Chapter 1: Dimension Reduction

Ilya Razenshteyn (MIT CSAIL)

Motivation

- Compress high-dimensional data while not loosing much
- A concrete example:
 - Bag of words
 - Hashing trick: will see later
- Theory vs Practice:
 - Johnson–Lindenstrauss (JL)
 - Fast JL
 - Hashing trick
 - PCA

Word	Count
once	10
upon	3
time	4

Problem statement

- **Dataset:** *n* points in *R^d*, denote by *X*
- **Goal:** embed *X* into \mathbb{R}^m with $m \ll d$ while preserving pairwise Euclidean distances up to multiplicative $(1 \pm \varepsilon)$

 $(1-\varepsilon) \cdot \|x_1 - x_2\|_2 \le \|f(x_1) - f(x_2)\|_2 \le (1+\varepsilon) \cdot \|x_1 - x_2\|_2,$

where
$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}$$
.

- **Parameters:** fixed *n*, *d*, *ε*, minimize *m*.
- Worst-case vs. data-dependent bounds

Naïve bound

- **Recall:** given X from R^d with |X| = n, embed X into R^m while $(1 \pm \varepsilon)$ -preserving **pairwise Euclidean distances**
- **Exercise:** get $\varepsilon = 0$ with m = n 1 (meaningful if $n \ll d$)
 - Tight
 - No dependence on *d*
 - Crucially uses the structure of Euclidean distance

Johnson–Lindenstrauss (JL) lemma

- **Recall:** given X from R^d with |X| = n, embed X into R^m while $(1 \pm \varepsilon)$ -preserving **pairwise Euclidean distances**
- [Johnson, Lindenstrauss 1984]: one can get

$$m = O\left(\frac{\log n}{\varepsilon^2}\right)$$

- [Alon 2003]: tight up to $log(1/\epsilon)$.
- [Larsen, Nelson 2016]: tight!
- Proof technique: probabilistic method
 - Random object is good with positive probability \rightarrow it exists!
- More specifically: random projections

Detour: normal distribution

- The density of N(0, 1) is:
 - $f(t) = \frac{1}{\sqrt{2\pi}} \cdot e^{-t^2/2}$

0.2

0.1

- Properties: if $X_1, X_2, ..., X_d$ are i.i.d. N(0, 1)'s, then:
 - $(X_1, X_2, ..., X_d)$ is spherically symmetrical
 - $\alpha_1 X_1 + \alpha_2 X_2 + \cdots + \alpha_d X_d$ is distributed as $\|\alpha\|_2 \cdot N(0, 1)$ (2-stability)
- Normalized Gaussian vector is a **uniform unit vector**

Detour 2: concentration inequalities

- **CLT:** average of i.i.d. nice random variables converges to a Gaussian with matching first two moments
- Often, want a *finitary* statement:
 - **Example:** let *X* be a sum of *n* i.i.d. ± 1 's.
 - Claim: $\Pr[X \ge t\sqrt{n}] \le e^{-\Omega(t^2)}$
- Lots of statements of this sort, proved very similarly:
 - Chernoff
 - Hoeffding
 - Azuma
 - Hinchin...

Oblivious dimension reduction

• A universal distribution on embeddings that works with high probability for **any given dataset!**

Proof of Johnson–Lindenstrauss I

- **[Dasgupta, Gupta 2003]** Let A be an $m \times d$ matrix with i.i.d. N(0, 1) entries
- The main claim: for every $\varepsilon, \delta > 0$, there exists $m = O(\log(1/\delta)/\varepsilon^2)$
- s.t. for every x one has with probability 1δ : $(1 - \varepsilon)m \cdot ||x||_2^2 \le ||Ax||_2^2 \le (1 + \varepsilon)m \cdot ||x||_2^2$
- Implies JL: set $\delta = 1/10n^2$ and use the union bound
 - Crucially use linearity of the map
 - *A* is not explicit, but can be constructed quickly w.h.p.

Proof of Johnson–Lindenstrauss II

- The main claim (reformulated): for every ε , m $\Pr[\|Ax\|_2^2 \in (1 \pm \varepsilon)m \cdot \|x\|_2^2] \ge 1 - e^{-\Omega(\varepsilon^2 m)}$
- Step 1: elements of Ax are i.i.d. $||x||_2 \cdot N(0,1)$
- Step 2: $||Ax||_2^2$ is distributed as $||x||_2^2 \cdot \chi^2(m)$
- Step 3: $\Pr[\chi^2(m) \in (1 \pm \varepsilon)m] \ge 1 e^{-\Omega(\varepsilon^2 m)}$ (see, e.g., [Laurent, Massart 2000])

Concrete numbers

- Fix $\delta = 0.1$, trade-off between m and ε
- $1 / \epsilon^2$ makes the construction 0.100 quite impractical
- But:
 - Seldom need to preserve **all** the pairwise distances
 - Random projections are *very* useful (will see later)

Fast dimension reduction

- Applying a random projection requires O(dm) time
 - Too slow for reducing dimension from, say, **1M** to **1K**
 - Takes **225 ms** on *one core* of Intel Core i5-2500 (C++, using Eigen)
- Never implement your own matrix-vector or matrixmatrix multiplication
 - Specialized libraries (OpenBLAS, Eigen) exploit vectorization, memory caches, multithreading etc.
 - The above takes **920 ms** if done (relatively) naively
- Can we do dimension reduction faster?
 - Will improve to < 5 ms by better algorithms

