2 / 24

6 / 24

8 / 24

Алгоритмы для NP-трудных задач

Лекция 5: Приближенные алгоритмы

А. Куликов

Computer Science клуб при ПОМИ

Для чего нужны

Определения

2 Задача о покрытии множествами

Пратчайшая надпоследовательность

- возникающие на практике оптимизационные задачи часто являются NP-трудными
- полиномиальный алгоритм для такой задачи вряд ли
- можно пытаться построить эвристический алгоритм, который будет решать задачу за разумное время на реальных данных
- или же алгоритм, находящий решение, которое не сильно хуже оптимального; такие алгоритмы называются приближенными

4 / 24

Оптимизационная задача

Определение

1 Определения

2 Задача о покрытии множествами

- Пусть дан вход / оптимизационной задачи П.
- Через sol(1) обозначим множество всех возможных решений. Будем считать, что $\mathsf{sol}(I) \neq \emptyset$ для любого входа
- Каждому возможному решению $x \in \operatorname{sol}(I)$ сопоставлена ctoumoctb cost(x).
- Требуется найти $x \in sol(I)$, на котором cost достигает своего оптимального (минимального или максимального) значения
- Через ОРТ(I) обозначим оптимальную стоимость для входа 1.

5 / 24

1 / 24

3 / 24

План лекции

Приближенный алгоритм

Определение

- Приближенным алгоритмом (approximation algorithm) для задачи П называется полиномиальный по времени алгоритм, возращающий для каждого входа / какое-то решение $x \in \operatorname{sol}(I)$. Через A(I) мы обозначаем стоимость решения, найденного алгоритмом A на входе I.
- Приближенный алгоритм А имеет абсолютную оценку точности (absolute performance guarantee) с, если для любого входа / выполняется неравенство $|\mathsf{OPT}(I) - \overset{\cdot \cdot \cdot}{A}(I)| \leq c.$

Приближенный алгоритм (продолжение)

Определение

- Приближенный алгоритм А имеет относительную оценку точности (relative performance guarantee) α , если для любого входа / выполняется неравенство
 - $A(I)/\mathsf{OPT}(I) \geq \alpha$ для максимизационной задачи; $A(I)/\mathsf{OPT}(I) \leq \alpha$ для минимизационной задачи.
- Такие алгоритмы мы называем lpha-приближенными.

Замечание

Для оптимизационных задач $\alpha \leq 1$, для минимизационных — $\alpha \geq 1$. Алгоритм тем лучше, чем ближе α к 1.

Полиномиальная приближенная схема

Определение

- Пусть дана максимизационная задача П.
- П имеет полиномиальную приближенную схему (polynomial time approximation scheme, PTAS), если
 - $oldsymbol{0}$ для любого $\epsilon \geq 0$ существует $(1-\epsilon)$ -приближенный алгоритм для П;
 - $oldsymbol{Q}$ для любого $\epsilon>0$ время работы такого алгоритма зависит от п полиномиально.
- Если же время работы такого алгоритма полиномиально не только по n, но и по $1/\epsilon$, то полученная схема называется полностью полиномиальной приближенной схемой (fully polynomial time approximation scheme, FPTAS).
- Определение для минимизационной задачи полностью аналогично.

7 / 24

- 1 Определения
- 2 Задача о покрытии множествами
- Кратчайшая надпоследовательность

9 / 24

Определение

- ullet Дано множество $U=\{u_1,\ldots,u_n\}$ и семейство его подмножеств $\mathcal{F} = \{S_1, \dots, S_k\}, \ S_i \subseteq U.$
- В сумме все подмножества покрывают U: $U = \bigcup_{S \in \mathcal{F}} S$.
- Каждому подмножеству S_i сопоставлена некоторая неотрицательная стоимость $p_i \geq 0$.
- Задача о покрытии множествами (set cover problem) заключается в нахождении набора подмножеств, покрывающего все множество \dot{U} и имеющего минимальный возможный вес.

