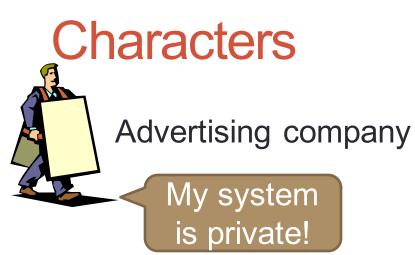
Privacy of profile-based ad targeting

Alexander Smal and Ilya Mironov

User-profile targeting

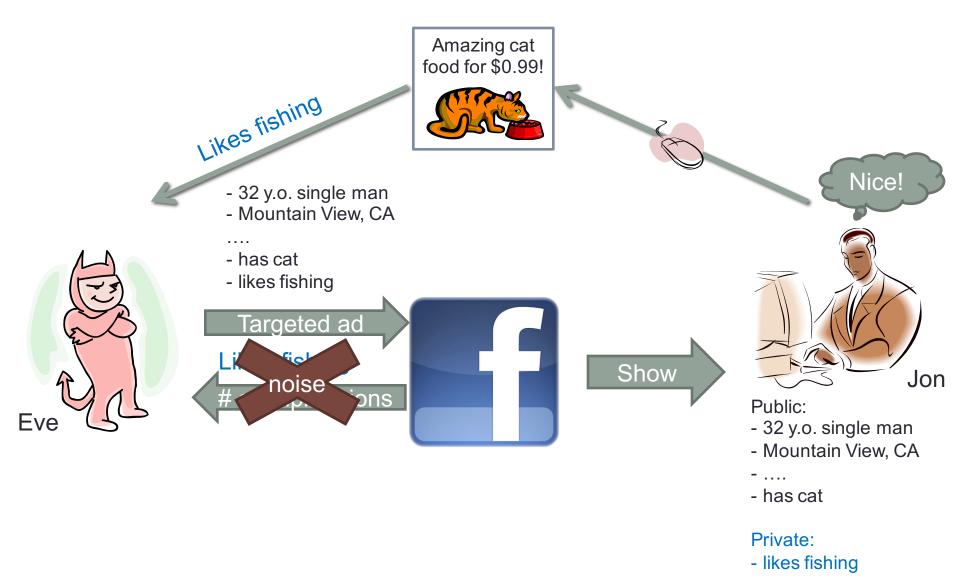
- Goal: increase impact of your ads by targeting a group potentially interested in your product.
- Examples:
 - Social Network

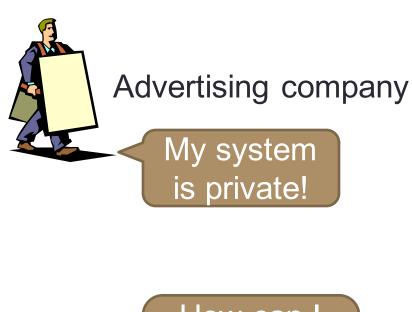

Profile = user's personal information + friends

Search Engine

Profile = search queries + webpages visited by user

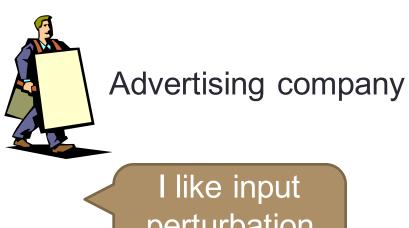
Facebook ad targeting


Location	Interests
Country: [?] United States × © Everywhere © By State/Province [?] © By Zip Code [?]	Dusinessy recimology Home & Garden Family Status News Interests Pets (All) Mobile Pets (Cats)
Mountain View, CA × Include cities within 50 miles.	Movie/Film Pets (Dogs) Music Politics (US Active) Retail/Shopping Politics (US Liberal)
Age: [?] 25 - 45 Require exact age match [?] Sex: [?] O All O Men O Women	Sports Pop Culture Business/Technology Android
Interested In: [?] All Men Women Relationship: [?] All Single Engaged In a relationship Married Languages: [?] Foolish (All) German	Family Status Interests Interests Interests Mobile Image: Status Movie/Film Image: Status Music Image: Status
Languages: [?] English (All) × German × Education & Work	Retail/Shopping
Education: [?] O All O College Grad Caltech × Microbiology × O In College In High School	Activities 2 Baby Boomers Engaged (<6 months) Newlywed (<1 year) Parents (All) Parents (All) Parents (child: 0-3yrs) Parents (child: 4-12yrs) Parents (child: 13-15yrs) Parents (child: 16-19yrs)
Workplaces: [?] Microsoft ×	



