On a group theoretic generalization of the Morse-Hedlund theorem

É. Charlier¹ S. Puzynina² L. Q. Zamboni³

¹Université de Liège, Belgium

²Saint Petersburg State University, Russia

³Université Lyon 1, France

< 回 > < 三 > < 三 >

Outline

complexity functions of infinite words:

(本部) (本語) (本語)

æ

minimal complexity of aperiodic words:

Outline

. . .

complexity functions of infinite words: factor, abelian, cyclic, group

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

minimal complexity of aperiodic words: Morse-Hedlund theorem and Sturmian words

Outline

. . .

complexity functions of infinite words: factor, abelian, cyclic, group

minimal complexity of aperiodic words: Morse-Hedlund theorem and Sturmian words

- New notion of complexity by group actions.
- Broad generalization of Morse-Hedlund theorem via group complexity.

(Ultimately) periodic word x:

 $x = uvvvvv \cdots$

Aperiodic word = not ultimately periodic.

Connection between periodicity and complexity:

Theorem of Morse and Hedlund, 1940

Let x be an infinite word

- x aperiodic $\Rightarrow \forall n: p_x(n) \ge n+1$
- $\forall n: p_x(n) = n + 1 \Leftrightarrow x \text{ is Sturmian word}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Generalizations of the notion of words complexity:

- abelian complexity
- maximal pattern complexity
- arithmetical complexity
- conjugate complexity
- etc.

Abelian complexity

 Two finite words are abelian equivalent if they contain the same numbers of occurrences of each letter: 00111 ~_{ab} 01101

(日) (日) (日)

臣

Abelian complexity

- Two finite words are abelian equivalent if they contain the same numbers of occurrences of each letter: 00111 ∼_{ab} 01101
- The abelian complexity $a_w(n)$ of an infinite word w is the function that counts the number of classes of abelian equivalence of its factors length n

(日) (日) (日)

Abelian complexity

- Two finite words are abelian equivalent if they contain the same numbers of occurrences of each letter: 00111 ∼_{ab} 01101
- The abelian complexity $a_w(n)$ of an infinite word w is the function that counts the number of classes of abelian equivalence of its factors length n

Example (Thue-Morse word)

 $t = 0110100110010110 \cdots$

The abelian complexity of the Thue-Morse word t is

$$a_t(n) = \begin{cases} 2 & \text{if } n \text{ is odd} \\ 3 & \text{if } n \text{ is even} \end{cases}$$

E.g., we have two abelian classes of factors of length 3: $\{001, 010, 100\}, \{011, 101, 110\}.$

Properties of abelian complexity

•
$$a_{\mathsf{X}}(n) \leq \binom{n+|\Sigma|-1}{|\Sigma|-1} = O(n^{|\Sigma|-1}).$$

- Ultimate periodicity \Rightarrow bounded abelian complexity.
- The converse is not true: e.g., Thue-Morse word is aperiodic and has abelian complexity bounded by 3.

A (2) > (

Properties of abelian complexity

•
$$a_{\mathsf{X}}(n) \leq \binom{n+|\Sigma|-1}{|\Sigma|-1} = O(n^{|\Sigma|-1}).$$

- Ultimate periodicity \Rightarrow bounded abelian complexity.
- The converse is not true: e.g., Thue-Morse word is aperiodic and has abelian complexity bounded by 3.

Relations between periodicity and abelian complexity:

Theorem (abelian Morse-Hedlund)

Let x be an infinite word.

- x aperiodic $\Rightarrow \forall n: a_x(n) \ge 2$.
- x aperiodic, $\forall n \ a_x(n) = 2 \Leftrightarrow x$ is Sturmian.

イロト イポト イヨト イヨト

Cyclic complexity

- Two finite words u and v are conjugate if there exist words w₁, w₂ such that u = w₁w₂ and v = w₂w₁ (e.g., ababba and babbaa).
- The cyclic complexity c_x(n) of a word x is the function counting the number of conjugacy classes of length n of x for each n ≥ 0.

