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• Compress high-dimensional data while not loosing much

• A concrete example:
• Bag of words

• Hashing trick: will see later

• Theory vs Practice:
• Johnson–Lindenstrauss (JL)

• Fast JL

• Hashing trick

• PCA

Word Count

once 10

upon 3

time 4



• Dataset: 𝑛 points in 𝑅𝑑, denote by 𝑋

• Goal: embed 𝑋 into 𝑅𝑚 with 𝑚 ≪ 𝑑 while preserving pairwise 
Euclidean distances up to multiplicative (1 ± 𝜀)

1 − 𝜀 ⋅ 𝑥1 − 𝑥2 2 ≤ 𝑓 𝑥1 − 𝑓 𝑥2 2 ≤ 1 + 𝜀 ⋅ 𝑥1 − 𝑥2 2,

where 𝑥 2 = 𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑑
2.

• Parameters: fixed 𝑛, 𝑑, 𝜀, minimize 𝑚.

• Worst-case vs. data-dependent bounds



• Recall: given 𝑋 from 𝑅𝑑 with 𝑋 = 𝑛, embed 𝑋 into 𝑅𝑚 while (1 ±
𝜀)-preserving pairwise Euclidean distances

• Exercise: get 𝜀 = 0 with 𝑚 = 𝑛 − 1 (meaningful if 𝑛 ≪ 𝑑)
• Tight

• No dependence on 𝑑

• Crucially uses the structure of Euclidean distance



• Recall: given 𝑋 from 𝑅𝑑 with 𝑋 = 𝑛, embed 𝑋 into 𝑅𝑚 while (1 ±
𝜀)-preserving pairwise Euclidean distances

• [Johnson, Lindenstrauss 1984]: one can get

𝑚 = 𝑂
log 𝑛

𝜀2
.

• [Alon 2003]: tight up to log Τ1 𝜀 .

• [Larsen, Nelson 2016]: tight!

• Proof technique: probabilistic method
• Random object is good with positive probability → it exists!

• More specifically: random projections



• The density of 𝑁(0, 1) is:

𝑓 𝑡 =
1

2𝜋
∙ 𝑒−𝑡

2/2

• Properties: if 𝑋1, 𝑋2, …, 𝑋𝑑 are i.i.d. 𝑁(0, 1)’s, then:
• (𝑋1, 𝑋2, … , 𝑋𝑑) is spherically symmetrical

• 𝛼1𝑋1 + 𝛼2𝑋2 +⋯𝛼𝑑𝑋𝑑 is distributed as 𝛼 2 ⋅ 𝑁 0, 1 (2-stability)

• Normalized Gaussian vector is a uniform unit vector



• CLT: average of i.i.d. nice random variables converges to a 
Gaussian with matching first two moments

• Often, want a finitary statement:
• Example: let 𝑋 be a sum of 𝑛 i.i.d. ±1’s.

• Claim: Pr[𝑋 ≥ 𝑡 𝑛] ≤ 𝑒−Ω(𝑡
2)

• Lots of statements of this sort, proved very similarly:
• Chernoff

• Hoeffding

• Azuma

• Hinchin…



• A universal distribution on embeddings that works with high 
probability for any given dataset!

𝑂 Τlog 𝑛 𝜀2

𝑑

𝑂 Τlog 𝑛 𝜀2 𝑑 =𝐴

𝑥

𝐴𝑥



• [Dasgupta, Gupta 2003] Let 𝐴 be an 𝑚 × 𝑑 matrix with i.i.d. 
𝑁(0, 1) entries

• The main claim: for every 𝜀, 𝛿 > 0, there exists
𝑚 = 𝑂 Τlog Τ1 𝛿 𝜀2

s.t. for every 𝑥 one has with probability 1 − 𝛿:
1 − 𝜀 𝑚 ⋅ 𝑥 2

2 ≤ 𝐴𝑥 2
2 ≤ 1 + 𝜀 𝑚 ⋅ 𝑥 2

2

• Implies JL: set 𝛿 = Τ1 10𝑛2 and use the union bound
• Crucially use linearity of the map

• 𝐴 is not explicit, but can be constructed quickly w.h.p.



𝑁(0, 1) 𝑥 𝑥 2
2 ⋅ 𝜒2(𝑚)

Each entry: 𝑥 2 ⋅ 𝑁(0, 1)

=



• The main claim (reformulated): for every 𝜀, 𝑚
Pr 𝐴𝑥 2

2 ∈ 1 ± 𝜀 𝑚 ⋅ 𝑥 2
2 ≥ 1 − 𝑒−𝛺(𝜀

2𝑚)

• Step 1: elements of 𝐴𝑥 are i.i.d. 𝑥 2 ⋅ 𝑁(0,1)

• Step 2: 𝐴𝑥 2
2 is distributed as 𝑥 2

2 ⋅ 𝜒2(𝑚)

• Step 3: Pr[𝜒2(𝑚) ∈ 1 ± 𝜀 𝑚] ≥ 1 − 𝑒−𝛺(𝜀
2𝑚) (see, e.g., 

[Laurent, Massart 2000])



• Fix 𝛿 = 0.1, trade-off between 
𝑚 and 𝜀

• 1 ∕ 𝜀2 makes the construction 
quite impractical

• But:
• Seldom need to preserve 

all the pairwise distances
• Random projections are 

very useful (will see later)



• Applying a random projection requires 𝑂(𝑑𝑚) time
• Too slow for reducing dimension from, say, 1M to 1K

• Takes 225 ms on one core of Intel Core i5-2500 (C++, using Eigen)

• Never implement your own matrix-vector or matrix-
matrix multiplication
• Specialized libraries (OpenBLAS, Eigen) exploit vectorization, 

memory caches, multithreading etc.

