Gradient Descent Method

1 Unconstrained Minimization

Our focus today: Unconstrained minimization problem: given a real-valued function f over \mathbb{R}^n , find its minimum x^* (assuming it exists). That is, solve the problem

$$x^* = \arg\min_{x \in \mathbb{R}^n} f(x).$$

- *Note:* This problem is *very* general:
 - To get maximization, just minimize -f(x).
 - To introduce constraints, just consider minimizing $f(x) + \psi(x)$, where $\psi(x) = 0$, if x satisfies all constraints, and $+\infty$, otherwise. (So, in principle, this is stronger than LP!)
- To make our discussion simpler, we will assume though that our function *f* is "nice". That is, *f* is:
 - continuous;
 - (twice) differentiable. (This requirement can, and often needs to, be relaxed.)

2 Gradient Descent

How to solve an unconstrained minimization problem?

- Powerful approach: Gradient descent method.
- Key idea: Apply (continuous) local greedy approach.
- Start with some point x^0 .
- In each iteration: move a bit (locally) in the direction that reduces the value of f the most (greedily).
 - \Rightarrow Guarantees that $f(x^{t+1}) < f(x^t)$.

Question: What is the direction of the steepest decrease of f?

• Recall (multi-variate) Taylor theorem: for any $x \in \mathbb{R}^n$ and (vector) displacement $\delta \in \mathbb{R}^n$, we have that

$$f(x+\delta) = f(x) + \nabla f(x)^T \delta + \frac{1}{2} \delta^T \nabla^2 f(y) \delta,$$

for some $y = x + \lambda \delta$ with $0 \le \lambda \le 1$, where

 $-\nabla f(x) \in \mathbb{R}^n$ is the gradient of f at point x and

$$\nabla f(x)_i := \frac{\partial f(x)}{\partial x_i}$$

for each i.

 $-\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ is the *Hessian* of f at point x and

$$\nabla^2 f(x)_{ij} := \frac{\partial^2 f(x)}{\partial x_i \partial x_j},$$

for each i and j.

- Observe: the gradient term in the Taylor expansion is linear in $\|\delta\|$ while the Hessian term is quadratic in $\|\delta\|$.
- Consequently, for small enough step, i.e., $\|\delta\|$, the Hessian term is negligible. That is,

$$f(x+\delta) = f(x) + \nabla f(x)^T \delta + O(\|\delta\|^2) \approx f(x) + \nabla f(x)^T \delta$$

• Key conclusion: Even though f might be very complex, locally it is "simple", i.e., it is well approximated by, essentially, the simplest function possible: the linear function!

 \Rightarrow We know how to minimize linear functions. Just take $\delta = -\eta \nabla f(x)$, for some step size $\eta > 0$.

Resulting algorithm: Gradient descent method:

- Start with some $x^0 \in \mathbb{R}^n$.
- In each step $t: x^{t+1} \leftarrow x^t \eta \nabla f(x^t)$.

Question: What should η be?

• Assume that f is β -smooth, for some $\beta > 0$. That is,

$$\|\nabla f(y) - \nabla(x)\| \le \beta \|y - x\|,$$

for any $x, y \in \mathbb{R}^n$. Intuitively, β measures how much the gradient of f can change between two nearby points.

• Equivalently (for twice differentiable functions): f is β -smooth iff $y^T \nabla^2 f(x) y \le \beta ||y||^2$, for any x, y; or, put yet another way, the maximum eigenvalue of $\nabla^2 f(x)$ is at most β .

 \Rightarrow We have that

$$f(x+\delta) \le f(x) + \nabla f(x)^T \delta + \frac{\beta}{2} \|\delta\|^2,$$

for any x and δ

 \Rightarrow Intuitively: For every point x, there is a corresponding quadratic (i.e., relatively "simple") function that upper bounds f everywhere and agrees with f at the point x.

 \Rightarrow Our progress on minimizing this quadratic function at x lowerbounds our progress on reducing the value of f at x.

 \Rightarrow If we plug in our choice of $\delta = -\eta \nabla f(x)$, we get that

$$f(x+\delta) \leq f(x) + \nabla f(x)^T \delta + \frac{\beta}{2} \|\delta\|^2$$

$$\leq f(x) - \eta \|\nabla f(x)\|^2 + \frac{\beta}{2} \eta^2 \|\nabla f(x)\|^2$$

$$\leq f(x) - \frac{1}{2\beta} \|\nabla f(x)\|^2,$$

for the optimal setting of $\eta = \frac{1}{\beta}$.

 \Rightarrow Setting $\eta = \frac{1}{\beta}$ ensures that

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2\beta} \|\nabla f(x)\|^2,$$

i.e., we make progress of at least $\frac{1}{2\beta} \|\nabla f(x)\|^2$ towards minimizing the value of f.

• In practice, we choose best η adaptively in each step via binary search – this is often called *line search*.

Remaining issue: What if $\|\nabla f(x^k)\| = 0$ (or is just very small)?

