On a group theoretic generalization of the Morse-Hedlund theorem

É. Charlier ${ }^{1} \quad$ S. Puzynina ${ }^{2} \quad$ L. Q. Zamboni ${ }^{3}$
${ }^{1}$ Université de Liège, Belgium
${ }^{2}$ Saint Petersburg State University, Russia
${ }^{3}$ Université Lyon 1, France

Outline

complexity functions of infinite words:

relations periodicity

\Leftrightarrow

minimal complexity of aperiodic words:

Outline

complexity functions of infinite words:
factor,
abelian,
cyclic,
relations
periodicity
group

minimal complexity of aperiodic words:
Morse-Hedlund theorem and Sturmian words

Outline

complexity functions of infinite words:
factor, abelian, cyclic,
relations
\Leftrightarrow

periodicity

> minimal complexity of aperiodic words:
> Morse-Hedlund theorem and Sturmian words

- New notion of complexity by group actions.
- Broad generalization of Morse-Hedlund theorem via group complexity.

É. Charlier, S. Puzynina, L. Q. Zamboni

Complexity and periodicity

(Ultimately) periodic word x :

$$
x=u v v v v v \cdots
$$

Aperiodic word $=$ not ultimately periodic.

Connection between periodicity and complexity:
Theorem of Morse and Hedlund, 1940
Let x be an infinite word

- x aperiodic $\Rightarrow \forall n: p_{x}(n) \geq n+1$
- $\forall n: p_{x}(n)=n+1 \Leftrightarrow x$ is Sturmian word

Generalizations and modifications

Generalizations of the notion of words complexity:

- abelian complexity
- maximal pattern complexity
- arithmetical complexity
- conjugate complexity
- etc.

Abelian complexity

- Two finite words are abelian equivalent if they contain the same numbers of occurrences of each letter: $00111 \sim_{a b} 01101$

Abelian complexity

- Two finite words are abelian equivalent if they contain the same numbers of occurrences of each letter: $00111 \sim_{a b} 01101$
- The abelian complexity $a_{w}(n)$ of an infinite word w is the function that counts the number of classes of abelian equivalence of its factors length n

Abelian complexity

- Two finite words are abelian equivalent if they contain the same numbers of occurrences of each letter: $00111 \sim_{a b} 01101$
- The abelian complexity $a_{w}(n)$ of an infinite word w is the function that counts the number of classes of abelian equivalence of its factors length n

Example (Thue-Morse word)

$$
t=0110100110010110 \cdots
$$

The abelian complexity of the Thue-Morse word t is

$$
a_{t}(n)= \begin{cases}2 & \text { if } n \text { is odd } \\ 3 & \text { if } n \text { is even }\end{cases}
$$

E.g., we have two abelian classes of factors of length 3: $\{001,010,100\},\{011,101,110\}$.

Abelian complexity

Properties of abelian complexity

- $a_{x}(n) \leq\binom{ n+|\Sigma|-1}{|\Sigma|-1}=O\left(n^{|\Sigma|-1}\right)$.
- Ultimate periodicity \Rightarrow bounded abelian complexity.
- The converse is not true: e.g., Thue-Morse word is aperiodic and has abelian complexity bounded by 3 .

Abelian complexity

Properties of abelian complexity

- $a_{x}(n) \leq\binom{ n+|\Sigma|-1}{|\Sigma|-1}=O\left(n^{|\Sigma|-1}\right)$.
- Ultimate periodicity \Rightarrow bounded abelian complexity.
- The converse is not true: e.g., Thue-Morse word is aperiodic and has abelian complexity bounded by 3 .

Relations between periodicity and abelian complexity:

Theorem (abelian Morse-Hedlund)

Let x be an infinite word.

- x aperiodic $\Rightarrow \forall n: a_{x}(n) \geq 2$.
- x aperiodic, $\forall n a_{x}(n)=2 \Leftrightarrow x$ is Sturmian.

Cyclic complexity

- Two finite words u and v are conjugate if there exist words w_{1}, w_{2} such that $u=w_{1} w_{2}$ and $v=w_{2} w_{1}$ (e.g., ababba and babbaa).
- The cyclic complexity $c_{x}(n)$ of a word x is the function counting the number of conjugacy classes of length n of x for each $n \geq 0$.

Example (Thue-Morse word)

$$
t=0110100110010110 \cdots
$$

We have four conjugacy classes of length 4:
$\{0010,0100\}$,
$\{0110,1001,1100,0011\}$,
\{0101, 1010\},
$\{1011,1101\}$.

