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User-profile targeting
• Goal: increase impact of your ads by targeting a group 

potentially interested in your product.
• Examples:

• Social Network
Profile = user’s personal information + friends

• Search Engine
Profile = search queries + webpages visited by user
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Facebook ad targeting
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Characters
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My system 
is private!

Advertising company Privacy researcher



Simple attack [Korolova’10]

Targeted ad

Public:
- 32 y.o. single man
- Mountain View, CA
- ….
- has cat

Private:
- likes fishing

Show

- 32 y.o. single man
- Mountain View, CA
….
- has cat
- likes fishing

Amazing cat 
food for $0.99!

Nice!

# of impressions
Likes fishing

noise
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Jon

Eve
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My system 
is private! Unless your 

targeting is not 
private, it is not!

How can I 
target 

privately?

Advertising company Privacy researcher



How to protect information?
• Basic idea: add some noise

• Explicitly
• Implicit in the data 

• noiseless privacy [BBGLT11] 
• natural privacy [BD11]

• Two types of explicit noise
• Output perturbation

• Dynamically add noise to answers
• Input perturbation

• Modify the database
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I like input 
perturbation 

better…

Advertising company Privacy researcher



Input perturbation
• Pro:

• Pan-private (not storing initial data)
• Do it once
• Simpler architecture
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I like input 
perturbation 

better… Signal is 
sparse and 
non-random

Advertising company Privacy researcher



Adding noise
• Two main difficulties in adding noise:
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• Sparse profiles
1 0 0 1 1 1 0 1 0 0

0 1 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 1 0

1 0 0 1 1 1 1 0 0 0

0 1 1 0 0 0 0 0 1 1

1 0 0 0 1 0 0 1 0 0
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0 1 0 0 0 0 0 1 0 0
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0 1 0 0 0 0 0 1 0 1

• Dependent bits

1 1 1 1 1 0 0 1 0 1

differential privacy

deniability

“Smart noise”
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I like input 
perturbation 

better… Signal is 
sparse and 
non-random

Let’s shoot for 
deniability, and add 

“smart noise”!

Advertising company Privacy researcher



“Smart noise”
• Consider two extreme cases

• All bits are independent
independent noise

• All bits are correlated with correlation coefficient 1
correlated noise

• “Smart noise” hypothesis: 
“If we know the exact model we can add right noise”
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Aha!



Dependent bits in real data
• Netflix prize competition data

• ~480k users, ~18k movies, ~100m ratings
• Estimate movie-to-movie correlation

• Fact that a user rated a movie
• Visualize graph of correlations

• Edge – correlation with correlation coefficient > 0.5
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Netflix movie correlations
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Let’s construct 
models where 

“smart noise” fails

Let’s shoot for 
deniability, and add 

“smart noise”!

Advertising company Privacy researcher



How can “smart noise” fail?
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large = relative distance Ω(1)

large



Models of user profiles
• 𝑀 hidden independent bits
• 𝑁 public bits

• Public bits are some functions of hidden bits
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1 0 1 … 0 1

1 1 0 1 … 0 1 0 1

		𝑓

• Are users well separated?

𝑀 hidden bits

𝑁 public bits
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Error-correcting codes
• Constant relative distance
• Unique decoding
• Explicit, efficient
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But this model is 
unrealistic! 

See — unless the 
noise is >25%, no 

privacy 

Let me see what I can 
do with monotone 

functions…

Advertising company Privacy researcher



Monotone functions
• Monotone function: for all 𝑖 and for all values of 𝑥+, 𝑗 ≠ 𝑖
𝑓(𝑥., … , 𝑥12., 1, 𝑥13., … , 𝑥4) ≥	𝑓(𝑥., … ,𝑥12.,0, 𝑥13., … ,𝑥4)

• Monotonicity is a natural property
𝑤𝑎𝑛𝑡𝑠	𝐾𝑖𝑛𝑑𝑙𝑒 	↔ 	 𝑙𝑖𝑘𝑒𝑠	𝑟𝑒𝑎𝑑𝑖𝑛𝑔 + 𝑙𝑖𝑘𝑒𝑠	𝑔𝑎𝑑𝑔𝑒𝑡𝑠 × 𝑢𝑠𝑒𝑠	𝐴𝑚𝑎𝑧𝑜𝑛

• Monotone functions are bad for constructing error-
correcting codes
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Approximate error-correcting codes
• 𝛼-approximate error-correcting code with distance 𝛿: 

function 𝑓: 0,1 4 → 0,1 O	
∀𝑥, 𝑥Q,	 such that 𝑥 − 𝑥Q . ≥ 𝛼𝑛:

𝑓 𝑥 − 𝑓 𝑥Q . ≥ 𝛿𝑚.

