"algorithms for Big Data"

Lecture 1: Intro + Streaming

Slides at http://grigory.us/big-data-csclub.html

Grigory Yaroslavtsev

(Indiana University, Bloomington)

http://grigory.us

Disclaimers

A lot of Math!

Disclaimers

No programming!

What is this class about?

 Not about the band (https://en.wikipedia.org/wiki/Big_Data (band)

What is this class about?

- The four V's: volume, velocity, variety, veracity
- Volume: "Big Data" = too big to fit in RAM
 - If 16GB ≈ 100 \$ => "big" starts at terabytes

Getting hands dirty

- Cloud computing platforms (all offer free trials):
 - Amazon EC2 (1 CPU/12mo)
 - Microsoft Azure (\$200/1mo)
 - Google Compute Engine (\$200/2mo)
- Distributed Google Code Jam
 - First time in 2015:https://code.google.com/codejam/distributed_index.html
 - Caveats:
 - Very basic aspects of distributed algorithms (few rounds)
 - Small data ($\sim 1~GB$, with hundreds MB RAM)
 - Fast query access ($\sim 0.01~ms$ per request), "data with queries"

Google Compute Engine

Outline

Part 1: Streaming Algorithms

Highlights:

- Approximate counting
- # Distinct Elements
- Median
- Frequency moments
- Heavy hitters
- Graph sketching

Outline

Part 2: Massively Parallel Algorithms

Highlights:

- Computational Model
- Sorting (Terasort)
- Connectivity, MST
- Filtering dense graphs
- Euclidean MST

Outline

Part 3: Sublinear Time Algorithms

Highlights:

- "Data with queries"
- Sublinear approximation
- Property Testing
- Testing images, sortedness, connectedness
- Testing noisy data

Today

- Approximate counting: Morris' algorithm
- Approximate Median
- Alon-Mathias-Szegedy Sampling
- Frequency Moments
- Distinct Elements
- Count-Min

Recap

• (Markov) For every c > 0 (and non-negative X):

$$\Pr[X \ge c \ \mathbb{E}[X]] \le \frac{1}{c}$$

• (Chebyshev) For every c > 0:

$$\Pr[|X - \mathbb{E}[X]| \ge c \ \mathbb{E}[X]] \le \frac{Var[X]}{(c \ \mathbb{E}[X])^2}$$

• (Chernoff) Let $X_1 \dots X_t$ be independent and identically distributed r.vs with range [0, c] and expectation μ . Then if $X = \frac{1}{t} \sum_i X_i$ and $1 > \delta > 0$,

$$\Pr[|X - \mu| \ge \delta \mu] \le 2 \exp\left(-\frac{t\mu\delta^2}{3c}\right)$$

Morris's Algorithm

- (Hard puzzle, "Count the number of items")
 - You have items coming arriving one by one
 - What is the total number of items up to error $\pm \epsilon n$?
 - You have $O(\log \log n / \epsilon^2)$ space and can be completely wrong with some small probability

Maintains a counter X using $\log \log n$ bits

- Initialize X to 0
- When an item arrives, increase X by 1 with probability $\frac{1}{2^X}$
- When the stream is over, output $2^X 1$

Claim: $\mathbb{E}[2^X] = n + 1$

Maintains a counter X using $\log \log n$ bits

• Initialize X to 0, when an item arrives, increase X by 1 with probability $\frac{1}{2^X}$

Claim:
$$\mathbb{E}[2^X] = n + 1$$

• Let the value after seeing n items be X_n

$$\mathbb{E}[2^{X_n}] = \sum_{j=0}^{\infty} \Pr[X_{n-1} = j] \mathbb{E}[2^{X_n} | X_{n-1} = j]$$

$$= \sum_{j=0}^{\infty} \Pr[X_{n-1} = j] \left(\frac{1}{2^j} 2^{j+1} + \left(1 - \frac{1}{2^j} \right) 2^j \right)$$

$$= \sum_{j=0}^{\infty} \Pr[X_{n-1} = j] (2^{j} + 1) = 1 + \mathbb{E}[2^{X_{n-1}}]$$