Minimal cyclic complexity and Sturmian words

Extension of Morse-Hedlund Theorem:
Theorem (Cassaigne, Fici, Sciortino, Zamboni, 2014)
Ultimate periodicity \Leftrightarrow bounded cyclic complexity.

Minimal cyclic complexity and Sturmian words

Extension of Morse-Hedlund Theorem:

Theorem (Cassaigne, Fici, Sciortino, Zamboni, 2014)

Ultimate periodicity \Leftrightarrow bounded cyclic complexity.

- $c_{x}(n)=1$ for some $n \geq 1 \Rightarrow$ periodicity
- consider $\lim \inf c_{x}(n)$.
$\liminf c_{x}(n)$ and Sturmian words
- For Sturmian words $\lim \sup c_{x}(n)=\infty$, but $\liminf c_{x}(n)=2$.
- This is not a characterization of Sturmian words: for example, for the period-doubling word $\lim \inf c_{x}(n)=2$.

Generalization via group actions

$G \leq S_{n}$ subgroup of a symmetric group
G-action on $\{1,2, \ldots, n\}$ is given by $g: i \mapsto g(i)$
G acts on words of length n by permutation of symbols:
For $g \in G, u \in \Sigma^{n}$ we define the action by

$$
g * u=u_{g^{-1}(1)} u_{g^{-1}(2)} \cdots u_{g^{-1}(n)}
$$

Example

$$
\begin{gathered}
g=(123)(45), g: 1 \mapsto 2,2 \mapsto 3,3 \mapsto 1,4 \mapsto 5,5 \mapsto 4 \\
a b c a b \stackrel{(123)(45)}{\curvearrowright} c a b b a
\end{gathered}
$$

In particular we have $g * u \sim_{a b} u$ for all $g \in G$.
G-equivalence of words of length n :
u, v words of length $n, u \sim_{G} v$ if $\exists g \in G$ such that $g(u)=v$.

Complexity by actions of groups

x infinite word
$\omega=\left(G_{n}\right)_{n \geq 1}, G_{n} \leq S_{n}$ a sequence of subgroups
The group complexity $p_{\omega, x}(n)$ of x is the function which counts the number of classes of G_{n}-equivalence of factors of length n.

Example (Thue-Morse word)

$$
t=0110100110010110 \cdots
$$

For $G_{4}=\langle(13),(24)\rangle$ we have $p_{\omega, t}(4)=7$.
We have six singleton classes of length 4 :
[0010], [0100], [0101], [1010], [1011], [1101]
and one class of order 4:

$$
[0110 \stackrel{(13)(24)}{\curvearrowright} 1001 \stackrel{(24)}{\curvearrowright} 1100 \stackrel{(13)}{\curvearrowright} 0011] .
$$

Group actions: generalization of factor, abelian and cyclic complexities

Particular cases:

- factor complexity: $\omega=\left(I d_{n}\right)_{n \geq 1}, p_{\omega, x}(n)=p_{x}(n)$
- abelian complexity: $\omega=\left(S_{n}\right)_{n \geq 1}, p_{\omega, x}(n)=a_{x}(n)$
- cyclic complexity: $\omega=<(12 \cdots n)>_{n \geq 1}, p_{\omega, x}(n)=c_{x}(n)$

Remark

Group and cyclic complexities are between abelian and classic complexity:

$$
a_{x}(n) \leq p_{\omega, x}(n), c_{x}(n) \leq p_{x}(n)
$$

Complexity by group actions: $\varepsilon(G)$

$G \leq S_{n}$
We consider the G-action on $\{1,2, \ldots, n\}$ given by $g: i \mapsto g(i)$ $G(i)=\{g(i) \mid g \in G\}$ denotes the G-orbit of i.

Let $\varepsilon(G)$ denote the number of distinct G-orbits:

$$
\varepsilon(G)=\sharp\{G(i) \mid i \in\{1,2, \ldots, n\}\}
$$

Example

For $n=6, G=\langle(13),(256)\rangle$, we have $\varepsilon(G)=3$:
123456

- If $G=I d$, then $\varepsilon(G)=n$.
- If G contains an n-cycle, then $\varepsilon(G)=1$.

Complexity by group actions: $\varepsilon(G)$

$G \leq S_{n}$
$\varepsilon(G)$: the number of G-orbits of $\{1, \ldots, n\}$.