Example (Thue-Morse word)

```
t = 0110100110010110 \cdots
```

```
We have four conjugacy classes of length 4:
{0010,0100},
{0110,1001,1100,0011},
{0101,1010},
{1011,1101}.
```

Minimal cyclic complexity and Sturmian words

Extension of Morse-Hedlund Theorem:

Theorem (Cassaigne, Fici, Sciortino, Zamboni, 2014)

Ultimate periodicity \Leftrightarrow bounded cyclic complexity.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Minimal cyclic complexity and Sturmian words

Extension of Morse-Hedlund Theorem:

Theorem (Cassaigne, Fici, Sciortino, Zamboni, 2014)

 $\textit{Ultimate periodicity} \Leftrightarrow \textit{bounded cyclic complexity}.$

- $c_x(n) = 1$ for some $n \ge 1 \Rightarrow$ periodicity
- consider $\liminf c_x(n)$.

lim inf $c_x(n)$ and Sturmian words

- For Sturmian words $\limsup c_x(n) = \infty$, but $\liminf c_x(n) = 2$.
- This is not a characterization of Sturmian words: for example, for the period-doubling word lim inf $c_x(n) = 2$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Generalization via group actions

 $G \leq S_n$ subgroup of a symmetric group G-action on $\{1, 2, ..., n\}$ is given by $g : i \mapsto g(i)$

G acts on words of length n by permutation of symbols:

For $g \in G$, $u \in \Sigma^n$ we define the action by

$$g * u = u_{g^{-1}(1)} u_{g^{-1}(2)} \cdots u_{g^{-1}(n)}$$

Example

$$g=(123)(45),~g:1\mapsto 2,2\mapsto 3,3\mapsto 1,4\mapsto 5,5\mapsto 4$$

 $abcab \overset{(123)(45)}{\frown} cabba$

In particular we have $g * u \sim_{ab} u$ for all $g \in G$.

G-equivalence of words of length n:

u, v words of length $n, u \sim_G v$ if $\exists g \in G$ such that g(u) = v.

É. Charlier, S. Puzynina, L. Q. Zamboni Group theoretic Morse-Hedlund theorem

Complexity by actions of groups

x infinite word $\omega = (G_n)_{n \ge 1}, G_n \le S_n$ a sequence of subgroups The group complexity $p_{\omega,x}(n)$ of x is the function which counts the

number of classes of G_n -equivalence of factors of length n.

Example (Thue-Morse word)

 $t = 0110100110010110 \cdots$

For
$$G_4 = \langle (13), (24) \rangle$$
 we have $p_{\omega,t}(4) = 7$.

We have six singleton classes of length 4:

[0010], [0100], [0101], [1010], [1011], [1101]

and one class of order 4:

$$[0110 \stackrel{(13)(24)}{\frown} 1001 \stackrel{(24)}{\frown} 1100 \stackrel{(13)}{\frown} 0011].$$

Group actions: generalization of factor, abelian and cyclic complexities

Particular cases:

- factor complexity: $\omega = (Id_n)_{n \geq 1}$, $p_{\omega,x}(n) = p_x(n)$
- abelian complexity: $\omega = (S_n)_{n \geq 1}$, $p_{\omega,x}(n) = a_x(n)$
- cyclic complexity: $\omega = \langle (12 \cdots n) \rangle_{n \ge 1}$, $p_{\omega,x}(n) = c_x(n)$

Remark

Group and cyclic complexities are between abelian and classic complexity:

$$a_x(n) \leq p_{\omega,x}(n), c_x(n) \leq p_x(n).$$

(周) (三) (三)

Complexity by group actions: $\varepsilon(G)$

$$G \leq S_n$$

We consider the G-action on $\{1, 2, ..., n\}$ given by $g : i \mapsto g(i)$ $G(i) = \{g(i) | g \in G\}$ denotes the G-orbit of *i*.