• The above takes 920 ms if done (relatively) naively

• Can we do dimension reduction faster?
• Will improve to < 5 ms by better algorithms



• [Ailon, Chazelle 2006]: fast random projection

• For “dense” vectors can uniformly subsample coordinates

• Reduction from the general case to the dense case



• Trying to preserve the norm of a 𝑑-dimensional vector 𝑥
• Can assume w.l.o.g. that 𝑥 2 = 1

• Assume that all the entries of 𝑥 are at most 𝜏
• Best case: 𝜏 = Τ1 𝑑; worst case: 𝜏 = 1

• Intuition: if the energy is spread, then subsampling works!

• By Hoeffding inequality, need to sample
𝑚 = 𝑂 Τ𝑑𝜏2 log Τ1 𝛿 𝜀2

coordinates to (1 ± 𝜀)-preserve the norm w/prob. 1 − 𝛿

• Between 𝑚 = 𝑂 Τlog Τ1 𝛿 𝜀2 and 𝑚 = 𝑂 Τ𝑑 ⋅ log Τ1 𝛿 𝜀2



• First idea: apply a random rotation
• Preserves the norm of any vector

• Makes any fixed vector dense w.h.p. (energy of a random unit 
vector is spread)

• But, applying a random rotation takes time 𝑂(𝑑2)

• Crucial idea: complete randomness is unnecessary

• Will see a distribution on rotations that has the above two 
properties, but takes only 𝑂(𝑑 log 𝑑) time to apply



• Introduced in [Ailon, Chazelle 2006]

• Fast Hadamard Transform
• Preserves distances

• Can be computed in time 𝑂(𝑑 log 𝑑)

• “Mixes well”

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑)

𝑥’ = (±𝑥1, ±𝑥2, … , ±𝑥𝑑)

𝐻𝑥′

Flip signs

Hadamard



• Defined recursively

• 𝐻0 = (1)

• 𝐻𝑘+1 =
1

2
⋅
𝐻𝑘 𝐻𝑘

𝐻𝑘 −𝐻𝑘

• Exercise: can multiply by 𝐻log 𝑑 in time 𝑂(𝑑 log 𝑑)

• By Khintchin’s inequality: with probability 1 − 𝛿 the entries 

of 𝐻𝑥′ are bounded by 𝑂
log Τ𝑑 𝛿

𝑑

• What we use: all entries are ± Τ1 𝑑

Each entry of 𝐻𝑥′ is:
±𝑥1±𝑥2±⋯±𝑥𝑑

𝑑



• We reduce dimension to

𝑂
log

𝑑
𝛿
⋅ log

1
𝛿

𝜀2

in time 𝑂 𝑑 log 𝑑 .

• Implementation details:
• Don’t ever try to implement your own FFT, use FFTW…

• … unless it pays off! FFTW turns out to be sub-optimal for FHT

• Use https://github.com/falconn-lib/ffht [R, Schmidt 2015]

• Again, not so useful by itself, but the FHT idea is used a lot!



• [Alon 2003]: need Ω
log 𝑛

𝜀2 log Τ1 𝜀
dimensions (tight for that 

example)

• [Larsen, Nelson 2016]: need Ω
log 𝑛

𝜀2
dimensions



ℓ1

• Dimension reduction for ℓ1? ( 𝑥 1 = 𝑥1 + 𝑥2 +⋯+ |𝑥𝑑|)

• [Brinkman, Charikar 2003]: not as great! Need dimension 𝑛𝛺( Τ1 𝐷2)

for distortion 𝐷

• [Lee, Naor 2004]: a simple example (the diamond graph)

• [Batson, Spielman, Srivastava 2009]: can achieve 
dimension 𝑂(𝑛/𝜀2) (via spectral sparsifiers)

• Weaker notions of dimension reduction [Kushilevitz, 
Ostrovsky, Rabani 2000], [Indyk 2000]



Good expectation and variance, but bad 
concentration, still useful in practice 
(streaming, similarity search, 
randomized linear algebra)



• Johnson–Lindenstrauss gives 𝑂( Τ𝑛 log 𝑛 𝜀2) real numbers

• Can obtain essentially the same number of bits! [Indyk, 
Wagner 2017] [Indyk, Wagner, R 2017]



• Great practical heuristic for dimension reduction

• Fit a Gaussian to data

• Not only dimension reduction, but de-noising as well!



Dataset:

Assume: the mean of 
rows is the zero vector

𝑛

𝑑

𝐴

𝑛

𝑑

𝐴𝑑

𝑛

𝐴𝑡 𝐴𝑡𝐴= 𝑑

𝑑



• Matrix 𝐴𝑡𝐴 is symmetric positive semi-definite, hence its 
eigenvalues 𝜆1 𝐴 ≥ 𝜆2 𝐴 ≥ ⋯ ≥ 𝜆𝑑 𝐴 ≥ 0 are real and non-
negative

• Let 𝑣1, 𝑣2, …, 𝑣𝑑 ∈ 𝑅𝑑 be an orthonormal eigenbasis (𝑣𝑖
corresponds to 𝜆𝑖(𝐴))

• For 1 ≤ 𝑘 ≤ 𝑑, project the dataset onto the span of 
𝑣1, 𝑣2, … , 𝑣𝑘



• The direction 𝑣1 maximizes the variance of the projection

• 𝑣2 maximizes the variance conditional on being orthogonal 
to 𝑣1

• …

• If dataset lies in a low-dimensional space (modulo small 
noise), PCA should discover it

• Quite often, most of the variance can be “explained” by a few 
directions; in this case, PCA works very well



• 60000 28x28 images (784 dimensions)

• Let’s try to do PCA on it


