с/к "Эффективные алгоритмы"

Лекция 19: Потоки в сетях с несколькими веществами

А. Куликов

Computer Science клуб при ПОМИ http://logic.pdmi.ras.ru/~infclub/

🚺 Постановка задачи

- 🚺 Постановка задачи
- Алгоритм

- 🚺 Постановка задачи
- Алгоритм
- - Оценки Чернова
 - Оценка оптимальности

- Постановка задачи
- 2 Алгоритм
- - Оценки Чернова
 - Оценка оптимальности

Определение

• Дан ориентированный граф G = (V, E) без весов на рёбрах и k пар истоков-стоков $(s_1, t_1), \ldots, (s_k, t_k) \in V^2$.

Определение

- Дан ориентированный граф G = (V, E) без весов на рёбрах и k пар истоков-стоков $(s_1, t_1), \ldots, (s_k, t_k) \in V^2$.
- Задача о потоке в сети с несколькими веществами (multicommodity flow problem) заключается в нахождении такого множества путей P_i из s_i в t_i для всех $i=1,\ldots,k$, при котором максимальная ширина (congestion) рёбер была бы минимальна, где под шириной понимается количество путей, проходящих через это ребро:

$$c(e) = |\{P_i \mid e \in P_i\}|.$$

Определение

- Дан ориентированный граф G = (V, E) без весов на рёбрах и k пар истоков-стоков $(s_1, t_1), \ldots, (s_k, t_k) \in V^2$.
- Задача о потоке в сети с несколькими веществами (multicommodity flow problem) заключается в нахождении такого множества путей P_i из s_i в t_i для всех $i=1,\ldots,k$, при котором максимальная ширина (congestion) рёбер была бы минимальна, где под шириной понимается количество путей, проходящих через это ребро:

$$c(e) = |\{P_i \mid e \in P_i\}|.$$

Факт

Задача является NP-трудной.

- Постановка задачи
- 2 Алгоритм
- Анализ алгоритма
 - Оценки Чернова
 - Оценка оптимальности

Формулировка в виде задачи линейного программирования Минимизировать W_{LP} при следующих ограничениях:

Формулировка в виде задачи линейного программирования Минимизировать W_{LP} при следующих ограничениях:

① Переменные $x_i(u, v)$ определяют поток: $\forall v \in V, \forall i = 1, \dots, k,$

$$\sum_{w: \ (v,w) \in E} x_i(v,w) - \sum_{u: \ (u,v) \in E} x_i(u,v) = \begin{cases} 1, & v = s_i, \\ -1, & v = t_i, \\ 0, & \text{в противном случае.} \end{cases}$$

Формулировка в виде задачи линейного программирования Минимизировать W_{LP} при следующих ограничениях:

① Переменные $x_i(u, v)$ определяют поток: $\forall v \in V, \forall i = 1, \dots, k$,

$$\sum_{w: \ (v,w) \in \mathcal{E}} x_i(v,w) - \sum_{u: \ (u,v) \in \mathcal{E}} x_i(u,v) = \begin{cases} 1, & v = s_i, \\ -1, & v = t_i, \\ 0, & \text{в противном случае.} \end{cases}$$

② Ширина каждого ребра ограничена числом W_{LP} : $\forall (u,v) \in E, \sum_{1 \le i \le k} x_i(u,v) \le W_{LP}$.

Формулировка в виде задачи линейного программирования

Минимизировать W_{LP} при следующих ограничениях:

① Переменные $x_i(u,v)$ определяют поток: $\forall v \in V, \forall i=1,\ldots,k,$

$$\sum_{w: \ (v,w) \in \mathcal{E}} x_i(v,w) - \sum_{u: \ (u,v) \in \mathcal{E}} x_i(u,v) = \begin{cases} 1, & v = s_i, \\ -1, & v = t_i, \\ 0, & \text{в противном случае.} \end{cases}$$

- ullet Поток является 0-1 потоком: $\forall (u,v) \in E, \forall i=1,\ldots,k, x_i(u,v) \in \{0,1\}.$

Релаксация

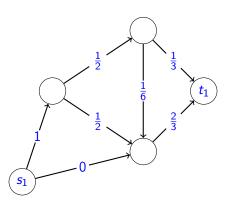
Релаксация

Заменим теперь условие $x_i(u,v) \in \{0,1\}$ на $x_i(u,v) \geq 0$ и решим полученную задачу. Полученный поток может не быть целочисленным.

