Gradient Descent Method

1 Unconstrained Minimization

Our focus today: Unconstrained minimization problem: given a real-valued function f over \mathbb{R}^{n}, find its minimum x^{*} (assuming it exists). That is, solve the problem

$$
x^{*}=\arg \min _{x \in \mathbb{R}^{n}} f(x) .
$$

- Note: This problem is very general:
- To get maximization, just minimize $-f(x)$.
- To introduce constraints, just consider minimizing $f(x)+\psi(x)$, where $\psi(x)=0$, if x satisfies all constraints, and $+\infty$, otherwise. (So, in principle, this is stronger than LP!)
- To make our discussion simpler, we will assume though that our function f is "nice". That is, f is:
- continuous;
- (twice) differentiable. (This requirement can, and often needs to, be relaxed.)

2 Gradient Descent

How to solve an unconstrained minimization problem?

- Powerful approach: Gradient descent method.
- Key idea: Apply (continuous) local greedy approach.
- Start with some point x^{0}.
- In each iteration: move a bit (locally) in the direction that reduces the value of f the most (greedily).
\Rightarrow Guarantees that $f\left(x^{t+1}\right)<f\left(x^{t}\right)$.
Question: What is the direction of the steepest decrease of f ?
- Recall (multi-variate) Taylor theorem: for any $x \in \mathbb{R}^{n}$ and (vector) displacement $\delta \in \mathbb{R}^{n}$, we have that

$$
f(x+\delta)=f(x)+\nabla f(x)^{T} \delta+\frac{1}{2} \delta^{T} \nabla^{2} f(y) \delta
$$

for some $y=x+\lambda \delta$ with $0 \leq \lambda \leq 1$, where
$-\nabla f(x) \in \mathbb{R}^{n}$ is the gradient of f at point x and

$$
\nabla f(x)_{i}:=\frac{\partial f(x)}{\partial x_{i}}
$$

for each i.
$-\nabla^{2} f(x) \in \mathbb{R}^{n \times n}$ is the Hessian of f at point x and

$$
\nabla^{2} f(x)_{i j}:=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}},
$$

for each i and j.

- Observe: the gradient term in the Taylor expansion is linear in $\|\delta\|$ while the Hessian term is quadratic in $\|\delta\|$.
- Consequently, for small enough step, i.e., $\|\delta\|$, the Hessian term is negligible. That is,

$$
f(x+\delta)=f(x)+\nabla f(x)^{T} \delta+O\left(\|\delta\|^{2}\right) \approx f(x)+\nabla f(x)^{T} \delta
$$

- Key conclusion: Even though f might be very complex, locally it is "simple", i.e., it is well approximated by, essentially, the simplest function possible: the linear function!
\Rightarrow We know how to minimize linear functions. Just take $\delta=-\eta \nabla f(x)$, for some step size $\eta>0$.

Resulting algorithm: Gradient descent method:

- Start with some $x^{0} \in \mathbb{R}^{n}$.
- In each step $t: x^{t+1} \leftarrow x^{t}-\eta \nabla f\left(x^{t}\right)$.

Question: What should η be?

- Assume that f is β-smooth, for some $\beta>0$. That is,

$$
\|\nabla f(y)-\nabla(x)\| \leq \beta\|y-x\|
$$

for any $x, y \in \mathbb{R}^{n}$. Intuitively, β measures how much the gradient of f can change between two nearby points.

- Equivalently (for twice differentiable functions): f is β-smooth iff $y^{T} \nabla^{2} f(x) y \leq$ $\beta\|y\|^{2}$, for any x, y; or, put yet another way, the maximum eigenvalue of $\nabla^{2} f(x)$ is at most β.
\Rightarrow We have that

$$
f(x+\delta) \leq f(x)+\nabla f(x)^{T} \delta+\frac{\beta}{2}\|\delta\|^{2}
$$

for any x and δ
\Rightarrow Intuitively: For every point x, there is a corresponding quadratic (i.e., relatively"simple") function that upper bounds f everywhere and agrees with f at the point x.
\Rightarrow Our progress on minimizing this quadratic function at x lowerbounds our progress on reducing the value of f at x.
\Rightarrow If we plug in our choice of $\delta=-\eta \nabla f(x)$, we get that