Let $\varepsilon(G)$ denote the number of distinct G-orbits:

$$\varepsilon(G) = \sharp\{G(i) \mid i \in \{1, 2, \dots, n\}\}$$

Example

For
$$n = 6$$
, $G = \langle (13), (256) \rangle$, we have $\varepsilon(G) = 3$:

123456

• If
$$G = Id$$
, then $\varepsilon(G) = n$.

• If G contains an *n*-cycle, then $\varepsilon(G) = 1$.

Complexity by group actions: $\varepsilon(G)$

 $G \leq S_n$ $\varepsilon(G)$: the number of G-orbits of $\{1, \ldots, n\}$.

Example

Klein group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$:

 $G = \{\epsilon, (12), (34), (12)(34)\}$ G-orbits : $\{\{12\}, \{34\}\} \Rightarrow \varepsilon(G) = 2$ $G' = \{\epsilon, (12)(34), (13)(24), (14)(23)\}$ $G'\text{-orbit} : \{1, 2, 3, 4\} \Rightarrow \varepsilon(G') = 1$

 $\varepsilon(G)$ depends on the embedding of G into $S_n!$

・ロト ・ 日本・ ・ 日本・ ・ 日本

Generalisation of theorem of Morse and Hedlund

Theorem 1, Charlier, P., Zamboni, 2017

Let x be an infinite word, $\omega = (G_n)_{n \ge 1}$, $G_n \le S_n$.

- x aperiodic $\Rightarrow \forall n \ p_{\omega,x}(n) \geq \varepsilon(G_n) + 1$
- $\forall n \ p_{\omega,x}(n) = \varepsilon(G_n) + 1 \Rightarrow x$ Sturmian.

Theorem 2, Charlier, P., Zamboni, 2017

Let x be a Sturmian word, $\omega = (G_n)_{n \ge 1}$, $G_n \le S_n$ abelian, then $\exists \omega' = (G'_n)_{n \ge 1}$, $G'_n \le S_n$ isomorphic to G_n : $p_{\omega',x}(n) = \varepsilon(G'_n) + 1$.

Particular cases:

- Theorem of Morse and Hedlund: $\omega = (Id_n)_{n \ge 1}$, $p_{\omega,x}(n) = p_x(n)$, $\varepsilon(G_n) = n$
- abelian complexity: $\omega = (S_n)_{n \ge 1}$, $p_{\omega,x}(n) = a_x(n)$, $\varepsilon(G_n) = 1$

・ロッ ・雪 ・ ・ ヨ ・ ・

Theorem 2: We cannot always take G' = G

Theorem 2, Charlier, P., Zamboni, 2017

Let x be a Sturmian word, $\omega = (G_n)_{n \ge 1}$, $G_n \le S_n$ abelian, then $\exists \omega' = (G'_n)_{n \ge 1}$, $G'_n \le S_n$ isomorphic to G_n : $p_{\omega',x}(n) = \varepsilon(G'_n) + 1$.

Example

 $\begin{array}{l} G_4 = \langle \sigma \rangle, \ \sigma = (1234), \ \varepsilon(G_4) = 1, \ \text{Fibonacci word:} \\ F = 01001010010010010010010010010010010 \\ \{ [0100 \stackrel{\sigma}{\frown} 0010], [0101 \stackrel{\sigma}{\frown} 1010], [1001] \} \\ p_{\omega,F}(4) = 3 > \varepsilon(G_4) + 1 = 2 \\ \end{array}$ But we can take $G_4' = \langle \sigma' \rangle, \ \sigma' = (1324), \ \varepsilon(G_4') = 1. \end{array}$

 $\{[0010 \stackrel{\sigma'}{\frown} 0010], [0101 \stackrel{\sigma'}{\frown} 1001 \stackrel{\sigma'}{\frown} 1010]\}$ $p_{\omega,F}(4) = 2 = \varepsilon(G'_4) + 1 = 2$

Theorem 2, Charlier, P., Zamboni, 2017

Let x be a Sturmian word, $\omega = (G_n)_{n \ge 1}$, $G_n \le S_n$ abelian, then $\exists \omega' = (G'_n)_{n \ge 1}$, $G'_n \le S_n$ isomorphic to G_n : $p_{\omega',x}(n) = \varepsilon(G'_n) + 1$.