Релаксация

Релаксация

Заменим теперь условие $x_i(u,v) \in \{0,1\}$ на $x_i(u,v) \geq 0$ и решим полученную задачу. Полученный поток может не быть целочисленным.



Переход к целочисленному потоку

Переход к целочисленному потоку

ullet Будем обрабатывать каждый из k потоков отдельно.

Переход к целочисленному потоку

- ullet Будем обрабатывать каждый из k потоков отдельно.
- Рассмотрим граф G_i , содержащий только рёбра, по которым идёт i-й поток.

Переход к целочисленному потоку

- ullet Будем обрабатывать каждый из k потоков отдельно.
- Рассмотрим граф G_i , содержащий только рёбра, по которым идёт i-й поток.
- ullet Рассмотрим теперь путь P_{i1} в графе G_i из s_i в t_i и пусть

$$\alpha_{i1} = \min_{(v,w)\in P_1} x_i(v,w).$$

Переход к целочисленному потоку

- ullet Будем обрабатывать каждый из k потоков отдельно.
- Рассмотрим граф G_i , содержащий только рёбра, по которым идёт i-й поток.
- ullet Рассмотрим теперь путь P_{i1} в графе G_i из s_i в t_i и пусть

$$\alpha_{i1} = \min_{(v,w)\in P_1} x_i(v,w).$$

ullet Вычтем $lpha_{i1}$ из всех рёбер данного пути:

$$x'(v,w) = egin{cases} x(v,w) - lpha_{i1}, & (v,w) \in P_{i1}, \ x(v,w), & ext{в противном случае,} \end{cases}$$

найдем новый путь и т.д.

Переход к целочисленному потоку

- ullet Будем обрабатывать каждый из k потоков отдельно.
- Рассмотрим граф G_i , содержащий только рёбра, по которым идёт i-й поток.
- ullet Рассмотрим теперь путь P_{i1} в графе G_i из s_i в t_i и пусть

$$\alpha_{i1} = \min_{(v,w)\in P_1} x_i(v,w).$$

ullet Вычтем $lpha_{i1}$ из всех рёбер данного пути:

$$x'(v,w) = egin{cases} x(v,w) - lpha_{i1}, & (v,w) \in P_{i1}, \ x(v,w), & ext{в противном случае,} \end{cases}$$

найдем новый путь и т.д.

• На каждом шаге хотя бы одно ребро удаляется из G_i .

Переход к целочисленному потоку

Переход к целочисленному потоку

• В итоге, поток i-го вещества разбивается на j_i путей P_{i1},\ldots,P_{ij_i} из s_i в t_i , где вдоль пути P_{ij} идёт α_{ij} вещества, так что

$$\forall (u, v) \in E, \forall i = 1, \ldots, k, \sum_{j:(u,v) \in P_{ij}} \alpha_{ij} = x_i(u, v),$$

$$\forall i=1,\ldots,k, \sum_{j=1}^{j_i} \alpha_{ij}=1.$$

Переход к целочисленному потоку

• В итоге, поток i-го вещества разбивается на j_i путей P_{i1}, \ldots, P_{ij_i} из s_i в t_i , где вдоль пути P_{ij} идёт α_{ij} вещества, так что

$$\forall (u, v) \in E, \forall i = 1, \ldots, k, \sum_{j:(u,v) \in P_{ij}} \alpha_{ij} = x_i(u, v),$$

$$\forall i=1,\ldots,k, \sum_{j=1}^{j_i} \alpha_{ij}=1.$$

• В качестве пути P_i из s_i в t_i алгоритм выбирает путь P_{ij} с вероятностью α_{ij} .