$$
\begin{aligned}
f(x+\delta) & \leq f(x)+\nabla f(x)^{T} \delta+\frac{\beta}{2}\|\delta\|^{2} \\
& \leq f(x)-\eta\|\nabla f(x)\|^{2}+\frac{\beta}{2} \eta^{2}\|\nabla f(x)\|^{2} \\
& \leq f(x)-\frac{1}{2 \beta}\|\nabla f(x)\|^{2},
\end{aligned}
$$

for the optimal setting of $\eta=\frac{1}{\beta}$.
\Rightarrow Setting $\eta=\frac{1}{\beta}$ ensures that

$$
f\left(x^{t+1}\right) \leq f\left(x^{t}\right)-\frac{1}{2 \beta}\|\nabla f(x)\|^{2},
$$

i.e., we make progress of at least $\frac{1}{2 \beta}\|\nabla f(x)\|^{2}$ towards minimizing the value of f.

- In practice, we choose best η adaptively in each step via binary search this is often called line search.

Remaining issue: What if $\left\|\nabla f\left(x^{k}\right)\right\|=0$ (or is just very small)?

- x^{k} has to be a critical point - means x^{k} is either a local minimum or maximum (with bad initialization) or a saddle point.
- If $\nabla^{2} f\left(x^{k}\right) \succeq 0$, we know it is a local minimum.
- We can deal with the other two possibilities by perturbing our point slightly and resuming the algorithm.
- In general: Typically, gradient descent converges to local minimum.
- What if we want this local minimum to be a global one?
- We need additional (strong) assumption.
- f is convex iff, for any x and y,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for any $0 \leq \lambda \leq 1$. That is, the epigraph of the function is a convex set.

- Alternatively: f is convex iff $\nabla^{2} f\left(x^{k}\right) \succeq 0$, for all x.
\Rightarrow The only critical points are local minimums!
- In fact, a much stronger property holds: all critical points are global minimums.
- To see that, note that by Taylor theorem convexity implies that

$$
f(x+\delta)=f(x)+\nabla f(x)^{T} \delta+\frac{1}{2} \delta^{T} \nabla^{2} f(x) \delta \geq f(x)+\nabla f(x)^{T} \delta
$$

That is, every gradient defines a lowerbounding hyperplane for f that agrees with f at x.
\Rightarrow If $\nabla f(x)=0$ then $f(x+\delta) \geq f(x)$ for all δ.

- It turns out that convexity is a very widespread phenomena in optimization. But there are very important domains, e.g., deep learning, where the underlying optimization problems are inherently non-convex.

2.1 Convergence Analysis

How fast does gradient descent converge?

- Convexity allows us to bound our (sub-)optimality. Specifically, if x^{*} is the minimum of f, we have that, for any x,

$$
f\left(x^{*}\right) \geq f(x)+\nabla f(x)^{T}\left(x^{*}-x\right)
$$

$\Rightarrow f(x)-f\left(x^{*}\right) \leq-\nabla f(x)^{T}\left(x^{*}-x\right) \leq\|\nabla f(x)\|\left\|x^{*}-x\right\|$, where the last inequality follows by Cauchy-Schwartz inequality.
\Rightarrow If $\|\nabla f(x)\| \leq \frac{\epsilon}{\left\|x^{*}-x\right\|}$, we are by at most ϵ off from optimum.

- The fact that the above near-optimality condition involves $\left\|x^{*}-x\right\|$ is unfortunate (but inherent!). After all, we don't know what this distance is.
- To connect this distance to the optimum to the norm of the gradient/difference in function value, and thus to get rid of this dependence, we need to make an (even stronger) assumption on f.
- Assume that f is α-strong convexity. That is, assume that, for any x and y,

$$
y^{T} \nabla^{2} f(x) y \geq \alpha\|y\|^{2}
$$

\Rightarrow The smallest eigenvalue of $\nabla^{2} f(x)$ is always at least α.
\Rightarrow "Normal" convexity would correspond to $\alpha=0$ (but we require $\alpha>0$ here).
\Rightarrow We can now strengthen our lowerbounding inequality we got from convexity. Specifically, for any x and δ we have that
$f(x+\delta) \geq f(x)+\nabla f(x)^{T} \delta+\frac{1}{2} \delta^{T} \nabla^{2} f(x) \delta \geq f(x)+\nabla f(x)^{T} \delta+\frac{\alpha}{2}\|\delta\|^{2}$.
That is, for each point x, there is a quadratic function that lowerbounds f everywhere and agrees with f at x.