Privacy researcher

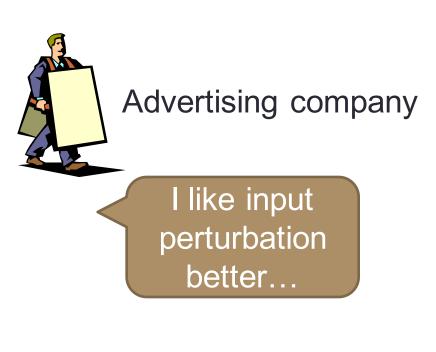
Simple attack [Korolova'10]


How can I target privately? Privacy researcher

Unless your targeting is not private, it is not!

How to protect information?

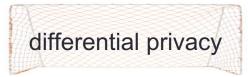
- Basic idea: add some noise
 - Explicitly
 - Implicit in the data
 - noiseless privacy [BBGLT11]
 - natural privacy [BD11]
- Two types of explicit noise
 - Output perturbation
 - Dynamically add noise to answers
 - Input perturbation
 - Modify the database

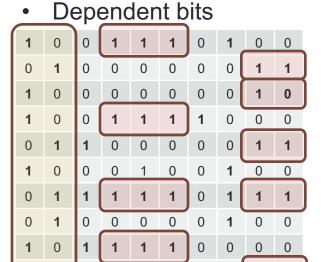

perturbation better...

Privacy researcher

Input perturbation

- Pro:
 - Pan-private (not storing initial data)
 - Do it once
 - Simpler architecture

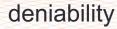

Privacy researcher



Signal is sparse and non-random

Adding noise

- Two main difficulties in adding noise:
 - Sparse profiles



"Smart noise"

0 1

0 0 0

Privacy researcher

Signal is sparse and non-random

Let's shoot for deniability, and add "smart noise"!

Aha!

"Smart noise"


- Consider two extreme cases
 - All bits are independent independent noise
 - All bits are correlated with correlation coefficient 1
 correlated noise
- "Smart noise" hypothesis:

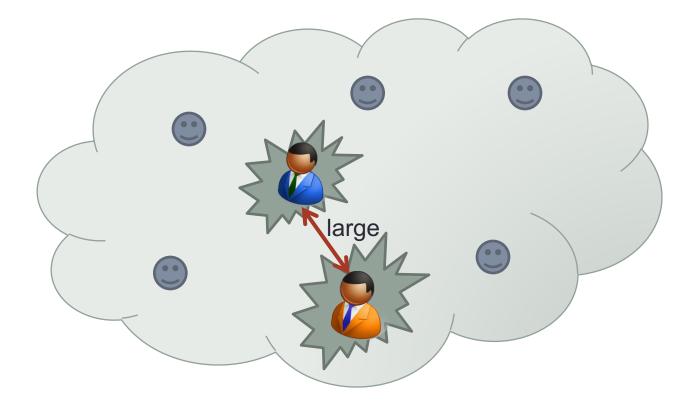
"If we know the exact model we can add right noise"

Dependent bits in real data

- Netflix prize competition data
 - ~480k users, ~18k movies, ~100m ratings
- Estimate movie-to-movie correlation
 - Fact that a user rated a movie
- Visualize graph of correlations
 - Edge correlation with correlation coefficient > 0.5

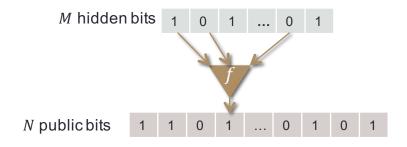
Netflix movie correlations

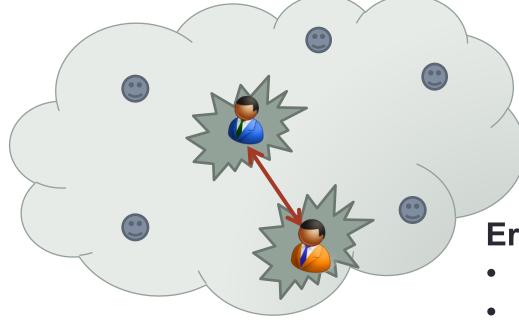
Advertising company


Let's shoot for deniability, and add "smart noise"!

Privacy researcher

Let's construct models where "smart noise" fails


How can "smart noise" fail?


large = relative distance $\Omega(1)$

Models of user profiles

- M hidden independent bits
- N public bits

- Public bits are some functions of hidden bits
- Are users well separated?