10 / 24

Жадный приближенный алгоритм

Неформально

На каждом шаге выбираем множество с минимальной удельной стоимостью покрываемых им элементов

Формально

Greedy-Set-Cover (X, \mathcal{F})

- I := ∅
- while $\bigcup_{i \in I} S_i \neq X$

 - $\forall i \notin I$, $\operatorname{cost}[i] := p_i/|S_i \setminus \bigcup_{j \in I} S_j|$ выберем i_0 , такое что $\operatorname{cost}[i_0] = \min_{i \notin I} \operatorname{cost}[i]$

11 / 24

Доказательство леммы

Лемма

$$c_i \leq P_{\mathrm{opt}}/(n-i+1)$$

Доказательство

- рассмотрим момент, в которой мы собираемся покрыть
- ясно, что непокрытые элементы можно покрыть набором множеств общей стоимостью не более P_{opt}
- значит, хотя бы для одного из не выбранных пока множеств S_k выполняется неравенство $\mathrm{cost}[S_k] \leq P_{\mathrm{opt}}/|U \backslash \bigcup_{j \in I} S_j|$
- ullet знаменатель последней дроби $\geq n-i+1$, так как мы в данный момент покрываем u_i

13 / 24

Анализ алгоритма

Теорема

Алгоритм Greedy-Set-Cover является H_n -приближенным, где $H_{n}=1+1/2+\cdots+1/n$ — сумма первых n членов гармонического ряда.

Доказательство

- перенумеруем все элементы множества U в том порядке, как мы их покрывали
- каждому x_i присвоим стоимость c_i , равную стоимости множества, которым его впервые покрыли
- ullet как будет показано чуть позже, $c_i \leq P_{
 m opt}/(n-i+1)$
- $\sum_{i \in I} p_i = \sum_{j=1}^n c_j$, поскольку сумма стоимостей всех элементов, покрываемых при добавлении множества S_i равна как раз p_i
- $\sum_{i=1}^{n} c_i \leq P_{\text{opt}}(1+1/2+\cdots+1/n)$

12 / 24

Трудность приближения

Факт

Из $P \neq NP$ следует, что для задачи о покрытии множествами не существует $c \log n$ -приближенного алгоритма (c — некоторая константа).

14 / 24

Задача о кратчайшей общей надпоследовательности

План лекции

- 1 Определения
- 2 Задача о покрытии множествами
- 3 Кратчайшая надпоследовательность

Определение

- Дано множество строк $\{s_1, \dots, s_n\}$.
- Задача о кратчайшей общей надпоследовательности (shortest common superstring) заключается в нахождении самой короткой строки u, которая содержит в качестве подстроки каждую из s_i .

Сведение к задаче о покрытии множествами

- НУО, среди строк нет подстрок друг друга
- для всех i,j,k, для которых суффикс строки s_i длины k совпадает с префиксом строки s_j длины k, построим строку $w_{ijk} = s_i \cdot s_j[k+1..|s_j|]$:

$$s_6 = \underbrace{abcab}_{X} \underbrace{bbca}_{Y}, s_2 = \underbrace{bbca}_{Y} \underbrace{aaccbcac}_{Z}$$
 $w_{6,2,4} = \underbrace{abcab}_{X} \underbrace{bbca}_{Y} \underbrace{aaccbcac}_{Z}$

- для любой строки s определим $set(s) = \{s_i \mid s_i$ подстрока $s\}$
- ullet стоимость множества $\operatorname{set}(s)$ положим равной длине строки
- вход задачи о покрытии множествами: $U=\{s_1,\dots,s_n\},$ $\mathcal{F}=\{\sec(s_i)\}\cup\{\sec(w_{ijk})\}$

17 / 24

Сведение к задаче о покрытии множествами (продолжение)

- итак, алгоритм возвращает нам некоторые множества
- мы сливаем соответствующие им строки и получаем строку, содержащую все s_i
- осталось показать, что построенный нами алгоритм является $2H_n$ -приближенным
- для этого достаточно доказать приведенную ниже лемму

Лемма

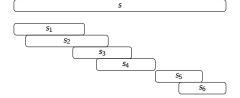
Стоимость оптимального решения полученной задачи о покрытии множествами не более чем в два раза хуже длины решения исходной задачи о кратчайшей надпоследовательности.