- Now, the key consequence of α-strong convexity we will need is that, for any x,

$$
f\left(x^{*}\right) \geq f(x)+\nabla f(x)^{T}\left(x^{*}-x\right)+\frac{\alpha}{2}\left\|x-x^{*}\right\|^{2}
$$

And, as a result, by re-arranging, we get that

$$
\begin{equation*}
\nabla f(x)^{T}\left(x-x^{*}\right) \geq f(x)-f\left(x^{*}\right)+\frac{\alpha}{2}\left\|x-x^{*}\right\|^{2} \tag{1}
\end{equation*}
$$

- Now, to get the convergence bound, let us just put together everything we derived so far:
- Let us use $\left\|x^{t}-x^{*}\right\|^{2}$ as a measure of our progress/potential.
- Let's analyze its change in one step:

$$
\begin{aligned}
\left\|x^{t+1}-x^{*}\right\|^{2} & =\left\|x^{t}-\eta \nabla f\left(x^{t}\right)-x^{*}\right\|^{2} \\
& =\left\|x^{t}-x^{*}\right\|^{2}-2 \eta \nabla f\left(x^{t}\right)^{T}\left(x^{t}-x^{*}\right)+\eta^{2}\left\|\nabla f\left(x^{t}\right)\right\|^{2} \\
& \leq\left\|x^{t}-x^{*}\right\|^{2}-\eta\left(2\left(f\left(x^{t}\right)-f\left(x^{*}\right)+\frac{\alpha}{2}\left\|x^{t}-x^{*}\right\|^{2}\right)-\eta\left\|\nabla f\left(x^{t}\right)\right\|^{2}\right)
\end{aligned}
$$

where the last line follows by (1).

- Further, observe that as each gradient step guarantees making progress of at least $\frac{1}{2 \beta}\left\|\nabla f\left(x^{t}\right)\right\|^{2}$ (whenever we set $\eta=\frac{1}{\beta}$, which we do here), it has to be that

$$
f\left(x^{t}\right)-f\left(x^{*}\right) \geq f\left(x^{t}\right)-f\left(x^{t+1}\right) \geq \frac{1}{2 \beta}\left\|\nabla f\left(x^{t}\right)\right\|^{2}
$$

- Plugging this back into our derivation and re-arranging, we obtain:

$$
\begin{aligned}
\left\|x^{t+1}-x^{*}\right\|^{2} & \leq\left\|x^{t}-x^{*}\right\|^{2}-\eta\left(2\left(f\left(x^{t}\right)-f\left(x^{*}\right)+\frac{\alpha}{2}\left\|x^{t}-x^{*}\right\|^{2}\right)-\eta\left\|\nabla f\left(x^{t}\right)\right\|^{2}\right) \\
& \leq\left\|x^{t}-x^{*}\right\|^{2}-\frac{1}{\beta}\left(\frac{1}{\beta}\left\|\nabla f\left(x^{t}\right)\right\|^{2}+\alpha\left\|x^{t}-x^{*}\right\|^{2}-\frac{1}{\beta}\left\|\nabla f\left(x^{t}\right)\right\|^{2}\right) \\
& \leq\left\|x^{t}-x^{*}\right\|^{2}-\frac{\alpha}{\beta}\left\|x^{t}-x^{*}\right\|^{2}=\left(1-\frac{1}{\kappa}\right)\left\|x^{t}-x^{*}\right\|^{2},
\end{aligned}
$$

where $\kappa:=\frac{\beta}{\alpha}$ is the condition number of f. (Intuitively, condition number tells us how "nicely" it behaves, i.e., how well can we "sandwich" the function f locally by two quadratic functions. The smaller condition number the faster convergence.)
\Rightarrow After $O\left(\kappa \log \frac{\left(f\left(x^{0}\right)-f\left(x^{*}\right)\right.}{\epsilon}\right)$ steps we obtain a solution that is within ϵ of the optimal value (in norm)!
Note: The dependence on ϵ is only logarithmic, which essentially allows us to solve the problem exactly by taking sufficiently large ϵ.