Maintains a counter X using $\log \log n$ bits

• Initialize X to 0, when an item arrives, increase X by 1 with probability $\frac{1}{2^X}$

Claim:
$$\mathbb{E}[2^{2X}] = \frac{3}{2}n^2 + \frac{3}{2}n + 1$$

$$\mathbb{E}[2^{2X_n}] = \sum_{j=0} \Pr[2^{X_{n-1}} = j] \mathbb{E}[2^{2X_n} | 2^{X_{n-1}} = j]$$

$$= \sum_{j=0}^{\infty} \Pr[2^{X_{n-1}} = j] \left(\frac{1}{j} \, 4 \, j^2 + \left(1 \, -\frac{1}{j}\right) j^2\right)$$

$$= \sum_{i=0}^{\infty} \Pr[2^{X_{n-1}} = j](j^2 + 3j) = \mathbb{E}[2^{2X_{n-1}}] + 3\mathbb{E}[2^{X_{n-1}}]$$

$$= 3\frac{(n-1)^2}{2} + 3(n-1)/2 + 1 + 3n = \frac{3}{2}n^2 + \frac{3}{2}n + 1$$

Maintains a counter X using $\log \log n$ bits

- Initialize X to 0, when an item arrives, increase X by 1 with probability $\frac{1}{2^X}$
- $\mathbb{E}[2^X] = n + 1$, $Var[2^X] = O(n^2)$
- Is this good?

Morris's Algorithm: Beta-version

Maintains t counters $X^1, ..., X^t$ (log log n bits each)

- Initialize X^i to 0, when an item arrives, increase each X^i by 1 independently with probability $\frac{1}{2^{X^i}}$
- Output $Z = \frac{1}{t} (\sum_{i=1}^{t} 2^{X^i} 1)$
- $\mathbb{E}[2^{X_i}] = n + 1$, $Var[2^{X_i}] = O(n^2)$
- $Var[Z] = Var\left(\frac{1}{t}\sum_{j=1}^{t} 2^{X^j} 1\right) = O\left(\frac{n^2}{t}\right)$
- Claim: If $t \ge \frac{c}{\epsilon^2}$ then $\Pr[|Z n| > \epsilon n] < 1/3$

Morris's Algorithm: Beta-version

Maintains t counters X^1, \dots, X^t

• Output
$$Z = \frac{1}{t} (\sum_{i=1}^{t} 2^{X^i} - 1)$$

•
$$Var[Z] = Var\left(\frac{1}{t}\sum_{j=1}^{t} 2^{X^{j}} - 1\right) = O\left(\frac{n^{2}}{t}\right)$$

• Claim: If $t \ge \frac{c}{\epsilon^2}$ then $\Pr[|Z - n| > \epsilon n] < 1/3$

$$-\Pr[|Z-n| > \epsilon n] < \frac{Var[Z]}{\epsilon^2 n^2} = O\left(\frac{n^2}{t}\right) \cdot \frac{1}{\epsilon^2 n^2}$$

 $-\operatorname{lf} t \geq \frac{c}{\epsilon^2}$ we can make this at most $\frac{1}{3}$

Morris's Algorithm: Final

- What if I want the probability of error to be really small, i.e. $\Pr[|Z n| > \epsilon n] \le \delta$?
- Same Chebyshev-based analysis: $t = O\left(\frac{1}{\epsilon^2 \delta}\right)$
- Do these steps $m = O\left(\log \frac{1}{\delta}\right)$ times independently in parallel and output the median answer.
- Total space: $O\left(\frac{\log\log n \cdot \log\frac{1}{\delta}}{\epsilon^2}\right)$

Morris's Algorithm: Final

• Do these steps $m=O\left(\log\frac{1}{\delta}\right)$ times independently in parallel and output the median answer

$$Z^{med} = median(Z_1, ..., Z_m)$$

• Each Z_i computed as before:

Maintain t counters X^1 , ..., X^t using $\log \log n$ bits for each

- Initialize $X^{i'}s$ to 0, when an item arrives, increase each X^{i} by 1 independently with probability $\frac{1}{2^{X^{i}}}$
- Output $Z = \frac{1}{t} (\sum_{i=1}^{t} 2^{X^i} 1)$

Morris's Algorithm: Final Analysis

Claim:
$$\Pr[|Z^{med} - n| > \epsilon n] \le \delta$$

- Let Y_i be an indicator r.v. for the event that $|Z_i n| \le \epsilon n$, where Z_i is the i-th trial.
- Let $Y = \sum_i Y_i$.