Общая схема алгоритма

• Решить релаксированную задачу линейного программирования, получив минимальную ширину W_{LP} .

Общая схема алгоритма

- Решить релаксированную задачу линейного программирования, получив минимальную ширину W_{LP} .
- Разбить полученные потоки на пути P_{ij} для $i=1,\ldots,k$, $j=1,\ldots,j_i$ (где P_{ij} путь из s_i в t_i), поток по каждому из которых равен $\alpha_{ij}>0$, так что $\sum_j \alpha_{ij}=1$ и

$$\sum_{i} \sum_{j: (v,w) \in P_{i,j}} \leq W_{LP}.$$

Общая схема алгоритма

- Решить релаксированную задачу линейного программирования, получив минимальную ширину W_{LP} .
- Разбить полученные потоки на пути P_{ij} для $i=1,\ldots,k$, $j=1,\ldots,j_i$ (где P_{ij} путь из s_i в t_i), поток по каждому из которых равен $\alpha_{ij}>0$, так что $\sum_i \alpha_{ij}=1$ и

$$\sum_{i} \sum_{j: (v,w) \in P_{i,j}} \leq W_{LP}.$$

• Для каждого i подбросить монетку с j_i гранями, где j-ая грань выпадает с вероятностью α_{ij} , и при выпадении грани f выбрать в качестве пути из s_i в t_i путь P_{if} .

- Постановка задачи
- 2 Алгоритм
- - Оценки Чернова
 - Оценка оптимальности

- Постановка задачи
- 2 Алгоритм
- - Оценки Чернова
 - Оценка оптимальности

Оценки Чернова

Теорема

Пусть X_i суть независимые случайные переменные, принимаюащие значение 1 с вероятностью p_i и значение 0 с вероятностью $(1-p_i)$. Тогда для всех $\alpha>0$ и t>0

$$\operatorname{Prob}\left(\sum_{i=1}^k X_i > t\right) \leq e^{-\alpha t} \prod_{i=1}^k \mathsf{E}\left(e^{\alpha X_i}\right) = e^{-\alpha t} \prod_{i=1}^k \left(p_i e^{\alpha} + (1-p_i)\right).$$

Оценки Чернова

Теорема

Пусть X_i суть независимые случайные переменные, принимаюащие значение 1 с вероятностью p_i и значение 0 с вероятностью $(1-p_i)$. Тогда для всех $\alpha>0$ и t>0

$$\operatorname{Prob}\left(\sum_{i=1}^{k}X_{i}>t\right)\leq e^{-\alpha t}\prod_{i=1}^{k}\operatorname{E}\left(e^{\alpha X_{i}}\right)=e^{-\alpha t}\prod_{i=1}^{k}\left(p_{i}e^{\alpha}+\left(1-p_{i}\right)\right).$$

Доказательство

$$\operatorname{\mathsf{Prob}}\left(\sum_{i=1}^k X_i > t\right) = \operatorname{\mathsf{Prob}}\left(\mathrm{e}^{\alpha \sum_{i=1}^k X_i} > \mathrm{e}^{\alpha t}\right).$$

Доказательство (завершение)

Доказательство

Неравенство Маркова: для любой неотрицательной случайной величины Y

$$\operatorname{\mathsf{Prob}}(Y > a) \leq \frac{\operatorname{\mathsf{E}}(Y)}{a}.$$

Доказательство (завершение)

Доказательство

Неравенство Маркова: для любой неотрицательной случайной величины Y

$$\operatorname{\mathsf{Prob}}(Y > a) \leq \frac{\operatorname{\mathsf{E}}(Y)}{a}.$$

Таким образом,

$$\operatorname{\mathsf{Prob}}\left(\sum_{i=1}^k X_i > t\right) \leq e^{-\alpha t} \mathsf{E}\left(e^{\alpha \sum_{i=1}^k X_i}\right) = e^{-\alpha t} \prod_{i=1}^k \mathsf{E}\left(e^{\alpha X_i}\right).$$