We cannot replace "isomorphic" by "conjugate":

Example

$$G = \langle (123)(456) \rangle \leq S_6$$
 cyclic of order 3.
Then $\varepsilon(G) = 2$.
We can show that if x is the Fibonacci word, then

 $\operatorname{Card}\left(\operatorname{Fact}_{x}(6)/\sim_{G'}
ight)\geq4$

for each subgroup G' of S_6 conjugate to G.

- 4 同 6 4 日 6 4 日 6

But in case of relatively prime cycle lengths we can:

Corollary

Let $\sigma \in S_n$ and $G = \langle \sigma \rangle$. Writing $\sigma = \sigma_1 \cdots \sigma_k$ as a product of disjoint cycles, suppose $|\sigma_1|, \ldots, |\sigma_k|$ are pairwise relatively prime. Then for every Sturmian word x there exists $G' \leq S_n$ conjugate to G such that $Card(Fact_x(n)/\sim_{G'}) = \varepsilon(G) + 1$.

Techniques of proof: Theorem 1, part 2

Theorem 1.2

x aperiodic $\forall n \ p_{\omega,x}(n) = \varepsilon(G_n) + 1 \Rightarrow x$ Sturmian.

We show that x is binary and balanced (hence Sturmian).

x is balanced: For $u, v \in F(x)$ with |u| = |v| the numbers of occurrences of 0 in u and v differs by at most 1.

Since $\varepsilon(G_1) = 1$, then $p_{\omega,x}(1) = 2$, and hence x is binary.

We use:

Lemma

Let $x \in \{0,1\}^{\mathbb{N}}$ be aperiodic. Then either x is Sturmian or there exist an integer $n \ge 2$, a Sturmian word y and a bispecial factor $u \in \{0,1\}^{n-2}$ of y such that $Fact_x(n) = Fact_y(n) \cup \{0u0,1u1\}$.

v is a bispecial factor of u if v0, v1, 0v, 1v are factors of u.

Theorem 2: first construct a cycle

Theorem 2

x Sturmian, $\omega = (G_n)_{n \ge 1}$, $G_n \le S_n$ abelian $\Rightarrow \exists \omega' = (G'_n)_{n \ge 1}$, $G'_n \le S_n$ isomorphic to G_n : $p_{\omega',x}(n) = \varepsilon(G'_n) + 1$.

First we prove Theorem 2 for a cycle.

abc-permutation

The numbers 1, 2, ..., n are divided into three subintervals of length a, b and c which are rearranged in the order c, b, a:

$$1,2,\ldots,n\mapsto c+b+1,c+b+2,\ldots,n,c+1,c+2,\ldots,c+b,1,2,\ldots,c$$

In other words: A discrete 3-interval exchange transformation $(a, b, c) \rightarrow (c, b, a)$ on $\{1, 2, ..., n\}$ (where $n = a \pm b \pm c$). É. Charlier, S. Puzynina, L. Q. Zamboni Group theoretic Morse-Hedlund theorem To construct the cycle as (abc)-permutation, we make use of:

- bispecial factors of x of the next possible length.
- smallest periods of the bispecial factors to calculate *a*, *b* and *c*.
- prove that the (*abc*)-permutation is an *n*-cycle using [Pak, Redlich, 2008].
- Lexicographic arrays for the proofs.