Example

Klein group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$:

$$
G=\{\epsilon,(12),(34),(12)(34)\}
$$

G-orbits : $\{\{12\},\{34\}\} \Rightarrow \varepsilon(G)=2$

$$
G^{\prime}=\{\epsilon,(12)(34),(13)(24),(14)(23)\}
$$

G^{\prime}-orbit : $\{1,2,3,4\} \Rightarrow \varepsilon\left(G^{\prime}\right)=1$
$\varepsilon(G)$ depends on the embedding of G into S_{n} !

Generalisation of theorem of Morse and Hedlund

Theorem 1, Charlier, P., Zamboni, 2017

Let x be an infinite word, $\omega=\left(G_{n}\right)_{n \geq 1}, G_{n} \leq S_{n}$.

- x aperiodic $\Rightarrow \forall n p_{\omega, x}(n) \geq \varepsilon\left(G_{n}\right)+1$
- $\forall n p_{\omega, x}(n)=\varepsilon\left(G_{n}\right)+1 \Rightarrow x$ Sturmian.

Theorem 2, Charlier, P., Zamboni, 2017

Let x be a Sturmian word, $\omega=\left(G_{n}\right)_{n \geq 1}, G_{n} \leq S_{n}$ abelian, then $\exists \omega^{\prime}=\left(G_{n}^{\prime}\right)_{n \geq 1}, G_{n}^{\prime} \leq S_{n}$ isomorphic to $G_{n}: p_{\omega^{\prime}, x}(n)=\varepsilon\left(G_{n}^{\prime}\right)+1$.

Particular cases:

- Theorem of Morse and Hedlund: $\omega=\left(I d_{n}\right)_{n \geq 1}$,

$$
p_{\omega, x}(n)=p_{x}(n), \varepsilon\left(G_{n}\right)=n
$$

- abelian complexity: $\omega=\left(S_{n}\right)_{n \geq 1}, p_{\omega, x}(n)=a_{x}(n), \varepsilon\left(G_{n}\right)=1$

Theorem 2: We cannot always take $G^{\prime}=G$

Theorem 2, Charlier, P., Zamboni, 2017

Let x be a Sturmian word, $\omega=\left(G_{n}\right)_{n \geq 1}, G_{n} \leq S_{n}$ abelian, then $\exists \omega^{\prime}=\left(G_{n}^{\prime}\right)_{n \geq 1}, G_{n}^{\prime} \leq S_{n}$ isomorphic to $G_{n}: p_{\omega^{\prime}, x}(n)=\varepsilon\left(G_{n}^{\prime}\right)+1$.

Example

$G_{4}=\langle\sigma\rangle, \sigma=(1234), \varepsilon\left(G_{4}\right)=1$, Fibonacci word:
$F=01001010010010100101001001010010 \cdots$

$$
\begin{gathered}
\{[0100 \stackrel{\sigma}{\curvearrowright} 0010],[0101 \stackrel{\sigma}{\curvearrowright} 1010],[1001]\} \\
p_{\omega, F}(4)=3>\varepsilon\left(G_{4}\right)+1=2
\end{gathered}
$$

But we can take $G_{4}^{\prime}=\left\langle\sigma^{\prime}\right\rangle, \sigma^{\prime}=(1324), \varepsilon\left(G_{4}^{\prime}\right)=1$.

$$
\begin{gathered}
\left\{\left[0010 \stackrel{\sigma^{\prime}}{\curvearrowright} 0010\right],\left[0101 \stackrel{\sigma^{\prime}}{\curvearrowright} 1001 \stackrel{\sigma^{\prime}}{\curvearrowright} 1010\right]\right\} \\
p_{\omega, F}(4)=2=\varepsilon\left(G_{4}^{\prime}\right)+1=2
\end{gathered}
$$

Theorem 2: we cannot replace "isomorphic" by "conjugate"

Theorem 2, Charlier, P., Zamboni, 2017

Let x be a Sturmian word, $\omega=\left(G_{n}\right)_{n \geq 1}, G_{n} \leq S_{n}$ abelian, then $\exists \omega^{\prime}=\left(G_{n}^{\prime}\right)_{n \geq 1}, G_{n}^{\prime} \leq S_{n}$ isomorphic to $G_{n}: p_{\omega^{\prime}, x}(n)=\varepsilon\left(G_{n}^{\prime}\right)+1$.

We cannot replace "isomorphic" by "conjugate":

Example

$G=\langle(123)(456)\rangle \leq S_{6}$ cyclic of order 3 .
Then $\varepsilon(G)=2$.
We can show that if x is the Fibonacci word, then

$$
\operatorname{Card}\left(\operatorname{Fact}_{x}(6) / \sim_{G^{\prime}}\right) \geq 4
$$

for each subgroup G^{\prime} of S_{6} conjugate to G.

