# "algorithms for Big Data" <br> Lecture 1: Intro + Streaming 

Slides at http://grigory.us/big-data-csclub.html

Grigory Yaroslavtsev
(Indiana University, Bloomington) http://grigory.us


## Disclaimers

## - A lot of Math!



## Disclaimers

## - No programming!



## What is this class about?

- Not about the band
(https://en.wikipedia.org/wiki/Big Data (band))



## What is this class about?

- The four V's: volume, velocity, variety, veracity
- Volume: "Big Data" = too big to fit in RAM - If $16 \mathrm{~GB} \approx 100 \$=>$ "big" starts at terabytes
- Velocity - Doesn' GmRAM31 1
- $\mathbf{N}=$ size of datau Hegemonerio cen



## Getting hands dirty

- Cloud computing platforms (all offer free trials):
- Amazon EC2 (1 CPU/12mo)
- Microsoft Azure (\$200/1mo)
- Google Compute Engine (\$200/2mo)
- Distributed Google Code Jam
- First time in 2015:
https://code.google.com/codejam/distributed index.html
- Caveats:
- Very basic aspects of distributed algorithms (few rounds)
- Small data ( $\sim 1 G B$, with hundreds MB RAM)
- Fast query access ( $\sim 0.01 \mathrm{~ms}$ per request), "data with queries"


## Outline

- Part 1: Streaming Algorithms


Highlights:

- Approximate counting
- \# Distinct Elements
- Median
- Frequency moments
- Heavy hitters
- Graph sketching


## Outline

- Part 2: Massively Parallel Algorithms


Highlights:

- Computational Model
- Sorting (Terasort)
- Connectivity, MST
- Filtering dense graphs
- Euclidean MST


## Outline

- Part 3: Sublinear Time Algorithms


Highlights:

- "Data with queries"
- Sublinear approximation
- Property Testing
- Testing images, sortedness, connectedness
- Testing noisy data


## Today

- Approximate counting: Morris' algorithm
- Approximate Median
- Alon-Mathias-Szegedy Sampling
- Frequency Moments
- Distinct Elements
- Count-Min


## Recap

- (Markov) For every $c>0$ (and non-negative $\boldsymbol{X}$ ):

$$
\operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[\boldsymbol{X}]] \leq \frac{1}{c}
$$

- (Chebyshev) For every $c>0$ :

$$
\operatorname{Pr}[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]| \geq c \mathbb{E}[\boldsymbol{X}]] \leq \frac{\operatorname{Var}[\boldsymbol{X}]}{(c \mathbb{E}[\boldsymbol{X}])^{2}}
$$

- (Chernoff) Let $\boldsymbol{X}_{1} \ldots \boldsymbol{X}_{t}$ be independent and identically distributed r.vs with range [0, c] and expectation $\mu$. Then if $X=\frac{1}{t} \sum_{i} X_{i}$ and $1>\delta>0$,

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{t \mu \delta^{2}}{3 c}\right)
$$

## Morris's Algorithm

- (Hard puzzle, "Count the number of items")
- You have items coming arriving one by one
- What is the total number of items up to error $\pm \epsilon n$ ?
- You have $O\left(\log \log n / \epsilon^{2}\right)$ space and can be completely wrong with some small probability


## Morris's Algorithm: Alpha-version

Maintains a counter $X$ using $\log \log n$ bits

- Initialize $X$ to 0
- When an item arrives, increase $X$ by 1 with probability $\frac{1}{2^{X}}$
- When the stream is over, output $2^{X}-1$

Claim: $\mathbb{E}\left[2^{X}\right]=n+1$

## Morris's Algorithm: Alpha-version

Maintains a counter $X$ using $\log \log n$ bits

- Initialize $X$ to 0 , when an item arrives, increase $X$ by 1 with probability $\frac{1}{2^{X}}$
Claim: $\mathbb{E}\left[2^{X}\right]=n+1$
- Let the value after seeing $n$ items be $X_{n}$
$\mathbb{E}\left[2^{X_{n}}\right]=\sum_{j=0}^{\infty} \operatorname{Pr}\left[X_{n-1}=j\right] \mathbb{E}\left[2^{X_{n}} \mid X_{n-1}=j\right]$
$=\sum_{j=0}^{\infty} \operatorname{Pr}\left[X_{n-1}=j\right]\left(\frac{1}{2^{j}} 2^{j+1}+\left(1-\frac{1}{2^{j}}\right) 2^{j}\right)$
$=\sum_{j=0}^{\infty} \operatorname{Pr}\left[X_{n-1}=j\right]\left(2^{j}+1\right)=1+\mathbb{E}\left[2^{X_{n-1}}\right]$