- x^k has to be a critical point means x^k is either a local minimum or maximum (with bad initialization) or a saddle point.
- If $\nabla^2 f(x^k) \succeq 0$, we know it is a local minimum.
- We can deal with the other two possibilities by perturbing our point slightly and resuming the algorithm.
- In general: Typically, gradient descent converges to local minimum.
- What if we want this local minimum to be a global one?
- We need additional (strong) assumption.
- f is *convex* iff, for any x and y,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y),$$

for any $0 \le \lambda \le 1$. That is, the epigraph of the function is a convex set.

• Alternatively: f is convex iff $\nabla^2 f(x^k) \succeq 0$, for all x.

 \Rightarrow The only critical points are local minimums!

- In fact, a *much* stronger property holds: all critical points are *global* minimums.
- To see that, note that by Taylor theorem convexity implies that

$$f(x+\delta) = f(x) + \nabla f(x)^T \delta + \frac{1}{2} \delta^T \nabla^2 f(x) \delta \ge f(x) + \nabla f(x)^T \delta.$$

That is, every gradient defines a lower bounding hyperplane for f that agrees with f at x.

 \Rightarrow If $\nabla f(x) = 0$ then $f(x + \delta) \ge f(x)$ for all δ .

• It turns out that convexity is a very widespread phenomena in optimization. But there are very important domains, e.g., deep learning, where the underlying optimization problems are inherently *non*-convex.

2.1 Convergence Analysis

How fast does gradient descent converge?

• Convexity allows us to bound our (sub-)optimality. Specifically, if x^* is the minimum of f, we have that, for any x,

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x).$$

 $\Rightarrow f(x) - f(x^*) \leq -\nabla f(x)^T (x^* - x) \leq \|\nabla f(x)\| \|x^* - x\|$, where the last inequality follows by Cauchy-Schwartz inequality.

- \Rightarrow If $\|\nabla f(x)\| \leq \frac{\epsilon}{\|x^* x\|}$, we are by at most ϵ off from optimum.
- The fact that the above near-optimality condition involves $||x^* x||$ is unfortunate (but inherent!). After all, we don't know what this distance is.
- To connect this distance to the optimum to the norm of the gradient/difference in function value, and thus to get rid of this dependence, we need to make an (even stronger) assumption on f.
- Assume that f is α -strong convexity. That is, assume that, for any x and y,

$$y^T \nabla^2 f(x) y \ge \alpha \|y\|^2.$$

- \Rightarrow The smallest eigenvalue of $\nabla^2 f(x)$ is always at least α .
- \Rightarrow "Normal" convexity would correspond to $\alpha=0$ (but we require $\alpha>0$ here).

 \Rightarrow We can now strengthen our lower bounding inequality we got from convexity. Specifically, for any x and δ we have that

$$f(x+\delta) \ge f(x) + \nabla f(x)^T \delta + \frac{1}{2} \delta^T \nabla^2 f(x) \delta \ge f(x) + \nabla f(x)^T \delta + \frac{\alpha}{2} \|\delta\|^2.$$

That is, for each point x, there is a quadratic function that *lowerbounds* f everywhere and agrees with f at x.

• Now, the key consequence of α -strong convexity we will need is that, for any x,

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\alpha}{2} ||x - x^*||^2.$$

And, as a result, by re-arranging, we get that

$$\nabla f(x)^T (x - x^*) \ge f(x) - f(x^*) + \frac{\alpha}{2} \|x - x^*\|^2.$$
(1)

- Now, to get the convergence bound, let us just put together everything we derived so far:
 - Let us use $||x^t x^*||^2$ as a measure of our progress/potential.
 - Let's analyze its change in one step:

$$\begin{aligned} \|x^{t+1} - x^*\|^2 &= \|x^t - \eta \nabla f(x^t) - x^*\|^2 \\ &= \|x^t - x^*\|^2 - 2\eta \nabla f(x^t)^T (x^t - x^*) + \eta^2 \|\nabla f(x^t)\|^2 \\ &\leq \|x^t - x^*\|^2 - \eta \left(2(f(x^t) - f(x^*) + \frac{\alpha}{2} \|x^t - x^*\|^2) - \eta \|\nabla f(x^t)\|^2 \right), \end{aligned}$$

where the last line follows by (1).