•
$$\Pr[|Z^{med} - n| > \epsilon n] \le \Pr[Y \le \frac{m}{2}] \le$$

 $\Pr[|Y - \mathbb{E}[Y]| \ge \frac{m}{6}] \le \Pr[|Y - \mathbb{E}[Y]| \ge \frac{\mu}{4}] \le$
 $\exp(-c\frac{1}{4^2}\frac{2m}{3}) < \exp(-c'\log\frac{1}{\delta}) < \delta$

Data Streams

• Stream: m elements from universe $[n] = \{1, 2, ..., n\}$, e.g.

$$\langle x_1, x_2, ..., x_m \rangle = \langle 5, 8, 1, 1, 1, 4, 3, 5, ..., 10 \rangle$$

Approximate Median

- $S = \{x_1, ..., x_m\}$ (all distinct) and let $rank(y) = |x \in S : x \le y|$
- Problem: Find ϵ -approximate median, i.e. y:

$$\frac{m}{2} - \epsilon m < rank(y) < \frac{m}{2} + \epsilon m$$

- Exercise: Can we approximate the value of the median with additive error $\pm \epsilon n$ in sublinear time?
- Algorithm: Return the median of a sample of size t taken from S (with replacement).

Approximate Median

• Problem: Find ϵ -approximate median, i.e. y:

$$\frac{m}{2} - \epsilon m < rank(y) < \frac{m}{2} + \epsilon m$$

- Algorithm: Return the median of a sample of size t taken from S (with replacement).
- Claim: If $t=\frac{7}{\epsilon^2}\log\frac{2}{\delta}$ then this algorithm gives ϵ -median with probability $1-\delta$

Approximate Median

Partition S into 3 groups

$$S_{L} = \left\{ x \in S : rank(x) \le \frac{m}{2} - \epsilon m \right\}$$

$$S_{M} = \left\{ x \in S : \frac{m}{2} - \epsilon m \le rank(x) \le \frac{m}{2} + \epsilon m \right\}$$

$$S_{U} = \left\{ x \in S : rank(x) \ge \frac{m}{2} + \epsilon m \right\}$$

- **Key fact**: If less than $\frac{\tau}{2}$ elements from each of S_L and S_U are in sample then its median is in S_M
- Let $X_i = 1$ if i-th sample is in S_L and 0 otherwise.
- Let $X = \sum_i X_i$. By Chernoff, if $t > \frac{7}{\epsilon^2} \log \frac{2}{\delta}$

$$\Pr\left[\mathbf{X} \ge \frac{t}{2}\right] \le \Pr\left[\mathbf{X} \ge (1+\epsilon)\mathbb{E}[\mathbf{X}]\right] \le e^{-\frac{\epsilon^2(\frac{1}{2}-\epsilon)t}{3}} \le \frac{\delta}{2}$$

• Same for S_U + union bound \Rightarrow error probability $\leq \delta$

Data Streams

• Stream: m elements from universe $[n] = \{1, 2, ..., n\}$, e.g.

$$\langle x_1, x_2, ..., x_m \rangle = \langle 5, 8, 1, 1, 1, 4, 3, 5, ..., 10 \rangle$$

• f_i = frequency of i in the stream = # of occurrences of value i

$$f = \langle f_1, \dots, f_n \rangle$$

AMS Sampling

- Problem: Estimate $\sum_{i \in [n]} g(f_i)$, for an arbitrary function g with g(0) = 0.
- Estimator: Sample x_{J} , where J is sampled uniformly at random from [m] and compute:

$$r = \left| \left\{ j \ge \boldsymbol{J} : x_j = x_{\boldsymbol{J}} \right\} \right|$$