Corollary: Conjugate

But in case of relatively prime cycle lengths we can:

Corollary

Let $\sigma \in S_{n}$ and $G=\langle\sigma\rangle$. Writing $\sigma=\sigma_{1} \cdots \sigma_{k}$ as a product of disjoint cycles, suppose $\left|\sigma_{1}\right|, \ldots,\left|\sigma_{k}\right|$ are pairwise relatively prime. Then for every Sturmian word x there exists $G^{\prime} \leq S_{n}$ conjugate to G such that $\operatorname{Card}\left(\operatorname{Fact}_{x}(n) / \sim_{G^{\prime}}\right)=\varepsilon(G)+1$.

Techniques of proof: Theorem 1, part 2

Theorem 1.2

x aperiodic $\forall n p_{\omega, x}(n)=\varepsilon\left(G_{n}\right)+1 \Rightarrow x$ Sturmian.
We show that x is binary and balanced (hence Sturmian).
x is balanced: For $u, v \in F(x)$ with $|u|=|v|$ the numbers of occurrences of 0 in u and v differs by at most 1 .

Since $\varepsilon\left(G_{1}\right)=1$, then $p_{\omega, x}(1)=2$, and hence x is binary.
We use:

Lemma

Let $x \in\{0,1\}^{\mathbb{N}}$ be aperiodic. Then either x is Sturmian or there exist an integer $n \geq 2$, a Sturmian word y and a bispecial factor $u \in\{0,1\}^{n-2}$ of y such that $\operatorname{Fact}_{x}(n)=\operatorname{Fact}_{y}(n) \cup\{0 u 0,1 u 1\}$.

[^0]
Theorem 2: first construct a cycle

Theorem 2

x Sturmian, $\omega=\left(G_{n}\right)_{n \geq 1}, G_{n} \leq S_{n}$ abelian $\Rightarrow \exists \omega^{\prime}=\left(G_{n}^{\prime}\right)_{n \geq 1}, G_{n}^{\prime} \leq S_{n}$ isomorphic to $G_{n}: p_{\omega^{\prime}, x}(n)=\varepsilon\left(G_{n}^{\prime}\right)+1$.

First we prove Theorem 2 for a cycle.

abc-permutation

The numbers $1,2, \ldots, n$ are divided into three subintervals of length a, b and c which are rearranged in the order c, b, a :
$1,2, \ldots, n \mapsto c+b+1, c+b+2, \ldots, n, c+1, c+2, \ldots, c+b, 1,2, \ldots, c$

c b a

In other words: A discrete 3-interval exchange transformation
$(a, b, c) \rightarrow(c, b, a)$ on $\{1,2, \ldots, n\}$ (where $n=a+b+c$).

Theorem 2: construction of cycle

To construct the cycle as ($a b c$)-permutation, we make use of:

- bispecial factors of x of the next possible length.
- smallest periods of the bispecial factors to calculate a, b and c.
- prove that the $(a b c)$-permutation is an n-cycle using [Pak, Redlich, 2008].
- Lexicographic arrays for the proofs.

Theorem 2: example of cycle

Example

$m=6$ in Fibonacci word

- $w=010010$ bispecial
- $p=5$ and $q=3$ periods of w
- $a=1, b=2, c=3$ define the $a b c$-permutation

0	0	1	0	0	1
0	0	1	0	1	0
0	1	0	0	1	0
0	1	0	1	0	0
1	0	0	1	0	0
1	0	0	1	0	1
1	0	1	0	0	1

Theorem 2: example of cycle

Example

$m=6$ in Fibonacci word

- $w=010010$ bispecial
- $p=5$ and $q=3$ periods of w
- $a=1, b=2, c=3$ define the $a b c$-permutation

0	0	1	0	0	1
0	0	1	0	1	0
0	1	0	0	1	0
0	1	0	1	0	0
1	0	0	1	0	0
1	0	0	1	0	1
1	0	1	0	0	1

Theorem 2: example of cycle

Example

$m=6$ in Fibonacci word

- $w=010010$ bispecial
- $p=5$ and $q=3$ periods of w
- $a=1, b=2, c=3$ define the $a b c$-permutation

0	0	1	0	0	1
0	0	1	0	1	0
0	1	0	0	1	0
0	1	0	1	0	0
1	0	0	1	0	0
1	0	0	1	0	1
1	0	1	0	0	1

Theorem 2: Corollary on cycles

Corollary

Let $x \in\{0,1\}^{\mathbb{N}}$ be a Sturmian word. Then for each positive integer n there exists a cyclic group G_{n} generated by an n-cycle such that $\operatorname{Card}\left(\operatorname{Fact}_{x}(n) / \sim_{G_{n}}\right)=2$.