- Further, observe that as each gradient step guarantees making progress of at least $\frac{1}{2\beta} \|\nabla f(x^t)\|^2$ (whenever we set $\eta = \frac{1}{\beta}$, which we do here), it has to be that

$$f(x^{t}) - f(x^{*}) \ge f(x^{t}) - f(x^{t+1}) \ge \frac{1}{2\beta} \|\nabla f(x^{t})\|^{2}$$

- Plugging this back into our derivation and re-arranging, we obtain:

$$\begin{aligned} \|x^{t+1} - x^*\|^2 &\leq \|x^t - x^*\|^2 - \eta \left(2(f(x^t) - f(x^*) + \frac{\alpha}{2} \|x^t - x^*\|^2) - \eta \|\nabla f(x^t)\|^2 \right) \\ &\leq \|x^t - x^*\|^2 - \frac{1}{\beta} \left(\frac{1}{\beta} \|\nabla f(x^t)\|^2 + \alpha \|x^t - x^*\|^2 - \frac{1}{\beta} \|\nabla f(x^t)\|^2 \right) \\ &\leq \|x^t - x^*\|^2 - \frac{\alpha}{\beta} \|x^t - x^*\|^2 = \left(1 - \frac{1}{\kappa} \right) \|x^t - x^*\|^2, \end{aligned}$$

where $\kappa := \frac{\beta}{\alpha}$ is the *condition number* of f. (Intuitively, condition number tells us how "nicely" it behaves, i.e., how well can we "sandwich" the function f locally by two quadratic functions. The smaller condition number the faster convergence.)

 $\Rightarrow \text{After } O(\kappa \log \frac{(f(x^0) - f(x^*))}{\epsilon}) \text{ steps we obtain a solution that is within } \epsilon \text{ of the optimal value (in norm)!}$

Note: The dependence on ϵ is only logarithmic, which essentially allows us to solve the problem exactly by taking sufficiently large ϵ .

3 Dealing with lack of α -strongly convexity

- What to do if f is not α -strongly convex for any $\alpha > 0$? (This is often the case in applications.)
- A different analysis gives a (much weaker) convergence bound of $O(\frac{\beta \|x^* x^0\|^2}{\varepsilon})$. (Here, the dependence on ϵ is polynomial, so in this regime we can only get approximate answers.)
- Alternatively, we could (almost, i.e., up to $O(\log \frac{1}{\varepsilon} \text{ factor})$ recover this weaker bound by making $f \alpha$ -strongly convex, with $\alpha = \frac{\varepsilon}{2\|x^* x^0\|^2}$, by adding $\alpha \|x x^0\|^2$ to it. (Note, we do not need to know $\|x^* x^0\|^2$ exactly. Doing iterative doubling will suffice here.)
- This is an example of a more general technique called *regularization*.

 \Rightarrow Adding this new term corresponding to adding $\alpha \cdot I$ to the Hessian $\nabla^2 f(x)$ of f. So, f is indeed α -strongly convex now and we can use the convergence analysis from above.

 \Rightarrow Problem: The minimizer of f changed! Still, one can show that the value attained at the new minimizer is withing $\frac{\varepsilon}{2}$ of the optimum. (Left as an exercise,)

4 **Projections**

- What to do if we want to solve *constrained* minimization? (E.g., max flow.)
- Just project (in ℓ_2 -norm) on the feasible space!
- The way we measured progress was by keeping track of $||x^t x^*||^2$. But: an ℓ_2 -norm projection will never increase this quantity! Specifically, we have that if $\Pi(x)$ denotes the projected point x, we have that

$$\|\Pi(x^t) - x^*\|^2 = \|\Pi(x^t) - \Pi(x^*)\|^2 \le \|x^t - x^*\|^2,$$

since the projection Π is contractive.

 \Rightarrow The analysis follows unchanged.

5 Dealing with Lack of β -Smoothness

- We can either use Subgradient descent, i.e., a variant of gradient descent that uses subgradients instead of gradients, or *smoothing*, a way to introduce a proxy objective function that is β -smooth while approximating the objective function well. (The latter is always preferable, as long as we can find a sufficiently good smoothening proxy.)
- For maximum flow, it is the best to smoothen the objective function $\|\cdot\|_{\infty}$ via *soft max* function:

$$\operatorname{smax}_{\delta}(x) := \delta \ln \left(\frac{\sum_{i=1}^{n} e^{\frac{x_i}{\delta}} + e^{\frac{-x_i}{\delta}}}{2n} \right), \tag{2}$$

where $\delta >$ is a parameter.

- For every $\delta > 0$, the function smax_{δ} is convex and $\frac{1}{\delta}$ -smooth. (Exercise.)
- For any x we have that, $||x||_{\infty} \delta \ln(2n) \le \max_{\delta}(x) \le ||x||_{\infty}$. (Exercise)
- So, there is a trade-off between how well we approximate $\|\cdot\|_{\infty}$ and how smooth the resulting function is.
- Plugging the smoothened maximum flow formulation, with $\delta = \frac{\varepsilon}{2}$ into our bounds for gradient descent (with no α -convexity), we get an ϵ approximate solution after

$$O\left(\frac{\beta \|x^0 - x^*\|^2}{\varepsilon}\right) = O\left(\frac{m}{\varepsilon^2}\right)$$

iterations, where we use the fact that by choosing x_0 to be an all-zero vector (and then projecting it on the space of unit s-t flows) and noticing that optimal solution never flows more than 1 on any coordinate, $||x^0 - x^*||^2 \leq m$.

• As we can compute projections in nearly-linear time, the resulting algorithm runs in $\tilde{O}(m^2 \varepsilon^{-2})$ time.