Output: X = m(g(r) - g(r - 1))

• Expectation:

$$\mathbb{E}[X] = \sum_{i} \Pr[x_{J} = i] \mathbb{E}[X|x_{J} = i]$$

$$= \sum_{i} \frac{f_{i}}{m} \left(\sum_{r=1}^{f_{i}} \frac{m(g(r) - g(r-1))}{f_{i}} \right) = \sum_{i} g(f_{i})$$

- Define $F_k = \sum_i f_i^k$ for $k \in \{0,1,2,...\}$
 - $-F_0 = \#$ number of distinct elements
 - $-F_1 = \#$ elements
 - $-F_2$ = "Gini index", "surprise index"

- Define $F_k = \sum_i f_i^k$ for $k \in \{0,1,2,...\}$
- Use AMS estimator with $\mathbf{X} = m (r^k (r-1)^k)$ $\mathbb{E}[\mathbf{X}] = F_k$
- Exercise: $0 \le X \le m k f_*^{k-1}$, where $f_* = \max_i f_i$
- Repeat t times and take average \widehat{X} . By Chernoff:

$$\Pr[|\widehat{X} - F_k| \ge \epsilon F_k] \le 2 \exp\left(-\frac{tF_k \epsilon^2}{3m \ k \ f_*^{k-1}}\right)$$

 $\bullet \ \ \text{Taking} \ t = \frac{3mkf_*^{k-1}\log\frac{1}{\delta}}{\epsilon^2F_k} \ \text{gives} \ \Pr[\left|\widehat{\pmb{X}} - F_k\right| \geq \epsilon F_k] \leq \delta$

Lemma:

$$\frac{mf_*^{k-1}}{F_k} \le n^{1-1/k}$$

• Result:

$$t = \frac{3mkf_*^{k-1}\log\frac{1}{\delta}}{\epsilon^2 F_k} = O\left(\frac{kn^{1-\frac{1}{k}}\log\frac{1}{\delta}}{\epsilon^2}(\log n + \log m)\right)$$

memory suffices for (ϵ, δ) -approximation of F_k

- Question: What if we don't know m?
 - Then we can use probabilistic guessing (similar to Morris's algorithm), replacing $\log n$ with $\log nm$.

Lemma:

$$\frac{mf_*^{k-1}}{F_k} \le n^{1-1/k}$$

- Exercise: $F_k \ge n \left(\frac{m}{n}\right)^k$ (Hint: worst-case when $f_1 = \cdots = f_n = \frac{m}{n}$. Use convexity of $g(x) = x^k$).
- Case 1: $f_*^k \le n \left(\frac{m}{n}\right)^k$

$$\frac{mf_*^{k-1}}{F_k} \le \frac{mn^{1-\frac{1}{k}} \left(\frac{m}{n}\right)^{k-1}}{n \left(\frac{m}{n}\right)^k} = n^{1-\frac{1}{k}}$$

Lemma:

$$\frac{mf_*^{k-1}}{F_k} \le n^{1-1/k}$$

• Case 2:
$$f_*^k \ge n \left(\frac{m}{n}\right)^k$$

$$\frac{mf_*^{k-1}}{F_k} \le \frac{mf_*^{k-1}}{f_*^k} = \frac{m}{f_*} \le \frac{m}{n^{\frac{1}{k}}} \left(\frac{m}{n}\right) = n^{1-\frac{1}{k}}$$

Hash Functions

• Definition: A family H of functions from $A \to B$ is k-wise independent if for any distinct $x_1, \dots, x_k \in A$ and $i_1, \dots i_k \in B$:

$$\Pr_{h \in_R H} [h(x_1) = i_1, h(x_2) = i_2, \dots, h(x_k) = i_k] = \frac{1}{|B|^k}$$

• Example: If $A \subseteq \{0, ..., p-1\}, B = \{0, ..., p-1\}$ for prime p

$$H = \left\{ h(x) = \sum_{i=0}^{k-1} a_i x^i \mod p : 0 \le a_0, a_1, \dots, a_{k-1} \le p-1 \right\}$$

is a k-wise independent family of hash functions.