The plan

- [Ailon, Chazelle 2006]: fast random projection
- For "dense" vectors can uniformly subsample coordinates
- Reduction from the general case to the dense case

The dense case

- Trying to preserve the norm of a *d*-dimensional vector *x*
 - Can assume w.l.o.g. that $||x||_2 = 1$
- Assume that all the entries of x are at most au
 - Best case: $\tau = 1/\sqrt{d}$; worst case: $\tau = 1$
- Intuition: if the energy is spread, then subsampling works!
- By **Hoeffding inequality**, need to sample $m = O(d\tau^2 \log(1/\delta)/\varepsilon^2)$

coordinates to $(1 \pm \varepsilon)$ -preserve the norm w/prob. $1 - \delta$

• Between $m = O(\log(1/\delta)/\varepsilon^2)$ and $m = O(d \cdot \log(1/\delta)/\varepsilon^2)$

Reduction to the dense case

- First idea: apply a random rotation
 - Preserves the norm of any vector
 - Makes any fixed vector dense w.h.p. (energy of a random unit vector is spread)
- **But**, applying a random rotation takes time $O(d^2)$
- Crucial idea: complete randomness is unnecessary
- Will see a distribution on rotations that has the above two properties, but takes only $O(d \log d)$ time to apply

Pseudo-random rotations

- Introduced in [Ailon, Chazelle 2006]
- Fast Hadamard Transform
 - Preserves distances
 - Can be computed in time $O(d \log d)$
 - "Mixes well"

Hadamard transform

- Defined recursively
- $H_0 = (1)$
- $H_{k+1} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} H_k & H_k \\ H_k & -H_k \end{pmatrix}$

- **Exercise**: can multiply by $H_{\log d}$ in time $O(d \log d)$
- By **Khintchin's inequality**: with probability 1δ the entries of Hx' are bounded by $O\left(\sqrt{\frac{\log(d/\delta)}{d}}\right)$
 - What we use: all entries are $\pm 1/\sqrt{d}$

Overall

• We reduce dimension to

$$O\left(\frac{\log\frac{d}{\delta}\cdot\log\frac{1}{\delta}}{\varepsilon^2}\right)$$

in time $O(d \log d)$.

- Implementation details:
 - Don't ever try to implement your own FFT, use FFTW...
 - ... unless it pays off! FFTW turns out to be sub-optimal for FHT
 - Use https://github.com/falconn-lib/ffht [R, Schmidt 2015]
- Again, not so useful by itself, but the FHT idea is used a lot!

Lower bounds

- [Alon 2003]: need $\Omega\left(\frac{\log n}{\varepsilon^2 \log(1/\varepsilon)}\right)$ dimensions (tight for that example)
- [Larsen, Nelson 2016]: need $\Omega\left(\frac{\log n}{\epsilon^2}\right)$ dimensions

Dimension reduction for ℓ_1

- Dimension reduction for ℓ_1 ? ($||x||_1 = |x_1| + |x_2| + \dots + |x_d|$)
 - [Brinkman, Charikar 2003]: not as great! Need dimension $n^{\Omega(1/D^2)}$ for distortion D
 - [Lee, Naor 2004]: a simple example (the diamond graph)
- [Batson, Spielman, Srivastava 2009]: can achieve dimension $O(n/\epsilon^2)$ (via spectral sparsifiers)
- Weaker notions of dimension reduction [Kushilevitz, Ostrovsky, Rabani 2000], [Indyk 2000]

Hashing trick (a.k.a. CountSketch)

Good expectation and variance, but bad concentration, still useful in practice (streaming, similarity search, randomized linear algebra)

Size in bits?

- Johnson–Lindenstrauss gives $O(n \log n/\epsilon^2)$ real numbers
- Can obtain essentially the same number of bits! [Indyk, Wagner 2017] [Indyk, Wagner, R 2017]

Principal component analysis (PCA)

- Great practical heuristic for dimension reduction
- Fit a Gaussian to data
- Not only dimension reduction, but de-noising as well!

PCA 2

- Matrix $A^t A$ is symmetric positive semi-definite, hence its eigenvalues $\lambda_1(A) \ge \lambda_2(A) \ge \cdots \ge \lambda_d(A) \ge 0$ are real and non-negative
- Let $v_1, v_2, ..., v_d \in \mathbb{R}^d$ be an orthonormal eigenbasis (v_i corresponds to $\lambda_i(A)$)
- For $1 \le k \le d$, project the dataset onto the span of v_1, v_2, \dots, v_k

Properties of PCA

- The direction v_1 maximizes the variance of the projection
- v_2 maximizes the variance conditional on being orthogonal to v_1
- •
- If dataset lies in a low-dimensional space (modulo small noise), PCA should discover it
- Quite often, most of the variance can be "explained" by a few directions; in this case, PCA works very well

An example: PCA for MNIST

- 60000 28x28 images (784 dimensions)
- Let's try to do PCA on it

