 images (784 dimensions)

e Let'stry to do PCA on it

An example

800

600

400
K

200

o,

ajueLiep

Q—2M3Fbhe N o
O~nNMmAVe oo
Q~NMPrLHYw Neo
O~NMINnONGS
D—=NoT e oo
QN TR YYD ~o®
D~ J N8 N
ONNO YWV [~ ™
O~ T w0 N o
ONN P R b S dgon
QVD—NM>"q9 —o N
D-—MNMT O r >
V—chmx Yo Nog e
QNN M T NS Ny