Remark [Cassaigne, Fici, Sciortino, Zamboni, 2017]

In contrast, if we set $G_{n}=\langle(1,2, \ldots, n)\rangle$, then
$\limsup _{n \rightarrow \infty} p_{\omega, x}=+\infty$, while liminf$n \rightarrow \infty p_{\omega, x}=2$.

Theorem 2: construction for abelian groups

Theorem (Fundamental Theorem of Finite Abelian Groups)

Every finite abelian group G can be written as a direct product of cyclic groups $\mathbb{Z} / m_{1} \mathbb{Z} \times \mathbb{Z} / m_{2} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}$ where the m_{i} are prime powers.

- The unordered sequence $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ determines G up to isomorphism.
- The trace of G is given by $T(G)=m_{1}+m_{2}+\cdots+m_{k}$.

Proposition (Hoffman, 1987)

If an Abelian group G is embedded in S_{n}, then $T(G) \leq n$.

Question: non-abelian groups

Does Theorem 2 hold for non-abelian groups?

Question

Let x be a Sturmian word, $\omega=\left(G_{n}\right)_{n \geq 1}, G_{n} \leq S_{n}$. Does there exist $\omega^{\prime}=\left(G_{n}^{\prime}\right)_{n \geq 1}, G_{n}^{\prime} \leq S_{n}$ isomorphic to $G_{n}: p_{\omega^{\prime}, x}(n)=\varepsilon\left(G_{n}^{\prime}\right)+1$?

Sturmian words and minimal complexity

- For most complexity functions Sturmian words possess minimal complexity;
- In some cases it give a characterization of Sturmian words, but not always.

For which complexities Sturmian words have minimal complexity? When are they the only ones?

Pattern complexity

x an infinite word
Maximal pattern complexity $p_{x}^{*}(n)$ is defined by

$$
p_{x}^{*}(n)=\sup _{\tau} \sharp\left\{x_{k+\tau(0)} x_{k+\tau(1)} \cdots x_{k+\tau(n-1)} \mid k=0,1,2, \ldots\right\},
$$

where the supremum is taken over all sequences of integers $\tau(0), \tau(1), \cdots \tau(n-1)$ of length n.

Pattern ($0,2,3,7$):

Minimal maximal pattern complexity

Theorem (Kamae, Zamboni, 2002)
An infinite word x is aperiodic if and only if $p_{x}^{*}(n) \geq 2 n$ for every $n=1,2, \ldots$.

Minimal maximal pattern complexity

Theorem (Kamae, Zamboni, 2002)

An infinite word x is aperiodic if and only if $p_{x}^{*}(n) \geq 2 n$ for every $n=1,2, \ldots$.

Words of complexity $2 n+1$:

- Sturmian
- certain rotational words
- certain Toeplitz words
- ...

No characterization.

Arithmetical complexity

x an infinite word
Arithmetical complexity $a r_{x}(n)$ is defined by

$$
\operatorname{ar}_{x}(n)=\sharp\left\{x_{k} x_{k+d} \cdots x_{k+d(n-1)} \mid k=0,1,2, \ldots, d=1,2, \ldots\right\} .
$$

I.e., arithmetical complexity counts the number of subwords in arithmetic progressions.

Minimal arithmetical complexity

- Minimal arithmetical complexity of aperiodic uniformly recurrent words is linear.
- Words of asymptotically minimal arithmetical complexity are Toeplitz words.
- Arithmetical complexity of Sturmian words is $\Theta\left(n^{3}\right)$.
[Avgustinovich, Cassaigne, Frid, 2006]

Minimal complexity

complexity type	minimal complexity	words family
factor	$\mathrm{n}+1$	Sturmian
abelian	2	Sturmian
cyclic	$\lim \inf =2$	Sturmian+
group	$\varepsilon\left(G_{n}\right)+1$	Sturmian
maximal pattern	$2 \mathrm{n}+1$	Sturmian+
arithmetical	linear	(asymptotically) Toeplitz

[^0]: v is a bispecial factor of u if $v 0, v 1,0 v, 1 v$ are factors of u.

