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Complexity and periodicity

(Ultimately) periodic word x :

x = uvvvvv · · ·

Aperiodic word = not ultimately periodic.

Connection between periodicity and complexity:

Theorem of Morse and Hedlund, 1940
Let x be an infinite word

x aperiodic ⇒ ∀n: px(n) ≥ n + 1
∀n: px(n) = n + 1 ⇔ x is Sturmian word
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Generalizations and modifications

Generalizations of the notion of words complexity:
abelian complexity
maximal pattern complexity
arithmetical complexity
conjugate complexity
etc.
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Abelian complexity

Two finite words are abelian equivalent if they contain the
same numbers of occurrences of each letter: 00111 ∼ab 01101

The abelian complexity aw (n) of an infinite word w is the
function that counts the number of classes of abelian
equivalence of its factors length n

Example (Thue-Morse word)

t = 0110100110010110 · · ·

The abelian complexity of the Thue-Morse word t is

at(n) =

{
2 if n is odd
3 if n is even

E.g., we have two abelian classes of factors of length 3:
{001, 010, 100}, {011, 101, 110}.
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Abelian complexity

Properties of abelian complexity

ax(n) ≤
(n+|Σ|−1
|Σ|−1

)
= O(n|Σ|−1).

Ultimate periodicity ⇒ bounded abelian complexity.
The converse is not true: e.g., Thue-Morse word is aperiodic
and has abelian complexity bounded by 3.

Relations between periodicity and abelian complexity:

Theorem (abelian Morse-Hedlund)

Let x be an infinite word.

x aperiodic ⇒ ∀n: ax(n) ≥ 2.
x aperiodic, ∀n ax(n) = 2 ⇔ x is Sturmian.
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Cyclic complexity

Two finite words u and v are conjugate if there exist words w1,
w2 such that u = w1w2 and v = w2w1 (e.g., ababba and
babbaa).
The cyclic complexity cx(n) of a word x is the function
counting the number of conjugacy classes of length n of x for
each n ≥ 0.

Example (Thue-Morse word)

t = 0110100110010110 · · ·

We have four conjugacy classes of length 4:
{0010, 0100},
{0110, 1001, 1100, 0011},
{0101, 1010},
{1011, 1101}.
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Minimal cyclic complexity and Sturmian words

Extension of Morse-Hedlund Theorem:

Theorem (Cassaigne, Fici, Sciortino, Zamboni, 2014)

Ultimate periodicity ⇔ bounded cyclic complexity.

cx(n) = 1 for some n ≥ 1 ⇒ periodicity
consider lim inf cx(n).

lim inf cx(n) and Sturmian words

For Sturmian words lim sup cx(n) =∞, but lim inf cx(n) = 2.
This is not a characterization of Sturmian words: for example,
for the period-doubling word lim inf cx(n) = 2.
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Generalization via group actions

G ≤ Sn subgroup of a symmetric group
G -action on {1, 2, . . . , n} is given by g : i 7→ g(i)

G acts on words of length n by permutation of symbols:
For g ∈ G , u ∈ Σn we define the action by

g ∗ u = ug−1(1)ug−1(2) · · · ug−1(n).

Example

g = (123)(45), g : 1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 5, 5 7→ 4

abcab
(123)(45)

y cabba

In particular we have g ∗ u ∼ab u for all g ∈ G .

G -equivalence of words of length n:

u, v words of length n, u ∼G v if ∃g ∈ G such that g(u) = v .
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Complexity by actions of groups

x infinite word
ω = (Gn)n≥1, Gn ≤ Sn a sequence of subgroups
The group complexity pω,x(n) of x is the function which counts the
number of classes of Gn-equivalence of factors of length n.

Example (Thue-Morse word)

t = 0110100110010110 · · ·

For G4 = 〈(13), (24)〉 we have pω,t(4) = 7.

We have six singleton classes of length 4:

[0010], [0100], [0101], [1010], [1011], [1101]

and one class of order 4:

[0110
(13)(24)
y 1001

(24)
y 1100

(13)
y 0011].
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Group actions: generalization of factor, abelian and cyclic
complexities

Particular cases:
factor complexity: ω = (Idn)n≥1, pω,x(n) = px(n)

abelian complexity: ω = (Sn)n≥1, pω,x(n) = ax(n)

cyclic complexity: ω =< (12 · · · n) >n≥1, pω,x(n) = cx(n)

Remark
Group and cyclic complexities are between abelian and classic
complexity:

ax(n) ≤ pω,x(n), cx(n) ≤ px(n).
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Complexity by group actions: ε(G )

G ≤ Sn

We consider the G -action on {1, 2, . . . , n} given by g : i 7→ g(i)
G (i) = {g(i) | g ∈ G} denotes the G -orbit of i .