Следствие

Следствие

Пусть
$$M = \mathbf{E}\left(\sum_{i=1}^k X_i\right) = \sum_{i=1}^k p_i$$
. Тогда для любого $\beta > 0$

$$\mathsf{Prob}\left(\sum_{i=1}^k X_i > (1+\beta)M\right) \leq (1+\beta)^{-(1+\beta)M} \prod_{i=1}^k \mathsf{E}\left((1+\beta)^{X_i}\right) \\ \leq \left(\frac{\mathsf{e}^\beta}{(1+\beta)^{(1+\beta)}}\right)^M.$$

Следствие

Следствие

Пусть
$$M = \mathsf{E}\left(\sum_{i=1}^k X_i\right) = \sum_{i=1}^k p_i$$
. Тогда для любого $\beta > 0$

$$\mathsf{Prob}\left(\sum_{i=1}^k X_i > (1+\beta)M\right) \leq (1+\beta)^{-(1+\beta)M} \prod_{i=1}^k \mathsf{E}\left((1+\beta)^{X_i}\right)$$
$$\leq \left(\frac{e^\beta}{(1+\beta)^{(1+\beta)}}\right)^M.$$

Следствие

Следствие

Пусть
$$M = \mathbf{E}\left(\sum_{i=1}^k X_i\right) = \sum_{i=1}^k p_i$$
. Тогда для любого $eta > 0$

$$\mathsf{Prob}\left(\sum_{i=1}^k X_i > (1+\beta)M\right) \leq (1+\beta)^{-(1+\beta)M} \prod_{i=1}^k \mathsf{E}\left((1+\beta)^{X_i}\right)$$
$$\leq \left(\frac{e^\beta}{(1+\beta)^{(1+\beta)}}\right)^M.$$

Доказательство

• Первое неравенство следует из только что доказанной теоремы при $t = (1 + \beta)M$, $\alpha = \ln(1 + \beta)$.

Следствие

Следствие

Пусть
$$M = \mathbf{E}\left(\sum_{i=1}^k X_i\right) = \sum_{i=1}^k p_i$$
. Тогда для любого $eta > 0$

$$\mathsf{Prob}\left(\sum_{i=1}^k X_i > (1+\beta)M\right) \leq (1+\beta)^{-(1+\beta)M} \prod_{i=1}^k \mathsf{E}\left((1+\beta)^{X_i}\right)$$
$$\leq \left(\frac{\mathsf{e}^\beta}{(1+\beta)^{(1+\beta)}}\right)^M.$$

- Первое неравенство следует из только что доказанной теоремы при $t = (1 + \beta)M$, $\alpha = \ln(1 + \beta)$.
- Второе из следующего неравенства: $\mathsf{E}\left((1+\beta)^{X_i}\right) = p_i(1+\beta) + (1-p_i) = 1 + \beta p_i = 1 + \beta p_i \le e^{\beta p_i}. \quad \Box$

План лекции

- Постановка задачи
- 2 Алгоритм
- - Оценки Чернова
 - Оценка оптимальности

Теорема

Пусть дано $\epsilon>0$. Если оптимальное решение задачи о потоке в сети с несколькими веществами удовлетворяет неравенству $W^* \leq c_1(\epsilon) \ln n$, где n=|V|, то алгоритм находит решение, удовлетворяющее неравенству $W \leq W^* + c_2(\epsilon) \sqrt{W^* \ln n}$, с вероятностью $1-\epsilon$ (c_1, c_2 суть константы, зависящие от ϵ).

Теорема

Пусть дано $\epsilon>0$. Если оптимальное решение задачи о потоке в сети с несколькими веществами удовлетворяет неравенству $W^* \leq c_1(\epsilon) \ln n$, где n=|V|, то алгоритм находит решение, удовлетворяющее неравенству $W \leq W^* + c_2(\epsilon) \sqrt{W^* \ln n}$, с вероятностью $1-\epsilon$ (c_1, c_2 суть константы, зависящие от ϵ).