## Morris's Algorithm: Alpha-version

Maintains a counter $X$ using $\log \log n$ bits

- Initialize $X$ to 0 , when an item arrives, increase $X$ by 1 with probability $\frac{1}{2^{X}}$
Claim: $\mathbb{E}\left[2^{2 X}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1$
$\mathbb{E}\left[2^{2 X_{n}}\right]=\sum_{j=0}^{\infty} \operatorname{Pr}\left[2^{X_{n-1}}=j\right] \mathbb{E}\left[2^{2 X_{n}} \mid 2^{X_{n-1}}=j\right]$
$=\sum_{j=0}^{\infty} \operatorname{Pr}\left[2^{X_{n-1}}=j\right]\left(\frac{1}{j} 4 j^{2}+\left(1-\frac{1}{j}\right) j^{2}\right)$
$=\sum_{j=0}^{\infty} \operatorname{Pr}\left[2^{X_{n-1}}=j\right]\left(j^{2}+3 j\right)=\mathbb{E}\left[2^{2 X_{n-1}}\right]+3 \mathbb{E}\left[2^{X_{n-1}}\right]$
$=3 \frac{(\mathrm{n}-1)^{2}}{2}+3(\mathrm{n}-1) / 2+1+3 \mathrm{n}=\frac{3}{2} n^{2}+\frac{3}{2} n+1$


## Morris's Algorithm: Alpha-version

Maintains a counter $X$ using $\log \log n$ bits

- Initialize $X$ to 0 , when an item arrives,
increase $X$ by 1 with probability $\frac{1}{2^{X}}$
- $\mathbb{E}\left[2^{X}\right]=n+1, \operatorname{Var}\left[2^{X}\right]=O\left(n^{2}\right)$
- Is this good?


## Morris's Algorithm: Beta-version

Maintains $t$ counters $X^{1}, \ldots, X^{t}$ ( $\log \log n$ bits each)

- Initialize $X^{i}$ to 0 , when an item arrives, increase each $X^{i}$ by 1 independently with probability $\frac{1}{2^{X^{i}}}$
- Output $\mathrm{Z}=\frac{1}{t}\left(\sum_{i=1}^{t} 2^{X^{i}}-1\right)$
- $\mathbb{E}\left[2^{X_{i}}\right]=\mathrm{n}+1, \operatorname{Var}\left[2^{X_{i}}\right]=O\left(n^{2}\right)$
- $\operatorname{Var}[Z]=\operatorname{Var}\left(\frac{1}{t} \sum_{j=1}^{t} 2^{X^{j}}-1\right)=O\left(\frac{n^{2}}{t}\right)$
- Claim: If $t \geq \frac{c}{\epsilon^{2}}$ then $\operatorname{Pr}[|Z-n|>\epsilon n]<1 / 3$


## Morris's Algorithm: Beta-version

Maintains $t$ counters $X^{1}, \ldots, X^{t}$

- Output $Z=\frac{1}{t}\left(\sum_{i=1}^{t} 2^{X^{i}}-1\right)$
- $\operatorname{Var}[Z]=\operatorname{Var}\left(\frac{1}{t} \sum_{j=1}^{t} 2^{X^{j}}-1\right)=O\left(\frac{n^{2}}{t}\right)$
- Claim: If $t \geq \frac{c}{\epsilon^{2}}$ then $\operatorname{Pr}[|Z-n|>\epsilon n]<1 / 3$
$-\operatorname{Pr}[|Z-n|>\epsilon n]<\frac{\operatorname{Var}[Z]}{\epsilon^{2} n^{2}}=O\left(\frac{n^{2}}{t}\right) \cdot \frac{1}{\epsilon^{2} n^{2}}$
- If $t \geq \frac{c}{\epsilon^{2}}$ we can make this at most $\frac{1}{3}$


