Chapter 1: Dimension Reduction

Ilya Razenshteyn (MIT CSAIL)

Motivation

- Compress high-dimensional data while not loosing much
- A concrete example:
- Bag of words
- Hashing trick: will see later
- Theory vs Practice:
- Johnson-Lindenstrauss (JL)
- Fast JL
- Hashing trick

Word	Count
once	10
upon	3
time	4

- PCA

Problem statement

- Dataset: n points in R^{d}, denote by X
- Goal: embed X into R^{m} with $m \ll d$ while preserving pairwise Euclidean distances up to multiplicative ($1 \pm \varepsilon$)

$$
(1-\varepsilon) \cdot\left\|x_{1}-x_{2}\right\|_{2} \leq\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|_{2} \leq(1+\varepsilon) \cdot\left\|x_{1}-x_{2}\right\|_{2}
$$

where $\|x\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2}}$.

- Parameters: fixed n, d, ε, minimize m.
- Worst-case vs. data-dependent bounds

Naive bound

- Recall: given X from R^{d} with $|X|=n$, embed X into R^{m} while ($1 \pm$ ε)-preserving pairwise Euclidean distances
- Exercise: get $\varepsilon=0$ with $m=n-1$ (meaningful if $n \ll d$)
- Tight
- No dependence on d
- Crucially uses the structure of Euclidean distance

Johnson-Lindenstrauss (JL) lemma

- Recall: given X from R^{d} with $|X|=n$, embed X into R^{m} while ($1 \pm$ ε)-preserving pairwise Euclidean distances
- [Johnson, Lindenstrauss 1984]: one can get

$$
m=O\left(\frac{\log n}{\varepsilon^{2}}\right)
$$

- [Alon 2003]: tight up to $\log (1 / \varepsilon)$.
-
- Proof technique: probabilistic method
- Random object is good with positive probability \rightarrow it exists!
- More specifically: random projections

Detour: normal distribution

- The density of $N(0,1)$ is:

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-t^{2} / 2}
$$

- Properties: if $X_{1}, X_{2}, \ldots, X_{d}$ are i.i.d. $N(0,1)$'s, then:
- $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ is spherically symmetrical
- $\alpha_{1} X_{1}+\alpha_{2} X_{2}+\cdots \alpha_{d} X_{d}$ is distributed as $\|\alpha\|_{2} \cdot N(0,1)$ (2-stability)
- Normalized Gaussian vector is a uniform unit vector

Detour 2: concentration inequalities

- CLT: average of i.i.d. nice random variables converges to a Gaussian with matching first two moments
- Often, want a finitary statement:
- Example: let X be a sum of n i.i.d. ± 1 's.
- Claim: $\operatorname{Pr}[X \geq t \sqrt{n}] \leq e^{-\Omega\left(t^{2}\right)}$
- Lots of statements of this sort, proved very similarly:
- Chernoff
- Hoeffding
- Azuma
- Hinchin...

Oblivious dimension reduction

- A universal distribution on embeddings that works with high probability for any given dataset!

Proof of Johnson-Lindenstrauss I

- [Dasgupta, Gupta 2003] Let A be an $m \times d$ matrix with i.i.d. $N(0,1)$ entries
- The main claim: for every $\varepsilon, \delta>0$, there exists

$$
m=O\left(\log (1 / \delta) / \varepsilon^{2}\right)
$$

s.t. for every x one has with probability $1-\delta$:

$$
(1-\varepsilon) m \cdot\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+\varepsilon) m \cdot\|x\|_{2}^{2}
$$

- Implies JL: set $\delta=1 / 10 n^{2}$ and use the union bound
- Crucially use linearity of the map
- A is not explicit, but can be constructed quickly w.h.p.

Proof by picture

Proof of Johnson-Lindenstrauss II

- The main claim (reformulated): for every ε, m

$$
\operatorname{Pr}\left[\|A x\|_{2}^{2} \in(1 \pm \varepsilon) m \cdot\|x\|_{2}^{2}\right] \geq 1-e^{-\Omega\left(\varepsilon^{2} m\right)}
$$

- Step 1: elements of $A x$ are i.i.d. $\|x\|_{2} \cdot N(0,1)$
- Step 2: $\|A x\|_{2}^{2}$ is distributed as $\|x\|_{2}^{2} \cdot \chi^{2}(m)$
- Step 3: $\operatorname{Pr}\left[\chi^{2}(m) \in(1 \pm \varepsilon) m\right] \geq 1-e^{-\Omega\left(\varepsilon^{2} m\right)}$ (see, e.g., [Laurent, Massart 2000])

Concrete numbers

- Fix $\delta=0.1$, trade-off between m and ε
- $1 / \varepsilon^{2}$ makes the construction quite impractical
- But:
- Seldom need to preserve all the pairwise distances
- Random projections are very useful (will see later)

Fast dimension reduction

- Applying a random projection requires $O(d m)$ time
- Too slow for reducing dimension from, say, 1M to 1K
- Takes 225 ms on one core of Intel Core i5-2500 (C++, using Eigen)
- Never implement your own matrix-vector or matrixmatrix multiplication
- Specialized libraries (OpenBLAS, Eigen) exploit vectorization, memory caches, multithreading etc.
- The above takes 920 ms if done (relatively) naively
- Can we do dimension reduction faster?
- Will improve to < 5 ms by better algorithms

The plan

- [Ailon, Chazelle 2006]: fast random projection
- For "dense" vectors can uniformly subsample coordinates
- Reduction from the general case to the dense case