Linear Sketches

- Sketching algorithm: picks a random matrix $Z \in \mathbb{R}^{k \times n}$, where $k \ll n$ and computes Zf.
- Can be incrementally updated:
 - We have a sketch Zf
 - When i arrives, new frequencies are $f' = f + e_i$
 - Updating the sketch:

$$Zf' = Z(f + e_i) = Zf + Ze_i = Zf + (i-th column of Z)$$

Need to choose random matrices carefully

F_2

- Problem: (ϵ, δ) -approximation for $F_2 = \sum_i f_i^2$
- Algorithm:
 - Let Z ∈ $\{-1,1\}^{k \times n}$, where entries of each row are 4-wise independent and rows are independent
 - Don't store the matrix: k 4-wise independent hash functions σ
 - Compute Zf, average squared entries "appropriately"
- Analysis:
 - Let s be any entry of Zf.
 - Lemma: $\mathbb{E}[s^2] = F_2$
 - Lemma: $Var[s^2] \le 2F_2^2$

F_2 : Expectaton

• Let σ be a row of Z with entries $\sigma_i \in_R \{-1,1\}$.

$$\mathbb{E}[s^{2}] = \mathbb{E}\left[\left(\sum_{i=1}^{n} \sigma_{i} f_{i}\right)^{2}\right]$$

$$= \mathbb{E}\left(\sum_{i=1}^{n} \sigma_{i}^{2} f_{i}^{2} + \sum_{i \neq j} \mathbb{E}[\sigma_{i} \sigma_{j} f_{i} f_{j}]\right)$$

$$= \mathbb{E}\left(\sum_{i=1}^{n} f_{i}^{2} + \sum_{i \neq j} \mathbb{E}[\sigma_{i} \sigma_{j}] f_{i} f_{j}\right)$$

$$= F_{2} + \sum_{i \neq j} \mathbb{E}[\sigma_{i}] \mathbb{E}[\sigma_{j}] f_{i} f_{j} = F_{2}$$

• We used 2-wise independence for $\mathbb{E}[\sigma_i \sigma_j] = \mathbb{E}[\sigma_i]\mathbb{E}[\sigma_j]$.

F_2 : Variance

$$\mathbb{E}[(X^2 - \mathbb{E}X^2)^2] = \mathbb{E}\left(\sum_{i \neq j} \sigma_i \sigma_j f_i f_j\right)^2$$

$$= \mathbb{E}\left(2\sum_{i \neq j} \sigma_i^2 \sigma_j^2 f_i^2 f_j^2 + 4\sum_{i \neq j \neq k} \sigma_i^2 \sigma_j \sigma_k f_i^2 f_j f_k\right)$$

$$+ 24\sum_{i < j < k < l} \sigma_i \sigma_j \sigma_k \sigma_l f_i f_j f_k f_l\right)$$

$$= 2\sum_{i \neq j} f_i^2 f_j^2 + 4\sum_{i \neq j \neq k} \mathbb{E}[\sigma_j \sigma_k] f_i^2 f_j f_k$$

$$+ 24\sum_{i < j < k < l} \mathbb{E}[\sigma_i \sigma_j \sigma_k \sigma_l] f_i f_j f_k f_l \le 2 F_2^2$$

• $\mathbb{E}[\sigma_i \sigma_j \sigma_k \sigma_l] = \mathbb{E}[\sigma_i] \mathbb{E}[\sigma_j] \mathbb{E}[\sigma_k] \mathbb{E}[\sigma_l] = 0$ by 4-wise independence

F_0 : Distinct Elements

- Problem: (ϵ, δ) -approximation for $F_0 = \sum_i f_i^0$
- Simplified: For fixed T>0, with prob. $1-\delta$ distinguish:

$$F_0 > (1 + \epsilon)T \text{ vs. } F_0 < (1 - \epsilon)T$$

• Original problem reduces by trying $O\left(\frac{\log n}{\epsilon}\right)$ values of T:

$$T = 1, (1 + \epsilon), (1 + \epsilon)^2, ..., n$$

F_0 : Distinct Elements

• Simplified: For fixed T>0, with prob. $1-\delta$ distinguish:

$$F_0 > (1 + \epsilon)T \text{ vs. } F_0 < (1 - \epsilon)T$$

- Algorithm:
 - Choose random sets $S_1, ..., S_k \subseteq [n]$ where $\Pr[i \in S_j] = \frac{1}{T}$
 - Compute $s_j = \sum_{i \in S_j} f_i$
 - If at least k/e of the values s_j are zero, output $F_0 < (1 \epsilon)T$