## Morris's Algorithm: Final

- What if I want the probability of error to be really small, i.e. $\operatorname{Pr}[|Z-n|>\epsilon n] \leq \delta$ ?
- Same Chebyshev-based analysis: $t=O\left(\frac{1}{\epsilon^{2} \delta}\right)$
- Do these steps $m=O\left(\log \frac{1}{\delta}\right)$ times independently in parallel and output the median answer.
- Total space: $O\left(\frac{\log \log n \cdot \log \frac{1}{\bar{\delta}}}{\epsilon^{2}}\right)$


## Morris's Algorithm: Final

- Do these steps $m=O\left(\log \frac{1}{\delta}\right)$ times independently in parallel and output the median answer

$$
Z^{\text {med }}=\operatorname{median}\left(Z_{1}, \ldots, Z_{m}\right)
$$

- Each $Z_{i}$ computed as before:

Maintain $t$ counters $X^{1}, \ldots, X^{t}$ using $\log \log n$ bits for each

- Initialize $X^{i}{ }^{\prime}$ to 0 , when an item arrives, increase each $X^{i}$ by 1 independently with probability $\frac{1}{2^{X^{i}}}$
- Output $Z=\frac{1}{t}\left(\sum_{i=1}^{t} 2^{X^{i}}-1\right)$


## Morris's Algorithm: Final Analysis

Claim: $\operatorname{Pr}\left[\left|Z^{\text {med }}-n\right|>\epsilon n\right] \leq \delta$

- Let $Y_{i}$ be an indicator r.v. for the event that $\left|Z_{i}-n\right| \leq \epsilon n$, where $Z_{i}$ is the i -th trial.
- Let $Y=\sum_{i} Y_{i}$.
- $\operatorname{Pr}\left[\left|Z^{\text {med }}-n\right|>\epsilon n\right] \leq \operatorname{Pr}\left[Y \leq \frac{m}{2}\right] \leq$ $\operatorname{Pr}\left[|Y-\mathbb{E}[Y]| \geq \frac{m}{6}\right] \leq \operatorname{Pr}\left[|Y-\mathbb{E}[Y]| \geq \frac{\mu}{4}\right] \leq$ $\exp \left(-c \frac{1}{4^{2}} \frac{2 m}{3}\right)<\exp \left(-c^{\prime} \log \frac{1}{\delta}\right)<\delta$


## Data Streams

- Stream: $m$ elements from universe $[\boldsymbol{n}]=$ $\{1,2, \ldots, \boldsymbol{n}\}$, e.g.

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=\langle 5,8,1,1,1,4,3,5, \ldots, 10\rangle
$$

## Approximate Median

- $S=\left\{x_{1}, \ldots, x_{m}\right\}$ (all distinct) and let

$$
\operatorname{rank}(y)=|x \in S: x \leq y|
$$

- Problem: Find $\epsilon$-approximate median, i.e. $y$ :

$$
\frac{m}{2}-\epsilon m<\operatorname{rank}(y)<\frac{m}{2}+\epsilon m
$$

- Exercise: Can we approximate the value of the median with additive error $\pm \epsilon n$ in sublinear time?
- Algorithm: Return the median of a sample of size $t$ taken from $S$ (with replacement).


## Approximate Median

- Problem: Find $\epsilon$-approximate median, i.e. $y$ :

$$
\frac{m}{2}-\epsilon m<\operatorname{rank}(y)<\frac{m}{2}+\epsilon m
$$

- Algorithm: Return the median of a sample of size $t$ taken from $S$ (with replacement).
- Claim: If $t=\frac{7}{\epsilon^{2}} \log \frac{2}{\delta}$ then this algorithm gives $\epsilon$ median with probability $1-\delta$


## Approximate Median

- Partition $S$ into 3 groups

$$
\begin{gathered}
S_{L}=\left\{x \in S: \operatorname{rank}(x) \leq \frac{m}{2}-\epsilon m\right\} \\
S_{M}=\left\{x \in S: \frac{m}{2}-\epsilon m \leq \operatorname{rank}(x) \leq \frac{m}{2}+\epsilon m\right\} \\
S_{U}=\left\{x \in S: \operatorname{rank}(x) \geq \frac{m}{2}+\epsilon m\right\}
\end{gathered}
$$