Теорема

Пусть дано $\epsilon>0$. Если оптимальное решение задачи о потоке в сети с несколькими веществами удовлетворяет неравенству $W^*\leq c_1(\epsilon)\ln n$, где n=|V|, то алгоритм находит решение, удовлетворяющее неравенству $W\leq W^*+c_2(\epsilon)\sqrt{W^*\ln n}$, с вероятностью $1-\epsilon$ (c_1,c_2 суть константы, зависящие от ϵ).

Доказательство

• Зафиксируем ребро $(v, w) \in E$.

Теорема

Пусть дано $\epsilon>0$. Если оптимальное решение задачи о потоке в сети с несколькими веществами удовлетворяет неравенству $W^*\leq c_1(\epsilon)\ln n$, где n=|V|, то алгоритм находит решение, удовлетворяющее неравенству $W\leq W^*+c_2(\epsilon)\sqrt{W^*\ln n}$, с вероятностью $1-\epsilon$ (c_1,c_2 суть константы, зависящие от ϵ).

- Зафиксируем ребро $(v, w) \in E$.
- Ребро (v, w) используется i-м потоком с вероятностью $p_i = \sum_{j: \ (v,w) \in P_{ii}} \alpha_{ij}.$

Теорема

Пусть дано $\epsilon>0$. Если оптимальное решение задачи о потоке в сети с несколькими веществами удовлетворяет неравенству $W^*\leq c_1(\epsilon)\ln n$, где n=|V|, то алгоритм находит решение, удовлетворяющее неравенству $W\leq W^*+c_2(\epsilon)\sqrt{W^*\ln n}$, с вероятностью $1-\epsilon$ (c_1,c_2 суть константы, зависящие от ϵ).

- Зафиксируем ребро $(v, w) \in E$.
- Ребро (v,w) используется i-м потоком с вероятностью $p_i = \sum_{j:\; (v,w) \in P_{ij}} \alpha_{ij}.$
- Пусть X_i случайная 0/1-переменная, принимающая значение 1 с веротяностью p_i .

Теорема

Пусть дано $\epsilon>0$. Если оптимальное решение задачи о потоке в сети с несколькими веществами удовлетворяет неравенству $W^* \leq c_1(\epsilon) \ln n$, где n=|V|, то алгоритм находит решение, удовлетворяющее неравенству $W \leq W^* + c_2(\epsilon) \sqrt{W^* \ln n}$, с вероятностью $1-\epsilon$ (c_1, c_2 суть константы, зависящие от ϵ).

- Зафиксируем ребро $(v, w) \in E$.
- Ребро (v,w) используется i-м потоком с вероятностью $p_i = \sum_{j:\; (v,w) \in P_{ij}} \alpha_{ij}.$
- Пусть X_i случайная 0/1-переменная, принимающая значение 1 с веротяностью p_i .
- \bullet Тогда $W(v, w) = \sum_{i=1}^{k} X_i$.

$$\mathsf{E}(W(v,w)) = \sum_{i} p_{i} = \sum_{i} \sum_{j: (v,w) \in P_{ii}} \alpha_{ij} \leq W_{LP} \leq W^{*}$$

$$\mathsf{E}(W(v,w)) = \sum_{i} p_{i} = \sum_{i} \sum_{j: (v,w) \in P_{ii}} \alpha_{ij} \leq W_{LP} \leq W^{*}$$

$$\mathsf{Prob}\left(W(v,w) \geq (1+\beta)W^*\right) \leq \left(\frac{e^{\beta}}{(1+\beta)^{(1+\beta)}}\right)^{W^*} = e^{(\beta-(1+\beta)\ln(1+\beta))W}$$

Доказательство

$$\mathsf{E}(W(v,w)) = \sum_{i} p_{i} = \sum_{i} \sum_{j: (v,w) \in P_{ii}} \alpha_{ij} \leq W_{LP} \leq W^{*}$$

$$\mathsf{Prob}\left(W(v,w) \geq (1+\beta)W^*\right) \leq \left(\frac{e^\beta}{(1+\beta)^{(1+\beta)}}\right)^{W^*} = e^{(\beta-(1+\beta)\ln(1+\beta))W}$$