Theorem 2: example of cycle

Example

- m = 6 in Fibonacci word
 - w = 010010 bispecial
 - p = 5 and q = 3 periods of w
 - a = 1, b = 2, c = 3 define the *abc*-permutation

Theorem 2: example of cycle

Example

- m = 6 in Fibonacci word
 - w = 010010 bispecial
 - p = 5 and q = 3 periods of w
 - a = 1, b = 2, c = 3 define the *abc*-permutation

Theorem 2: example of cycle

Example

- m = 6 in Fibonacci word
 - w = 010010 bispecial
 - p = 5 and q = 3 periods of w
 - a = 1, b = 2, c = 3 define the *abc*-permutation

Corollary

Let $x \in \{0,1\}^{\mathbb{N}}$ be a Sturmian word. Then for each positive integer n there exists a cyclic group G_n generated by an n-cycle such that $Card(Fact_x(n)/\sim_{G_n})=2.$

Remark [Cassaigne, Fici, Sciortino, Zamboni, 2017]

In contrast, if we set $G_n = \langle (1, 2, ..., n) \rangle$, then $\limsup_{n \to \infty} p_{\omega,x} = +\infty$, while $\liminf_{n \to \infty} p_{\omega,x} = 2$.

(1月) (1日) (日)

Theorem (Fundamental Theorem of Finite Abelian Groups)

Every finite abelian group G can be written as a direct product of cyclic groups $\mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}$ where the m_i are prime powers.

- The unordered sequence (m_1, m_2, \ldots, m_k) determines G up to isomorphism.
- The trace of G is given by $T(G) = m_1 + m_2 + \cdots + m_k$.

Proposition (Hoffman, 1987)

If an Abelian group G is embedded in S_n , then $T(G) \leq n$.

イロト 不得下 イヨト イヨト

Does Theorem 2 hold for non-abelian groups?

Question

Let x be a Sturmian word, $\omega = (G_n)_{n \ge 1}$, $G_n \le S_n$. Does there exist $\omega' = (G'_n)_{n \ge 1}$, $G'_n \le S_n$ isomorphic to G_n : $p_{\omega',x}(n) = \varepsilon(G'_n) + 1$?

・ 同 ト ・ ヨ ト ・ ヨ ト

- For most complexity functions Sturmian words possess minimal complexity;
- In some cases it give a characterization of Sturmian words, but not always.

For which complexities Sturmian words have minimal complexity? When are they the only ones?

x an infinite word

Maximal pattern complexity $p_x^*(n)$ is defined by

$$p_x^*(n) = \sup_{\tau} \sharp\{x_{k+\tau(0)} x_{k+\tau(1)} \cdots x_{k+\tau(n-1)} | k = 0, 1, 2, \ldots\},\$$

where the supremum is taken over all sequences of integers $\tau(0), \tau(1), \cdots \tau(n-1)$ of length *n*.

Pattern (0,2,3,7):

A (1) > A (2) > A

Theorem (Kamae, Zamboni, 2002)

An infinite word x is aperiodic if and only if $p_x^*(n) \ge 2n$ for every n = 1, 2, ...

Theorem (Kamae, Zamboni, 2002)

An infinite word x is aperiodic if and only if $p_x^*(n) \ge 2n$ for every n = 1, 2, ...

Words of complexity 2n + 1:

- Sturmian
- certain rotational words
- certain Toeplitz words
- ...

No characterization.

x an infinite word

Arithmetical complexity $ar_x(n)$ is defined by

$$ar_x(n) = \#\{x_k x_{k+d} \cdots x_{k+d(n-1)} | k = 0, 1, 2, \dots, d = 1, 2, \dots\}.$$

I.e., arithmetical complexity counts the number of subwords in arithmetic progressions.

- Minimal arithmetical complexity of aperiodic uniformly recurrent words is linear.
- Words of asymptotically minimal arithmetical complexity are Toeplitz words.
- Arithmetical complexity of Sturmian words is $\Theta(n^3)$.

[Avgustinovich, Cassaigne, Frid, 2006]

(日本) (日本) (日本)

complexity type	minimal complexity	words family
factor	n+1	Sturmian
abelian	2	Sturmian
cyclic	$\liminf = 2$	Sturmian+
group	$\varepsilon(G_n)+1$	Sturmian
maximal pattern	2n+1	Sturmian+
arithmetical	linear	(asymptotically) Toeplitz

・ 回 ト ・ ヨ ト ・ ヨ ト