- Key fact: If less than $\frac{t}{2}$ elements from each of $S_{L}$ and $S_{U}$ are in sample then its median is in $S_{M}$
- Let $X_{i}=1$ if $i$-th sample is in $S_{L}$ and 0 otherwise.
- Let $X=\sum_{i} X_{i}$. By Chernoff, if $t>\frac{7}{\epsilon^{2}} \log \frac{2}{\delta}$

$$
\operatorname{Pr}\left[\boldsymbol{X} \geq \frac{t}{2}\right] \leq \operatorname{Pr}[\boldsymbol{X} \geq(1+\epsilon) \mathbb{E}[\boldsymbol{X}]] \leq e^{-\frac{\epsilon^{2}\left(\frac{1}{2}-\epsilon\right) t}{3}} \leq \frac{\delta}{2}
$$

- Same for $S_{U}+$ union bound $\Rightarrow$ error probability $\leq \delta$


## Data Streams

- Stream: $\boldsymbol{m}$ elements from universe $[\boldsymbol{n}]=$ $\{1,2, \ldots, \boldsymbol{n}\}$, e.g.

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=\langle 5,8,1,1,1,4,3,5, \ldots, 10\rangle
$$

- $f_{i}=$ frequency of $i$ in the stream $=\#$ of occurrences of value $i$

$$
f=\left\langle f_{1}, \ldots, f_{n}\right\rangle
$$

## AMS Sampling

- Problem: Estimate $\sum_{i \in[n]} g\left(f_{i}\right)$, for an arbitrary function $g$ with $g(0)=0$.
- Estimator: Sample $x_{J}$, where $\boldsymbol{J}$ is sampled uniformly at random from $[m]$ and compute:

$$
r=\left|\left\{j \geq J: x_{j}=x_{J}\right\}\right|
$$

Output: $\boldsymbol{X}=m(g(r)-g(r-1))$

- Expectation:

$$
\begin{gathered}
\mathbb{E}[\boldsymbol{X}]=\sum_{i} \operatorname{Pr}\left[x_{\boldsymbol{J}}=i\right] \mathbb{E}\left[\boldsymbol{X} \mid x_{\boldsymbol{J}}=i\right] \\
=\sum_{i} \frac{f_{i}}{m}\left(\sum_{r=1}^{f_{i}} \frac{m(g(r)-g(r-1))}{f_{i}}\right)=\sum_{i} g\left(f_{i}\right)
\end{gathered}
$$

## Frequency Moments

- Define $F_{k}=\sum_{i} f_{i}^{k}$ for $k \in\{0,1,2, \ldots\}$
$-F_{0}=\#$ number of distinct elements
$-F_{1}=\#$ elements
- $F_{2}=$ "Gini index", "surprise index"


## Frequency Moments

- Define $F_{k}=\sum_{i} f_{i}^{k}$ for $k \in\{0,1,2, \ldots\}$
- Use AMS estimator with $\boldsymbol{X}=m\left(r^{k}-(r-1)^{k}\right)$

$$
\mathbb{E}[\boldsymbol{X}]=F_{k}
$$

- Exercise: $0 \leq \boldsymbol{X} \leq m k f_{*}^{k-1}$, where $f_{*}=\max _{i} f_{i}$
- Repeat $t$ times and take average $\widehat{\boldsymbol{X}}$. By Chernoff:

$$
\operatorname{Pr}\left[\left|\widehat{\boldsymbol{X}}-F_{k}\right| \geq \epsilon F_{k}\right] \leq 2 \exp \left(-\frac{t F_{k} \epsilon^{2}}{3 m k f_{*}^{k-1}}\right)
$$

- Taking $t=\frac{3 m k f_{*}^{k-1} \log _{\frac{1}{\delta}}}{\epsilon^{2} F_{k}}$ gives $\operatorname{Pr}\left[\left|\widehat{\boldsymbol{X}}-F_{k}\right| \geq \epsilon F_{k}\right] \leq \delta$


## Frequency Moments

- Lemma:

$$
\frac{m f_{*}^{k-1}}{F_{k}} \leq n^{1-1 / k}
$$

- Result:

$$
t=\frac{3 m k f_{*}^{k-1} \log \frac{1}{\delta}}{\epsilon^{2} F_{k}}=O\left(\frac{k n^{1-\frac{1}{k}} \log \frac{1}{\delta}}{\epsilon^{2}}(\log n+\log m)\right)
$$

memory suffices for $(\epsilon, \delta)$-approximation of $F_{k}$

- Question: What if we don't know $m$ ?
- Then we can use probabilistic guessing (similar to Morris's algorithm), replacing $\log n$ with $\log n m$.