при $\beta \le 1$ выполнено неравенство $\beta - (1 + \beta) \ln(1 + \beta) \le -\beta^2/3$

Поэтому при
$$\beta = \sqrt{\frac{3\ln\frac{n^2}{\epsilon}}{W^*}}$$
 имеем $\operatorname{Prob}\left(W(v,w)\geq (1+\beta)W^*\right)\leq \frac{\epsilon}{n^2}.$

Доказательство

Поэтому при $\beta = \sqrt{\frac{3\ln\frac{n^2}{\epsilon}}{W^*}}$ имеем $\operatorname{Prob}\left(W(v,w) \geq (1+\beta)W^*\right) \leq \frac{\epsilon}{n^2}$. Неравенство $\beta \leq 1$ выполнено при $W^* \geq 6\ln n - 3\ln \epsilon$.

Доказательство

Поэтому при $\beta = \sqrt{\frac{3\ln\frac{n^2}{\epsilon}}{W^*}}$ имеем $\operatorname{Prob}\left(W(v,w) \geq (1+\beta)W^*\right) \leq \frac{\epsilon}{n^2}$. Неравенство $\beta \leq 1$ выполнено при $W^* \geq 6\ln n - 3\ln \epsilon$. При таком β

$$(1+\beta)W^* = W^* + \sqrt{3W^* \ln \frac{n^2}{\epsilon}}.$$

Теперь оценим вероятность:

$$\mathsf{Prob}\left(\max_{(v,w)\in \mathcal{E}}W(v,w)\geq (1+eta)W^*
ight) \ \leq \sum_{(v,w)\in \mathcal{E}}\mathsf{Prob}\left(W(v,w)\geq (1+eta)W^*
ight) \ \leq |\mathcal{E}|rac{\epsilon}{n^2}\leq \epsilon.$$

Дерандомизация (основная идея)

• Алгоритм можно дерандомизировать методом условных вероятностей.

- Алгоритм можно дерандомизировать методом условных вероятностей.
- Для каждого вещества нам нужно выбрать один из путей.

- Алгоритм можно дерандомизировать методом условных вероятностей.
- Для каждого вещества нам нужно выбрать один из путей.
- Рассмотрим дерево высоты k, где у корня есть j_1 сыновей, у каждого из них j_2 сыновей и т.д.

- Алгоритм можно дерандомизировать методом условных вероятностей.
- Для каждого вещества нам нужно выбрать один из путей.
- Рассмотрим дерево высоты k, где у корня есть j_1 сыновей, у каждого из них j_2 сыновей и т.д.
- На i-м уровне, таким образом, принимается решение, какой путь выбрать для i-го потока.

- Алгоритм можно дерандомизировать методом условных вероятностей.
- Для каждого вещества нам нужно выбрать один из путей.
- Рассмотрим дерево высоты k, где у корня есть j_1 сыновей, у каждого из них j_2 сыновей и т.д.
- На i-м уровне, таким образом, принимается решение, какой путь выбрать для i-го потока.
- Листья данного дерева представляют допустимые решения нашей задачи.

Дерандомизация (основная идея)

Определим

$$g(\mathit{l}_1,\ldots,\mathit{l}_i) = \mathsf{Prob}\left(\max_{(v,w)\in \mathcal{E}} W(v,w) \geq (1+eta)W^* egin{array}{c} \mathit{l}_1$$
 для вещества $1 \\ \mathit{l}_2$ для вещества $2 \\ \vdots \\ \mathit{l}_i$ для вещества $i \end{array}
ight)$

Дерандомизация (основная идея)

Определим

$$g(l_1,\ldots,l_i) = \mathsf{Prob}\left(\max_{(v,w)\in \mathcal{E}} W(v,w) \geq (1+eta)W^* egin{array}{c} l_1$$
 для вещества $1 \\ l_2$ для вещества $2 \\ \vdots \\ l_i$ для вещества $i \end{array}
ight)$

Ясно, что

$$g(l_1,\ldots,l_{i-1}) = \sum_{j=1}^{j_i} \alpha_{ij}g(l_1,\ldots,l_{i-1},j) \ge \min_j g(l_1,\ldots,l_{i-1},j).$$

Дерандомизация (основная идея)

• Таким образом, если бы мы могли вычислять $g(l_1, \ldots, l_i)$ эффективно, мы бы начали с $g(\emptyset)$ и, выбирая минимум на каждом шаге, построили бы последовательность $g(\emptyset) \geq g(l_1) \geq g(l_1, l_2) \geq \cdots \geq g(l_1, \ldots, l_k)$.