3 Dealing with lack of α-strongly convexity

- What to do if f is not α-strongly convex for any $\alpha>0$? (This is often the case in applications.)
- A different analysis gives a (much weaker) convergence bound of $O\left(\frac{\beta\left\|x^{*}-x^{0}\right\|^{2}}{\varepsilon}\right)$. (Here, the dependence on ϵ is polynomial, so in this regime we can only get approximate answers.)
- Alternatively, we could (almost, i.e., up to $O\left(\log \frac{1}{\varepsilon}\right.$ factor) recover this weaker bound by making $f \alpha$-strongly convex, with $\alpha=\frac{\varepsilon}{2\left\|x^{*}-x^{0}\right\|^{2}}$, by adding $\alpha\left\|x-x^{0}\right\|^{2}$ to it. (Note, we do not need to know $\left\|x^{*}-x^{0}\right\|^{2}$ exactly. Doing iterative doubling will suffice here.)
- This is an example of a more general technique called regularization.
\Rightarrow Adding this new term corresponding to adding $\alpha \cdot I$ to the Hessian $\nabla^{2} f(x)$ of f. So, f is indeed α-strongly convex now and we can use the convergence analysis from above.
\Rightarrow Problem: The minimizer of f changed! Still, one can show that the value attained at the new minimizer is withing $\frac{\varepsilon}{2}$ of the optimum. (Left as an exercise,)

4 Projections

- What to do if we want to solve constrained minimization? (E.g., max flow.)
- Just project (in ℓ_{2}-norm) on the feasible space!
- The way we measured progress was by keeping track of $\left\|x^{t}-x^{*}\right\|^{2}$. But: an ℓ_{2}-norm projection will never increase this quantity! Specifically, we have that if $\Pi(x)$ denotes the projected point x, we have that

$$
\left\|\Pi\left(x^{t}\right)-x^{*}\right\|^{2}=\left\|\Pi\left(x^{t}\right)-\Pi\left(x^{*}\right)\right\|^{2} \leq\left\|x^{t}-x^{*}\right\|^{2}
$$

since the projection Π is contractive.
\Rightarrow The analysis follows unchanged.

5 Dealing with Lack of β-Smoothness

- We can either use Subgradient descent, i.e., a variant of gradient descent that uses subgradients instead of gradients, or smoothing, a way to introduce a proxy objective function that is β-smooth while approximating the objective function well. (The latter is always preferable, as long as we can find a sufficiently good smoothening proxy.)
- For maximum flow, it is the best to smoothen the objective function $\|\cdot\|_{\infty}$ via soft max function:

$$
\begin{equation*}
\operatorname{smax}_{\delta}(x):=\delta \ln \left(\frac{\sum_{i=1}^{n} e^{\frac{x_{i}}{\delta}}+e^{\frac{-x_{i}}{\delta}}}{2 n}\right) \tag{2}
\end{equation*}
$$

where $\delta>$ is a parameter.

- For every $\delta>0$, the function $\operatorname{smax}_{\delta}$ is convex and $\frac{1}{\delta}$-smooth. (Exercise.)
- For any x we have that, $\|x\|_{\infty}-\delta \ln (2 n) \leq \operatorname{smax}_{\delta}(x) \leq\|x\|_{\infty}$. (Exercise)
- So, there is a trade-off between how well we approximate $\|\cdot\|_{\infty}$ and how smooth the resulting function is.
- Plugging the smoothened maximum flow formulation, with $\delta=\frac{\varepsilon}{2}$ into our bounds for gradient descent (with no α-convexity), we get an ϵ approximate solution after

$$
O\left(\frac{\beta\left\|x^{0}-x^{*}\right\|^{2}}{\varepsilon}\right)=O\left(\frac{m}{\varepsilon^{2}}\right)
$$

iterations, where we use the fact that by choosing x_{0} to be an all-zero vector (and then projecting it on the space of unit s-t flows) and noticing that optimal solution never flows more than 1 on any coordinate, $\| x^{0}-$ $x^{*} \|^{2} \leq m$.

- As we can compute projections in nearly-linear time, the resulting algorithm runs in $\widetilde{O}\left(m^{2} \varepsilon^{-2}\right)$ time.