Error-correcting codes

- Constant relative distance
- Unique decoding
- Explicit, efficient

Advertising company

But this model is unrealistic!

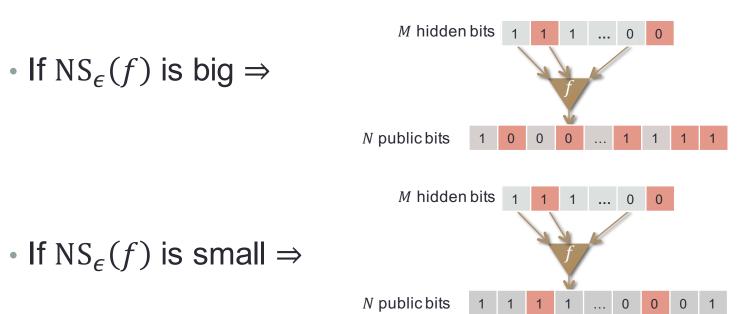
Privacy researcher

See — unless the noise is >25%, no privacy

Let me see what I can do with monotone functions...

Monotone functions

- Monotone function: for all i and for all values of x_j , $j \neq i$ $f(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n) \ge f(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$
- Monotonicity is a natural property
 [wants Kindle] ↔ [likes reading] + [likes gadgets]×[uses Amazon]
- Monotone functions are bad for constructing errorcorrecting codes


Approximate error-correcting codes

- α -approximate error-correcting code with distance δ : function $f: \{0,1\}^n \to \{0,1\}^m$ $\forall x, x'$, such that $||x - x'||_1 \ge \alpha n$: $||f(x) - f(x')||_1 \ge \delta m$.
- If less than δ fraction of f(x) is corrupted then we can reconstruct x within α fraction of bits.
- We need o(1)-approximate error-correcting code with constant distance.

privacy

Noise sensitivity

• Noise sensitivity of function f: $NS_{\epsilon}(f) = \mathbf{Pr}_{x}[f(x) \neq f(y)],$ where x is chosen uniformly at random, y is formed by flipping each bit of x with probability ϵ .

Monotone functions

- There exist highly sensitive monotone functions [MO'03].
- **Theorem:** there exists monotone o(1)-approximate errorcorrecting code with constant distance on average.
- Idea of proof: Let $f_1, f_2, ..., f_m$ be random independent monotone boolean functions, such that $NS_{\epsilon}(f_i) \ge c$ and f_i depends only on o(n) bits of x.

• Let
$$F(x) = \langle f_1(x), \dots, f_m(x) \rangle$$
.

- With high probability for random *x* there is no *x'* such that $||x x'||_1 \ge \epsilon n$ and $||F(x) F(x')||_1 \le \frac{cn}{2}$.
- For Talagrand $o(1/\sqrt{n})$ -approximate error-correcting code with constant distance on average.

Advertising company

Hmmm. Does smart noise ever work?

Privacy researcher

If the model is monotone, blatant non-privacy is still possible

Linear threshold model

• Function $f: \{-1,1\}^n \to \{0,1\}$ is a *linear threshold function*, if there exist real numbers α_i 's such that $f(x) = \operatorname{sgn}(\alpha_0 + \alpha_1 x_1 + \dots + \alpha_n x_n).$

• **Theorem** [Peres'04]: Let f be a linear threshold function, then $NS_{\delta}(f) \le 2\sqrt{\delta}$.

No o(1)-approximate error-correcting code with O(1) distance

Conclusion

- Two separate issues with input perturbation:
 - Sparseness
 - Dependencies
- "Smart noise" fallacy :

Even for a publicly known, relatively simple model, constant corruption of profiles may lead to blatant non-privacy.

- Connection between noise sensitivity of boolean functions and privacy
- Open questions:
 - Linear threshold privacy-preserving mechanism?
 - Existence of interactive privacy-preserving solutions?

Thank for your attention!

Special thanks for Cynthia Dwork, Moises Goldszmidt, Parikshit Gopalan, Frank McSherry, Moni Naor, Kunal Talwar, and Sergey Yekhanin.

- Events $[f_i(x) \neq f_i(y)]$ and $[f_j(x) \neq f_j(y)]$ are independent for random $x, y = N_{\epsilon}(x)$, *i* and *j*.
- Chernoff bounds: $\Pr_{x,y=N_{\epsilon}(x)} \left[\sum_{i=1}^{m} |f_i(x) f_i(y)| < \frac{mc}{2} \right] < e^{-\frac{mc}{8}}.$