## Frequency Moments

- Lemma:

$$
\frac{m f_{*}^{k-1}}{F_{k}} \leq n^{1-1 / k}
$$

- Exercise: $F_{k} \geq n\left(\frac{m}{n}\right)^{k}$ (Hint: worst-case when $f_{1}=\cdots=$ $f_{n}=\frac{m}{n}$. Use convexity of $g(x)=x^{k}$ ).
- Case 1: $f_{*}^{k} \leq n\left(\frac{m}{n}\right)^{k}$

$$
\frac{m f_{*}^{k-1}}{F_{k}} \leq \frac{m n^{1-\frac{1}{k}}\left(\frac{m}{n}\right)^{k-1}}{n\left(\frac{m}{n}\right)^{k}}=n^{1-\frac{1}{k}}
$$

## Frequency Moments

- Lemma:

$$
\frac{m f_{*}^{k-1}}{F_{k}} \leq n^{1-1 / k}
$$

- Case 2: $f_{*}^{k} \geq n\left(\frac{m}{n}\right)^{k}$

$$
\frac{m f_{*}^{k-1}}{F_{k}} \leq \frac{m f_{*}^{k-1}}{f_{*}^{k}}=\frac{m}{f_{*}} \leq \frac{m}{n^{\frac{1}{k}}\left(\frac{m}{n}\right)}=n^{1-\frac{1}{k}}
$$

## Hash Functions

- Definition: A family $H$ of functions from $A \rightarrow B$ is $k$-wise independent if for any distinct $x_{1}, \ldots, x_{k} \in A$ and $i_{1}, \ldots i_{k} \in$ $B$ :

$$
\operatorname{Pr}_{h \in_{R} H}\left[h\left(x_{1}\right)=i_{1}, h\left(x_{2}\right)=i_{2}, \ldots, h\left(x_{k}\right)=i_{k}\right]=\frac{1}{|B|^{k}}
$$

- Example: If $A \subseteq\{0, \ldots, p-1\}, B=\{0, \ldots, p-1\}$ for prime $p$

$$
H=\left\{h(x)=\sum_{i=0}^{k-1} a_{i} x^{i} \bmod p: 0 \leq a_{0}, a_{1}, \ldots, a_{k-1} \leq p-1\right\}
$$

is a $k$-wise independent family of hash functions.

## Linear Sketches

- Sketching algorithm: picks a random matrix $Z \in R^{k \times n}$, where $k \ll n$ and computes $Z f$.
- Can be incrementally updated:
- We have a sketch $Z f$
- When $i$ arrives, new frequencies are $f^{\prime}=f+e_{i}$
- Updating the sketch:
$Z f^{\prime}=Z\left(f+e_{i}\right)=Z f+Z e_{i}=Z f+(i$-th column of $Z)$
- Need to choose random matrices carefully


## $F_{2}$

- Problem: $(\epsilon, \delta)$-approximation for $F_{2}=\sum_{i} f_{i}^{2}$
- Algorithm:
- Let $Z \in\{-1,1\}^{k \times n}$, where entries of each row are 4wise independent and rows are independent
- Don't store the matrix: $k 4$-wise independent hash functions $\sigma$
- Compute Zf, average squared entries "appropriately"
- Analysis:
- Let $s$ be any entry of $Z f$.
- Lemma: $\mathbb{E}\left[s^{2}\right]=F_{2}$
- Lemma: $\operatorname{Var}\left[s^{2}\right] \leq 2 F_{2}^{2}$


## $F_{2}$ : Expectaton

- Let $\sigma$ be a row of $Z$ with entries $\sigma_{i} \in_{R}\{-1,1\}$.