The dense case

- Trying to preserve the norm of a d-dimensional vector x
- Can assume w.l.o.g. that $\|x\|_{2}=1$
- Assume that all the entries of x are at most τ
- Best case: $\tau=1 / \sqrt{d}$; worst case: $\tau=1$
- Intuition: if the energy is spread, then subsampling works!
- By Hoeffding inequality, need to sample

$$
m=O\left(d \tau^{2} \log (1 / \delta) / \varepsilon^{2}\right)
$$

coordinates to ($1 \pm \varepsilon$)-preserve the norm w/prob. $1-\delta$

- Between $m=O\left(\log (1 / \delta) / \varepsilon^{2}\right)$ and $m=O\left(d \cdot \log (1 / \delta) / \varepsilon^{2}\right)$

Reduction to the dense case

- First idea: apply a random rotation
- Preserves the norm of any vector
- Makes any fixed vector dense w.h.p. (energy of a random unit vector is spread)
- But, applying a random rotation takes time $O\left(d^{2}\right)$
- Crucial idea: complete randomness is unnecessary
- Will see a distribution on rotations that has the above two properties, but takes only $O(d \log d)$ time to apply

Pseudo-random rotations

- Introduced in [Ailon, Chazelle 2006]
- Fast Hadamard Transform
- Preserves distances
- Can be computed in time $O(d \log d)$
- "Mixes well"

$$
x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

$$
\begin{gathered}
x^{\prime}=\left(\pm x_{1}, \pm x_{2}, \ldots, \pm x_{d}\right) \\
\text { Hadamard } \\
H x^{\prime}
\end{gathered}
$$

Hadamard transform

- Defined recursively
- $H_{0}=(1)$
- $H_{k+1}=\frac{1}{\sqrt{2}} \cdot\left(\begin{array}{cc}H_{k} & H_{k} \\ H_{k} & -H_{k}\end{array}\right)$

Each entry of $H x^{\prime}$ is: $\frac{ \pm x_{1} \pm x_{2} \pm \cdots \pm x_{d}}{\sqrt{d}}$

- Exercise: can multiply by $H_{\log d}$ in time $O(d \log d)$
- By Khintchin's inequality: with probability $1-\delta$ the entries of $H x^{\prime}$ are bounded by $O\left(\sqrt{\frac{\log (d / \delta)}{d}}\right)$
- What we use: all entries are $\pm 1 / \sqrt{d}$

Overall

- We reduce dimension to

$$
O\left(\frac{\log \frac{d}{\delta} \cdot \log \frac{1}{\delta}}{\varepsilon^{2}}\right)
$$

in time $O(d \log d)$.

- Implementation details:
- Don't ever try to implement your own FFT, use FFTW...
- ... unless it pays off! FFTW turns out to be sub-optimal for FHT
- Use https://github.com/falconn-lib/ffht [R, Schmidt 2015]
- Again, not so useful by itself, but the FHT idea is used a lot!

Lower bounds

- [Alon 2003]: need $\Omega\left(\frac{\log n}{\varepsilon^{2} \log (1 / \varepsilon)}\right)$ dimensions (tight for that example)
- [Larsen, Nelson 2016](tight!): need $\Omega\left(\frac{\log n}{\varepsilon^{2}}\right)$ dimensions

Dimension reduction for ℓ_{1}

- Dimension reduction for ℓ_{1} ? ($\left.\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{d}\right|\right)$
- [Brinkman, Charikar 2003]: not as great! Need dimension $n^{\Omega\left(1 / D^{2}\right)}$ for distortion D
- [Lee, Naor 2004]: a simple example (the diamond graph)
- [Batson, Spielman, Srivastava 2009]: can achieve dimension $O\left(n / \varepsilon^{2}\right)$ (via spectral sparsifiers)
- Weaker notions of dimension reduction [Kushilevitz, Ostrovsky, Rabani 2000], [Indyk 2000]

Hashing trick (a.k.a. CountSketch)

Good expectation and variance, but bad concentration, still useful in practice (streaming, similarity search, randomized linear algebra)

Size in bits?

- Johnson-Lindenstrauss gives $O\left(n \log n / \varepsilon^{2}\right)$ real numbers - Can obtain essentially the same number of bits! [Indyk, Wagner 2017] [Indyk, Wagner, R 2017]

Principal component analysis (PCA)

- Great practical heuristic for dimension reduction
- Fit a Gaussian to data
- Not only dimension reduction, but de-noising as well!

Assume: the mean of

PCA 2

- Matrix $A^{t} A$ is symmetric positive semi-definite, hence its eigenvalues $\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{d}(A) \geq 0$ are real and nonnegative
- Let $v_{1}, v_{2}, \ldots, v_{d} \in R^{d}$ be an orthonormal eigenbasis (v_{i} corresponds to $\left.\lambda_{i}(A)\right)$
- For $1 \leq k \leq d$, project the dataset onto the span of $v_{1}, v_{2}, \ldots, v_{k}$

Properties of PCA

- The direction v_{1} maximizes the variance of the projection
- v_{2} maximizes the variance conditional on being orthogonal to v_{1}
- If dataset lies in a low-dimensional space (modulo small noise), PCA should discover it
- Quite often, most of the variance can be "explained" by a few directions; in this case, PCA works very well

An example：PCA for MNIST

－ 6000028×28 images（ 784 dimensions）
－Let＇s try to do PCA on it

000000000000000 ／111／11／1111111
222222222222220
333333333333333
444444444444444
555555355555555
666666666666666
フフ7フワフフフフワフフフ）
888888888888888
999999999999999