18 / 24

Доказательство леммы

Доказательство

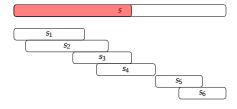
- перенумеруем строки s_i в порядке их вхождения в (какую-нибудь) оптимальную строку s
- ясно, что вхождение каждой строки начинается и заканчивается строго позже предыдущей
- разделим строки на блоки следующим образом: в первый блок берем s_1 и все s_i , первые вхождения которых начинаются до конца первого вхождения s_1
- сделаем из первой и последней строки этого блока общую строку получим строку $w_{1,j,k}$ (или же просто s_1)
- следующий блок строим, начиная с первой строки, не попавшей в первый блок, и т.д.
- в итоге, получаем некоторое решение задачи о покрытии множествами



20 / 24

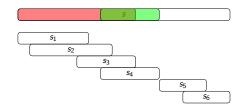
19 / 24

Пример



Пример

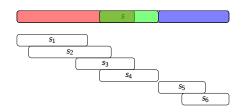
Пример



20 / 24

Пример

20 / 24



Доказательство леммы (продолжение)

Доказательство

- достаточно показать, что стоимость данного конкретного решения не превосходит удвоенной длины s
- это верно, поскольку каждый символ строки *s* входит не более чем в два блока

20/24 21/24

Пример работы алгоритма

- допустим, на вход даны следующие строки: $s_1 = abc, \ s_2 = bac, \ s_3 = bcd, \ s_4 = cde$
- вычисляем *w_{ijk}*:
- $w_{132} = abcd$, $w_{141} = abcde$, $w_{241} = bacde$, $w_{342} = bcde$ • вычисляем $set(s_i)$ и $set(w_{ijk})$, а также стоимости:

$$\begin{array}{l} S_1 = \operatorname{set}(s_1) = \{s_1\}, \ p_1 = 3, \\ S_2 = \operatorname{set}(s_2) = \{s_2\}, \ p_2 = 3, \\ S_3 = \operatorname{set}(s_3) = \{s_3\}, \ p_3 = 3, \\ S_4 = \operatorname{set}(s_4) = \{s_4\}, \ p_4 = 3, \\ S_5 = \operatorname{set}(w_{132}) = \{s_1, s_3\}, \ p_5 = 4, \\ S_6 = \operatorname{set}(w_{141}) = \{s_1, s_3, s_4\}, \ p_6 = 5, \\ S_7 = \operatorname{set}(w_{241}) = \{s_2, s_4\}, \ p_7 = 5, \end{array}$$

 $S_8 = set(w_{342}) = \{s_3, s_4\}, p_8 = 4$

Пример работы алгоритма

23 / 24

- итак, входными данными задачи о покрытии множествами являются универсальное множество $U=\{s_i\}_{i\in[1..4]},$ множество его подмножеств $\mathcal{F}=\{S_i\}_{i\in[1..8]},$ где каждому подмножеству S_i сопоставлена стоимость p_i
- алгоритм последовательно добавляет в покрытие множества S_6 и S_2
- поскольку $S_6 = \sec(w_{141})$ и $S_2 = \sec(s_2)$, выходом нашего алгоритма будет конкатенация строк w_{141} и s_2 , то есть строка abcdebac, которая в данном конкретном примере является оптимальной

22 / 24

Известно лучшее приближение

Факт

Существует 2.75-приближённый алгоритм.

24 / 24