$F_0 > (1 + \epsilon)T \text{ vs. } F_0 < (1 - \epsilon)T$

Algorithm:

- Choose random sets $S_1, \dots, S_k \subseteq [n]$ where $\Pr[i \in S_j] = \frac{1}{T}$
- Compute $s_j = \sum_{i \in S_j} f_i$
- If at least k/e of the values s_j are zero, output $F_0 < (1-\epsilon)T$

Analysis:

- If
$$F_0 > (1 + \epsilon)T$$
, then $\Pr[s_j = 0] < \frac{1}{e} - \frac{\epsilon}{3}$

- If
$$F_0 < (1 - \epsilon)T$$
, then $\Pr[s_j = 0] > \frac{1}{e} + \frac{\epsilon}{3}$

– Chernoff:
$$k = O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$$
 gives correctness w.p. $1 - \delta$

$F_0 > (1 + \epsilon)T$ vs. $F_0 < (1 - \epsilon)T$

Analysis:

- If
$$F_0 > (1 + \epsilon)T$$
, then $\Pr[s_j = 0] < \frac{1}{e} - \frac{\epsilon}{3}$
- If $F_0 < (1 - \epsilon)T$, then $\Pr[s_j = 0] > \frac{1}{e} + \frac{\epsilon}{3}$

• If T is large and ϵ is small then:

$$\Pr[s_j = 0] = \left(1 - \frac{1}{T}\right)^{F_0} \approx e^{-\frac{F_0}{T}}$$

• If $F_0 > (1 + \epsilon)T$:

$$e^{-\frac{F_0}{T}} \le e^{-(1+\epsilon)} \le \frac{1}{e} - \frac{\epsilon}{3}$$

• If $F_0 < (1 - \epsilon)T$:

$$e^{-\frac{F_0}{T}} \ge e^{-(1-\epsilon)} \ge \frac{1}{e} + \frac{\epsilon}{3}$$

Count-Min Sketch

- https://sites.google.com/site/countminsketch/
- Stream: m elements from universe $[n] = \{1, 2, ..., n\}$, e.g. $\langle x_1, x_2, ..., x_m \rangle = \langle 5, 8, 1, 1, 1, 4, 3, 5, ..., 10 \rangle$
- f_i = frequency of i in the stream = # of occurrences of value $i, f = \langle f_1, ..., f_n \rangle$
- Problems:
 - Point Query: For $i \in [n]$ estimate f_i
 - Range Query: For $i, j \in [n]$ estimate $f_i + \cdots + f_j$
 - Quantile Query: For $\phi \in [0,1]$ find j with $f_1 + \cdots + f_j \approx \phi m$
 - Heavy Hitters: For $\phi \in [0,1]$ find all i with $f_i \ge \phi m$

Count-Min Sketch: Construction

- Let $H_1, ..., H_d$: $[n] \rightarrow [w]$ be 2-wise independent hash functions
- We maintain $d \cdot w$ counters with values: $c_{i,j} = \#$ elements e in the stream with $H_i(e) = j$
- For every x the value $c_{i,H_i(x)} \ge f_x$ and so: $f_x \le \widetilde{f}_x = \min(c_{1,H_1(x)},\dots,c_{d,H_d(x)})$
- If $w = \frac{2}{\epsilon}$ and $d = \log_2 \frac{1}{\delta}$ then: $\Pr[f_x \le \tilde{f}_x \le f_x + \epsilon m] \ge 1 - \delta.$