$$
\begin{aligned}
& \mathbb{E}\left[s^{2}\right]=\mathbb{E}\left[\left(\sum_{i=1}^{n} \sigma_{i} f_{i}\right)^{2}\right] \\
= & \mathbb{E}\left(\sum_{i=1}^{n} \sigma_{i}^{2} f_{i}^{2}+\sum_{i \neq j} \mathbb{E}\left[\sigma_{i} \sigma_{j} f_{i} f_{j}\right]\right) \\
= & \mathbb{E}\left(\sum_{i=1}^{n} f_{i}^{2}+\sum_{i \neq j} \mathbb{E}\left[\sigma_{i} \sigma_{j}\right] f_{i} f_{j}\right) \\
= & F_{2}+\sum_{i \neq j} \mathbb{E}\left[\sigma_{i}\right] \mathbb{E}\left[\sigma_{j}\right] f_{i} f_{j}=F_{2}
\end{aligned}
$$

- We used 2-wise independence for $\mathbb{E}\left[\sigma_{i} \sigma_{j}\right]=\mathbb{E}\left[\sigma_{i}\right] \mathbb{E}\left[\sigma_{j}\right]$.


## $F_{2}$ : Variance

$$
\begin{gathered}
\mathbb{E}\left[\left(X^{2}-\mathbb{E} X^{2}\right)^{2}\right]=\mathbb{E}\left(\sum_{i \neq j} \sigma_{i} \sigma_{j} f_{i} f_{j}\right)^{2} \\
=\mathbb{E}\left(2 \sum_{i \neq j} \sigma_{i}^{2} \sigma_{j}^{2} f_{i}^{2} f_{j}^{2}+4 \sum_{i \neq j \neq k} \sigma_{i}^{2} \sigma_{j} \sigma_{k} f_{i}^{2} f_{j} f_{k}\right. \\
\left.+24 \sum_{i<j<k<l} \sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l} f_{i} f_{j} f_{k} f_{l}\right) \\
=2 \sum_{i \neq j} f_{i}^{2} f_{j}^{2}+4 \sum_{i \neq j \neq k} \mathbb{E}\left[\sigma_{j} \sigma_{k}\right] f_{i}^{2} f_{j} f_{k} \\
\quad+24 \sum_{i<j<k<l} \mathbb{E}\left[\sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l}\right] f_{i} f_{j} f_{k} f_{l} \leq 2 F_{2}^{2}
\end{gathered}
$$

- $\mathbb{E}\left[\sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l}\right]=\mathbb{E}\left[\sigma_{i}\right] \mathbb{E}\left[\sigma_{j}\right] \mathbb{E}\left[\sigma_{k}\right] \mathbb{E}\left[\sigma_{l}\right]=0$ by 4-wise independence


## $F_{0}$ : Distinct Elements

- Problem: $(\epsilon, \delta)$-approximation for $F_{0}=\sum_{i} f_{i}^{0}$
- Simplified: For fixed $T>0$, with prob. $1-\delta$ distinguish:

$$
F_{0}>(1+\epsilon) T \text { vs. } F_{0}<(1-\epsilon) T
$$

- Original problem reduces by trying $O\left(\frac{\log n}{\epsilon}\right)$ values of T :

$$
T=1,(1+\epsilon),(1+\epsilon)^{2}, \ldots, n
$$

## $F_{0}$ : Distinct Elements

- Simplified: For fixed $T>0$, with prob. $1-\delta$ distinguish:

$$
F_{0}>(1+\epsilon) T \text { vs. } F_{0}<(1-\epsilon) T
$$

- Algorithm:
- Choose random sets $S_{1}, \ldots, S_{k} \subseteq[n]$ where $\operatorname{Pr}\left[i \in S_{j}\right]=\frac{1}{T}$
- Compute $s_{j}=\sum_{i \in S_{j}} f_{i}$
- If at least $k / e$ of the values $s_{j}$ are zero, output $F_{0}<(1-\epsilon) T$