Let ε(G ) denote the number of distinct G -orbits:

ε(G ) = ]{G (i) | i ∈ {1, 2, . . . , n}}

Example

For n = 6, G = 〈(13), (256)〉, we have ε(G ) = 3:

123456

If G = Id , then ε(G ) = n.

If G contains an n-cycle, then ε(G ) = 1.
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Complexity by group actions: ε(G )

G ≤ Sn

ε(G ) : the number of G -orbits of {1, . . . , n}.

Example

Klein group Z/2Z× Z/2Z :

G = {ε, (12), (34), (12)(34)}

G -orbits : {{12}, {34}} ⇒ ε(G ) = 2

G ′ = {ε, (12)(34), (13)(24), (14)(23)}

G ′-orbit : {1, 2, 3, 4} ⇒ ε(G ′) = 1

ε(G ) depends on the embedding of G into Sn!
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Generalisation of theorem of Morse and Hedlund

Theorem 1, Charlier, P., Zamboni, 2017
Let x be an infinite word, ω = (Gn)n≥1, Gn ≤ Sn.

x aperiodic ⇒ ∀n pω,x(n) ≥ ε(Gn) + 1
∀n pω,x(n) = ε(Gn) + 1 ⇒ x Sturmian.

Theorem 2, Charlier, P., Zamboni, 2017
Let x be a Sturmian word, ω = (Gn)n≥1, Gn ≤ Sn abelian, then
∃ω′ = (G ′n)n≥1, G ′n ≤ Sn isomorphic to Gn: pω′,x(n) = ε(G ′n) + 1.

Particular cases:
Theorem of Morse and Hedlund: ω = (Idn)n≥1,
pω,x(n) = px(n), ε(Gn) = n

abelian complexity: ω = (Sn)n≥1, pω,x(n) = ax(n), ε(Gn) = 1
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Theorem 2: We cannot always take G ′ = G

Theorem 2, Charlier, P., Zamboni, 2017
Let x be a Sturmian word, ω = (Gn)n≥1, Gn ≤ Sn abelian, then
∃ω′ = (G ′n)n≥1, G ′n ≤ Sn isomorphic to Gn: pω′,x(n) = ε(G ′n) + 1.

Example

G4 = 〈σ〉, σ = (1234), ε(G4) = 1, Fibonacci word:

F = 01001010010010100101001001010010 · · ·

{[0100 σy 0010], [0101
σy 1010], [1001]}

pω,F (4) = 3 > ε(G4) + 1 = 2

But we can take G ′4 = 〈σ′〉, σ′ = (1324), ε(G ′4) = 1.

{[0010 σ′y 0010], [0101
σ′y 1001

σ′y 1010]}

pω,F (4) = 2 = ε(G ′4) + 1 = 2

É. Charlier, S. Puzynina, L. Q. Zamboni Group theoretic Morse-Hedlund theorem



Theorem 2: we cannot replace “isomorphic" by “conjugate"

Theorem 2, Charlier, P., Zamboni, 2017
Let x be a Sturmian word, ω = (Gn)n≥1, Gn ≤ Sn abelian, then
∃ω′ = (G ′n)n≥1, G ′n ≤ Sn isomorphic to Gn: pω′,x(n) = ε(G ′n) + 1.

We cannot replace “isomorphic" by “conjugate":

Example

G = 〈(123)(456)〉 ≤ S6 cyclic of order 3.
Then ε(G ) = 2.
We can show that if x is the Fibonacci word, then

Card (Factx(6)/ ∼G ′) ≥ 4

for each subgroup G ′ of S6 conjugate to G .
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Corollary: Conjugate

But in case of relatively prime cycle lengths we can:

Corollary

Let σ ∈ Sn and G = 〈σ〉. Writing σ = σ1 · · ·σk as a product of
disjoint cycles, suppose |σ1|, . . . , |σk | are pairwise relatively prime.
Then for every Sturmian word x there exists G ′ ≤ Sn conjugate to
G such that Card (Factx(n)/ ∼G ′) = ε(G ) + 1.
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Techniques of proof: Theorem 1, part 2

Theorem 1.2
x aperiodic ∀n pω,x(n) = ε(Gn) + 1 ⇒ x Sturmian.

We show that x is binary and balanced (hence Sturmian).

x is balanced: For u, v ∈ F (x) with |u| = |v | the numbers of
occurrences of 0 in u and v differs by at most 1.

Since ε(G1) = 1, then pω,x(1) = 2, and hence x is binary.

We use:
Lemma

Let x ∈ {0, 1}N be aperiodic. Then either x is Sturmian or there
exist an integer n ≥ 2, a Sturmian word y and a bispecial factor
u ∈ {0, 1}n−2 of y such that Factx(n) = Facty (n) ∪ {0u0, 1u1}.

v is a bispecial factor of u if v0, v1, 0v , 1v are factors of u.
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Theorem 2: first construct a cycle

Theorem 2

x Sturmian, ω = (Gn)n≥1, Gn ≤ Sn abelian ⇒ ∃ω′ = (G ′n)n≥1, G ′n ≤ Sn
isomorphic to Gn: pω′,x(n) = ε(G ′n) + 1.