- Таким образом, если бы мы могли вычислять $g(l_1,\ldots,l_i)$ эффективно, мы бы начали с $g(\emptyset)$ и, выбирая минимум на каждом шаге, построили бы последовательность $g(\emptyset) \geq g(l_1) \geq g(l_1,l_2) \geq \cdots \geq g(l_1,\ldots,l_k)$.
- Однако непонятно, как именно вычислять такие вероятности.

- Таким образом, если бы мы могли вычислять $g(l_1, \ldots, l_i)$ эффективно, мы бы начали с $g(\emptyset)$ и, выбирая минимум на каждом шаге, построили бы последовательность $g(\emptyset) \geq g(l_1) \geq g(l_1, l_2) \geq \cdots \geq g(l_1, \ldots, l_k)$.
- Однако непонятно, как именно вычислять такие вероятности.
- Из оценок Чернова можно вывести некоторую верхнюю оценку $h(l_1, \ldots, l_i)$ на $g(l_1, \ldots, l_i)$, вычислить которую легко.

- Таким образом, если бы мы могли вычислять $g(l_1, \ldots, l_i)$ эффективно, мы бы начали с $g(\emptyset)$ и, выбирая минимум на каждом шаге, построили бы последовательность $g(\emptyset) \geq g(l_1) \geq g(l_1, l_2) \geq \cdots \geq g(l_1, \ldots, l_k)$.
- Однако непонятно, как именно вычислять такие вероятности.
- Из оценок Чернова можно вывести некоторую верхнюю оценку $h(l_1, \ldots, l_i)$ на $g(l_1, \ldots, l_i)$, вычислить которую легко.
- После этого выичсляется последовательность $1 > \epsilon \ge h(\emptyset) \ge h(l_1, l_2) \ge \cdots \ge h(l_1, \dots, l_k) \ge g(l_1, \dots, l_k).$

- Таким образом, если бы мы могли вычислять $g(l_1, \ldots, l_i)$ эффективно, мы бы начали с $g(\emptyset)$ и, выбирая минимум на каждом шаге, построили бы последовательность $g(\emptyset) \geq g(l_1) \geq g(l_1, l_2) \geq \cdots \geq g(l_1, \ldots, l_k)$.
- Однако непонятно, как именно вычислять такие вероятности.
- Из оценок Чернова можно вывести некоторую верхнюю оценку $h(l_1, \ldots, l_i)$ на $g(l_1, \ldots, l_i)$, вычислить которую легко.
- После этого выичсляется последовательность $1 > \epsilon \ge h(\emptyset) \ge h(l_1, l_2) \ge \cdots \ge h(l_1, \dots, l_k) \ge g(l_1, \dots, l_k).$
- Иэ этого следует, что $g(l_1, ..., l_k) = 0$.

Что мы узнали за сегодня?

Что мы узнали за сегодня?

• Задача о потоке в сети с несколькими веществами NP-трудна.

Что мы узнали за сегодня?

- Задача о потоке в сети с несколькими веществами NP-трудна.
- Может быть решена приближенно релаксацией целочисленной задачи линейного программирования с последующим случайным выбором путей.

Что мы узнали за сегодня?

- Задача о потоке в сети с несколькими веществами NP-трудна.
- Может быть решена приближенно релаксацией целочисленной задачи линейного программирования с последующим случайным выбором путей.
- Алгоритм можно дерандомизировать методом условных вероятностей.

Спасибо за внимание!