Count-Min Sketch: Analysis

• Define random variables $Z_1 \dots, Z_k$ such that $c_{i,H_i(x)} = f_x + Z_i$

$$\mathbf{Z}_{i} = \sum_{y \neq x, H_{i}(y) = H_{i}(x)} f_{y}$$

• Define $X_{i,y} = 1$ if $H_i(y) = H_i(x)$ and 0 otherwise:

$$\mathbf{Z}_i = \sum_{y \neq x} f_y \mathbf{X}_{i,y}$$

• By 2-wise independence:

$$\mathbb{E}[\boldsymbol{Z}_i] = \sum_{y \neq x} f_y \, \mathbb{E}[\boldsymbol{X}_{i,y}] = \sum_{y \neq x} f_y \, \Pr[H_i(y) = H_i(x)] \le \frac{m}{w}$$

By Markov inequality,

$$\Pr[\mathbf{Z}_i \ge \epsilon m] \le \frac{1}{w \ \epsilon} = \frac{1}{2}$$

Count-Min Sketch: Analysis

• All Z_i are independent

$$\Pr[Z_i \ge \epsilon m \ for \ all \ 1 \le i \le d] \le \left(\frac{1}{2}\right)^d = \delta$$

• With prob. $1 - \delta$ there exists j such that $Z_j \leq \epsilon m$

$$\begin{split} \widetilde{f}_{\chi} &= \min \left(c_{1,H_1(\chi)}, \dots, c_{d,H_d(\chi)} \right) = \\ &= \min \left(f_{\chi}, +Z_1 \dots, f_{\chi} + Z_d \right) \leq f_{\chi} + \epsilon m \end{split}$$

• CountMin estimates values f_{χ} up to $\pm \epsilon m$ with total memory $O\left(\frac{\log m \log \frac{1}{\delta}}{\epsilon}\right)$

Dyadic Intervals

• Define $\log n$ partitions of [n]:

```
I_0 = \{1,2,3,...n\}
I_1 = \{\{1,2\}, \{3,4\}, ..., \{n-1,n\}\}\}
I_2 = \{\{1,2,3,4\}, \{5,6,7,8\}, ..., \{n-3,n-2,n-1,n\}\}
...
I_{\log n} = \{\{1,2,3,...,n\}\}
```

- Exercise: Any interval (i, j) can be written as a disjoint union of at most $2 \log n$ such intervals.
- Example: For n=256: $[48,107]=[48,48] \cup [49,64] \cup [65,96] \cup [97,104] \cup [105,106] \cup [107,107]$

Count-Min: Range Queries and Quantiles

- Range Query: For $i, j \in [n]$ estimate $f_i + \cdots f_j$
- Approximate median: Find j such that:

$$f_1 + \dots + f_j \ge \frac{m}{2} + \epsilon m$$
 and
$$f_1 + \dots + f_{j-1} \le \frac{m}{2} - \epsilon m$$

Count-Min: Range Queries and Quantiles

• Algorithm: Construct $\log n$ Count-Min sketches, one for each I_i such that for any $I \in I_i$ we have an estimate \tilde{f}_I for f_I such that:

$$\Pr[f_l \le \widetilde{f}_l \le f_l + \epsilon m] \ge 1 - \delta$$

• To estimate [i,j], let $I_1 \dots, I_k$ be decomposition: $\widetilde{f_{[i,j]}} = \widetilde{f_{l_1}} + \dots + \widetilde{f_{l_k}}$

• Hence, $\Pr[f_{[i,j]} \le \widetilde{f_{[i,j]}} \le 2 \epsilon m \log n] \ge 1 - 2\delta \log n$

Count-Min: Heavy Hitters

- Heavy Hitters: For $\phi \in [0,1]$ find all i with $f_i \ge \phi m$ but no elements with $f_i \le (\phi \epsilon)m$
- Algorithm:
 - Consider binary tree whose leaves are [n] and associate internal nodes with intervals corresponding to descendant leaves
 - Compute Count-Min sketches for each I_i
 - Level-by-level from root, mark children I of marked nodes if $\widetilde{f}_l \ge \phi m$
 - Return all marked leaves
- Finds heavy-hitters in $O(\phi^{-1} \log n)$ steps