• If less than 𝛿	fraction of 𝑓(𝑥)	is corrupted then we can 
reconstruct 𝑥 within 𝛼 fraction of bits.

• We need 𝑜(1)-approximate error-correcting code with 
constant distance.

22Privacy of profile-based targeting

blatant non-
privacy



Noise sensitivity
• Noise sensitivity of function 𝑓:

NSV 𝑓 = 𝐏𝐫Z 𝑓 𝑥 ≠ 𝑓 𝑦 ,
where 𝑥 is chosen uniformly at random, 𝑦 is formed by 
flipping each bit of 𝑥 with probability 𝜖. 

• If NSV 𝑓 is big ⇒

• If NSV 𝑓 is small ⇒
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1 0 1 … 0 1

1 1 0 1 … 0 1 0 1

		𝑓

𝑀 hidden bits

𝑁 public bits

1 1 1 … 0 0

1 0 0 0 … 1 1 1 1

1 0 1 … 0 1

1 1 0 1 … 0 1 0 1

		𝑓

𝑀 hidden bits

𝑁 public bits

1 1 1 … 0 0

1 1 1 1 … 0 0 0 1



Monotone functions
• There exist highly sensitive monotone functions [MO’03].
• Theorem: there exists monotone 𝑜 1 -approximate error-

correcting code with constant distance on average. 
• Idea of proof: Let 𝑓., 𝑓 , … ,𝑓O be random independent 

monotone boolean functions, such that NSV 𝑓1 ≥ 𝑐 and 𝑓1
depends only on 𝑜 𝑛 bits of 𝑥. 

• Let 𝐹 𝑥 =	 𝑓. 𝑥 ,… , 𝑓O 𝑥 .
• With high probability for random 𝑥 there is no 𝑥Q such that 
𝑥 − 𝑥Q . ≥ 𝜖𝑛	and	 𝐹 𝑥 − 𝐹 𝑥Q . ≤

b4
^ .

• For Talagrand 𝑜 1/ 𝑛 -approximate error-correcting code 
with constant distance on average.
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Hmmm. Does smart 
noise ever work?

If the model is 
monotone, blatant 
non-privacy is still 

possible

Advertising company Privacy researcher



Linear threshold model
• Function 𝑓: −1,1 4 → 0,1 is a linear threshold function, if  

there exist real numbers 𝛼1 ’s such that
𝑓 𝑥 = sgn 𝛼g + 𝛼.𝑥. + ⋯+ 𝛼4𝑥4 .

• Theorem [Peres’04]: Let 𝑓 be a linear threshold function, 
then NSi 𝑓 ≤ 2 𝛿.

⇓
No o(1)-approximate error-correcting 

code with O(1) distance
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Conclusion
• Two separate issues with input perturbation:

• Sparseness
• Dependencies

• “Smart noise” hypothesis:
Even for a publicly known, relatively simple model, constant 
corruption of profiles may lead to blatant non-privacy.

• Connection between noise sensitivity of boolean functions 
and privacy

• Open questions:
• Linear threshold privacy-preserving mechanism?
• Existence of interactive privacy-preserving solutions?
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Arbitrary
Monotone
Linear thresholdfallacy



Thank for your attention!

Special thanks for Cynthia Dwork, Moises Goldszmidt, 
Parikshit Gopalan, Frank McSherry, Moni Naor, Kunal
Talwar, and Sergey Yekhanin.
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• Events [𝑓1 𝑥 ≠ 𝑓1 𝑦 ] and [𝑓+ 𝑥 ≠ 𝑓+ 𝑦 ] are independent 
for random 𝑥, 𝑦 = NV 𝑥 , 𝑖 and 𝑗.

• Chernoff bounds: 𝐏𝐫Z,mnop Z ∑ 𝑓1 𝑥 − 𝑓1 𝑦O
1n. < Ob

^ <

𝑒2
st
u .
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