First we prove Theorem 2 for a cycle.

abc-permutation

The numbers 1, 2, . . . , n are divided into three subintervals of length a, b
and c which are rearranged in the order c , b, a:

1, 2, . . . , n 7→ c + b + 1, c + b + 2, . . . , n, c + 1, c + 2, . . . , c + b, 1, 2, . . . , c

In other words: A discrete 3-interval exchange transformation
(a, b, c)→ (c , b, a) on {1, 2, . . . , n} (where n = a + b + c).

É. Charlier, S. Puzynina, L. Q. Zamboni Group theoretic Morse-Hedlund theorem



Theorem 2: construction of cycle

To construct the cycle as (abc)-permutation, we make use of:

bispecial factors of x of the next possible length.
smallest periods of the bispecial factors to calculate a, b and c .
prove that the (abc)-permutation is an n-cycle using [Pak,
Redlich, 2008].
Lexicographic arrays for the proofs.
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Theorem 2: example of cycle

Example
m = 6 in Fibonacci word

w = 010010 bispecial
p = 5 and q = 3 periods of w
a = 1, b = 2, c = 3 define the abc-permutation

0 0 1 0 0 1
0 0 1 0 1 0
0 1 0 0 1 0
0 1 0 1 0 0
1 0 0 1 0 0
1 0 0 1 0 1
1 0 1 0 0 1
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Theorem 2: Corollary on cycles

Corollary

Let x ∈ {0, 1}N be a Sturmian word. Then for each positive integer
n there exists a cyclic group Gn generated by an n-cycle such that
Card(Factx(n)/ ∼Gn) = 2.

Remark [Cassaigne, Fici, Sciortino, Zamboni, 2017]

In contrast, if we set Gn = 〈(1, 2, . . . , n)〉, then
lim supn→∞ pω,x = +∞, while lim infn→∞ pω,x = 2.
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Theorem 2: construction for abelian groups

Theorem (Fundamental Theorem of Finite Abelian Groups)

Every finite abelian group G can be written as a direct product of
cyclic groups Z/m1Z× Z/m2Z× · · · × Z/mkZ where the mi are
prime powers.

The unordered sequence (m1,m2, . . . ,mk) determines G up to
isomorphism.
The trace of G is given by T (G ) = m1 + m2 + · · ·+ mk .

Proposition (Hoffman, 1987)

If an Abelian group G is embedded in Sn, then T (G ) ≤ n.
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Question: non-abelian groups

Does Theorem 2 hold for non-abelian groups?

Question
Let x be a Sturmian word, ω = (Gn)n≥1, Gn ≤ Sn. Does there exist
ω′ = (G ′n)n≥1, G ′n ≤ Sn isomorphic to Gn: pω′,x(n) = ε(G ′n) + 1?
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Sturmian words and minimal complexity

For most complexity functions Sturmian words possess
minimal complexity;
In some cases it give a characterization of Sturmian words, but
not always.

For which complexities Sturmian words have minimal complexity?
When are they the only ones?
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Pattern complexity

x an infinite word

Maximal pattern complexity p∗x(n) is defined by

p∗x(n) = sup
τ
]{xk+τ(0)xk+τ(1) · · · xk+τ(n−1)|k = 0, 1, 2, . . .},

where the supremum is taken over all sequences of integers
τ(0), τ(1), · · · τ(n − 1) of length n.

Pattern (0,2,3,7):
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Minimal maximal pattern complexity

Theorem (Kamae, Zamboni, 2002)

An infinite word x is aperiodic if and only if p∗x(n) ≥ 2n for every
n = 1, 2, . . ..

Words of complexity 2n + 1:

Sturmian
certain rotational words
certain Toeplitz words
...

No characterization.
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Arithmetical complexity

x an infinite word

Arithmetical complexity arx(n) is defined by

arx(n) = ]{xkxk+d · · · xk+d(n−1)|k = 0, 1, 2, . . . , d = 1, 2, . . .}.

I.e., arithmetical complexity counts the number of subwords in
arithmetic progressions.
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Minimal arithmetical complexity

Minimal arithmetical complexity of aperiodic uniformly
recurrent words is linear.
Words of asymptotically minimal arithmetical complexity are
Toeplitz words.
Arithmetical complexity of Sturmian words is Θ(n3).

[Avgustinovich, Cassaigne, Frid, 2006]
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Minimal complexity

complexity type minimal complexity words family
factor n+1 Sturmian
abelian 2 Sturmian
cyclic lim inf = 2 Sturmian+
group ε(Gn) + 1 Sturmian
maximal pattern 2n+1 Sturmian+
arithmetical linear (asymptotically) Toeplitz
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