## $F_{0}>(1+\epsilon) T$ vs. $F_{0}<(1-\epsilon) T$

- Algorithm:
- Choose random sets $S_{1}, \ldots, S_{k} \subseteq[n]$ where $\operatorname{Pr}\left[i \in S_{j}\right]=$
- Compute $s_{j}=\sum_{i \in S_{j}} f_{i}$
- If at least $k / e$ of the values $s_{j}$ are zero, output $F_{0}<(1-\epsilon) T$
- Analysis:
- If $F_{0}>(1+\epsilon) T$, then $\operatorname{Pr}\left[s_{j}=0\right]<\frac{1}{e}-\frac{\epsilon}{3}$
- If $F_{0}<(1-\epsilon) T$, then $\operatorname{Pr}\left[s_{j}=0\right]>\frac{1}{e}+\frac{\epsilon}{3}$
- Chernoff: $k=O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ gives correctness w.p. $1-\delta$


## $F_{0}>(1+\epsilon) T$ vs. $F_{0}<(1-\epsilon) T$

- Analysis:
- If $F_{0}>(1+\epsilon) T$, then $\operatorname{Pr}\left[s_{j}=0\right]<\frac{1}{e}-\frac{\epsilon}{3}$
- If $F_{0}<(1-\epsilon) T$, then $\operatorname{Pr}\left[s_{j}=0\right]>\frac{1}{e}+\frac{\epsilon}{3}$
- If $T$ is large and $\epsilon$ is small then:

$$
\operatorname{Pr}\left[s_{j}=0\right]=\left(1-\frac{1}{T}\right)^{F_{0}} \approx e^{-\frac{F_{0}}{T}}
$$

- If $F_{0}>(1+\epsilon) T$ :

$$
e^{-\frac{F_{0}}{T}} \leq e^{-(1+\epsilon)} \leq \frac{1}{e}-\frac{\epsilon}{3}
$$

- If $F_{0}<(1-\epsilon) T$ :

$$
e^{-\frac{F_{0}}{T}} \geq e^{-(1-\epsilon)} \geq \frac{1}{e}+\frac{\epsilon}{3}
$$

## Count-Min Sketch

- https://sites.google.com/site/countminsketch/
- Stream: $m$ elements from universe $[\boldsymbol{n}]=$ $\{1,2, \ldots, \boldsymbol{n}\}$, e.g.

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=\langle 5,8,1,1,1,4,3,5, \ldots, 10\rangle
$$

- $f_{i}=$ frequency of $i$ in the stream $=\#$ of occurrences of value $i, f=\left\langle f_{1}, \ldots, f_{n}\right\rangle$
- Problems:
- Point Query: For $i \in[n]$ estimate $f_{i}$
- Range Query: For $i, j \in[n]$ estimate $f_{i}+\cdots+f_{j}$
- Quantile Query: For $\phi \in[0,1]$ find $j$ with $f_{1}+\cdots+$ $f_{j} \approx \phi m$
- Heavy Hitters: For $\phi \in[0,1]$ find all $i$ with $f_{i} \geq \phi m$


## Count-Min Sketch: Construction

- Let $H_{1}, \ldots, H_{d}:[n] \rightarrow[w]$ be 2 -wise independent hash functions
- We maintain $d \cdot w$ counters with values:
$c_{i, j}=\#$ elements $e$ in the stream with $H_{i}(e)=j$
- For every $x$ the value $c_{i, H_{i}(x)} \geq f_{x}$ and so:

$$
f_{x} \leq \widetilde{f}_{x}=\min \left(c_{1, H_{1}(x)}, \ldots, c_{d, H_{d}(x)}\right)
$$

- If $w=\frac{2}{\epsilon}$ and $d=\log _{2} \frac{1}{\delta}$ then:

$$
\operatorname{Pr}\left[f_{x} \leq \widetilde{f_{x}} \leq f_{x}+\epsilon m\right] \geq 1-\delta
$$

## Count-Min Sketch: Analysis

- Define random variables $\boldsymbol{Z}_{1} \ldots, \boldsymbol{Z}_{k}$ such that $c_{i, H_{i}(x)}=f_{x}+\boldsymbol{Z}_{i}$

$$
z_{i}=\sum_{y \neq x, H_{i}(y)=H_{i}(x)} f_{y}
$$

- Define $\boldsymbol{X}_{i, y}=1$ if $H_{i}(y)=H_{i}(x)$ and 0 otherwise:

$$
\boldsymbol{Z}_{i}=\sum_{y \neq x} f_{y} \boldsymbol{X}_{i, y}
$$

- By 2-wise independence:

$$
\mathbb{E}\left[\boldsymbol{Z}_{i}\right]=\sum_{y \neq x} f_{y} \mathbb{E}\left[\boldsymbol{X}_{i, y}\right]=\sum_{y \neq x} f_{y} \operatorname{Pr}\left[H_{i}(y)=H_{i}(x)\right] \leq \frac{m}{w}
$$

- By Markov inequality,

$$
\operatorname{Pr}\left[Z_{i} \geq \epsilon m\right] \leq \frac{1}{w \epsilon}=\frac{1}{2}
$$

## Count-Min Sketch: Analysis

- All $Z_{i}$ are independent

$$
\operatorname{Pr}\left[Z_{i} \geq \epsilon m \text { for all } 1 \leq i \leq d\right] \leq\left(\frac{1}{2}\right)^{d}=\delta
$$

- With prob. $1-\delta$ there exists $j$ such that $Z_{j} \leq \epsilon m$

$$
\begin{aligned}
& \widetilde{f_{x}}=\min \left(c_{1, H_{1}(x)}, \ldots, c_{d, H_{d}(x)}\right)= \\
= & \min \left(f_{x},+Z_{1} \ldots, f_{x}+Z_{d}\right) \leq f_{x}+\epsilon m
\end{aligned}
$$

- CountMin estimates values $f_{x}$ up to $\pm \epsilon m$ with total memory $O\left(\frac{\log m \log _{\frac{1}{\delta}}}{\epsilon}\right)$.


## Dyadic Intervals

- Define $\log n$ partitions of $[n]$ :
$I_{0}=\{1,2,3, \ldots n\}$
$I_{1}=\{\{1,2\},\{3,4\}, \ldots,\{n-1, n\}\}$
$I_{2}=\{\{1,2,3,4\},\{5,6,7,8\}, \ldots,\{n-3, n-2, n-1, n\}\}$
$\mathrm{I}_{\log \mathrm{n}}=\{\{1,2,3, \ldots, n\}\}$
- Exercise: Any interval $(i, j)$ can be written as a disjoint union of at most $2 \log n$ such intervals.
- Example: For $n=256:[48,107]=[48,48] \cup[49,64] \cup$ $[65,96] \cup[97,104] \cup[105,106] \cup[107,107]$


## Count-Min: Range Queries and Quantiles

- Range Query: For $i, j \in[n]$ estimate $f_{i}+\cdots f_{j}$
- Approximate median: Find $j$ such that:

$$
\begin{aligned}
& f_{1}+\cdots+f_{j} \geq \frac{m}{2}+\epsilon m \text { and } \\
& f_{1}+\cdots+f_{j-1} \leq \frac{m}{2}-\epsilon m
\end{aligned}
$$

## Count-Min: Range Queries and Quantiles

- Algorithm: Construct $\log n$ Count-Min sketches, one for each $I_{i}$ such that for any $I \in I_{i}$ we have an estimate $\tilde{f}_{l}$ for $f_{l}$ such that:

$$
\operatorname{Pr}\left[f_{l} \leq \widetilde{f}_{l} \leq f_{l}+\epsilon m\right] \geq 1-\delta
$$

- To estimate $[i, j]$, let $I_{1} \ldots, I_{k}$ be decomposition:

$$
\widetilde{f_{[i, j]}}=\widetilde{f_{l_{1}}}+\cdots+\widetilde{f_{l_{k}}}
$$

- Hence,

$$
\operatorname{Pr}\left[f_{[i, j]} \leq \widetilde{f_{[i, j]}} \leq 2 \epsilon m \log n\right] \geq 1-2 \delta \log n
$$

## Count-Min: Heavy Hitters

- Heavy Hitters: For $\phi \in[0,1]$ find all $i$ with $f_{i} \geq \phi m$ but no elements with $f_{i} \leq(\phi-\epsilon) m$
- Algorithm:
- Consider binary tree whose leaves are [ $n$ ] and associate internal nodes with intervals corresponding to descendant leaves
- Compute Count-Min sketches for each $I_{i}$
- Level-by-level from root, mark children $I$ of marked nodes if $\widetilde{f}_{l} \geq \phi m$
- Return all marked leaves
- Finds heavy-hitters in $O\left(\phi^{-1} \log n\right)$ steps

