
EECS 495: Combinatorial Optimization Lecture 12
Ellipsoid, Polar Polytopes

Problem: For polytope P ,

max{cTx|x ∈ P}

where P may have exponentially many facets.

Goal: Separation iff Optimization

• →: ellipsoid method

• ←: polar polytopes

Ellipsoid Method

Algs for solving LPs:

• simplex (Dantzig, 40s): practical, not
known to be in P

• ellipsoid (Shor; Khachyan, 70s): imprac-
ticle, but in P, only requires separation
oracle

• interior point (Karmarkar, 80s): practi-
cal, in P, require explicit representation
of polytope

Idea:

• Take big ellipsoid containing P .

• If center not in P , find separating hyper-
plane through center dividing ellipsoid in
half.

• Consider half-ellipsoid containing P and
find new ellipsoid containing this half-
ellipsoid.

• Iterate.

Example: Circle at origin, sep hyperplane
x1 = 0, draw new ellipsoid (tall, thin).

Fact: Volume of ellipsoids shrinks exponen-
tially.


Hence we are guaranteed to get to center
and can bound running time by ratio of
initial and final ellipsoid if polytope has
positive volume (for other cases, see pa-
per).




Algorithm: Ellipsoid (sketch)

1. Let E0 be an ellipsoid containing P

2. while center ak of Ek is not in P do:

• Let cTx ≤ cTak be s.t. P ⊆ {x :
cTx ≤ cTak}.

• Let Ek+1 be min vol ellipsoid con-
taining Ek ∩ {x : cTx ≤ cTak}.

• k ← k + 1.

Ellipsoids

Recall: A positive definite iff xTAx > 0 for
all non-zero x ∈ Rn iff A = BTB for real
matrix B.
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Def: Given center a and positive definite
matrix A, ellipsoid E(a, A) is {x ∈ Rn :
(x− a)TA−1(x− a) ≤ 1}.
Note: Just affine transformations of unit
spheres:

• transformation T (x) = (B−1)T (x−a) for
A = BTB

• E(a, A)→ {y : yTy ≤ 1} = E(0, I)

Shrinking Volume

Claim: V ol(Ek+1)

V ol(Ek)
< e−

1
2(n+1)

Idea: Show for unit sphere, use transforma-
tions (which preserve ratio of volumes).

Claim: For unit sphere Ek and halfspace
x1 ≥ 0, ellipsoid containing Ek ∩{x : x1 ≥ 0}
is Ek+1 = {x} s.t.(

n + 1

n

)2(
x1 −

1

n + 1

)2

+
n2 − 1

n2

n∑
i=2

x2
i ≤ 1.

Example: In two dimensions, center at
(1/3, 0), width 2/3, height4/3.

Proof: For x ∈ Ek ∩ {x : x1 ≥ 0},(
n + 1

n

)2(
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1

n + 1

)2

+ ...

=
n2 + 2n + 1

n2
x2
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(
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n

)2
2x1

n + 1
+

1

n2
+ ...

=
2n + 2

n2
x2

1 −
2n + 2

n2
x1 +

1

n2
+

n∑
i=1

x2
i

=
2n + 2

n2
x1(x1 − 1) +

1

n2
+

n∑
i=1

x2
i

≤ 1

n2
+
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≤ 1.

Ellipsoid since

• a = 1
n+1

(1, 0, . . . , 0)

• A = diag matrix with A11 = ( n
n+1

)2,

Aii = ( n2

n2−1
), positive definite (inverse

because it’s inverse in defn)

Proof: Of vol ratio for these ellipsoids: vol-
ume proportional to product of side lengths,
so

V ol(Ek+1)

V ol(Ek)
=

( n
n+1

)( n2

n2−1
)(n−1)/2

1

< e−
1

n+1 e
n−1

2(n2−1) = e−
1

n+1 e
1

2(n+1) = e−
1

2(n+1)

since 1 + x ≤ ex for all x and strict if x 6= 0.

Claim: More generally, for unit sphere Ek

and halfspace dTx ≤ 0 with ||d|| = 1 (wlog
by scaling), ellipsoid Ek+1 = E(− 1

n+1
d, F ) for

F = n2

n2−1
(I − 2

n+1
ddT ) contains Ek ∩ {x :

dTx ≤ 0} and ratio of volumes is at most
exp(− 1

2(n+1)
).

Example: For halfspace x1 ≥ 0 as above,

• d = (−1, 0, . . . , 0) so a = 1
n+1

(1, 0, . . . , 0)
as claimed

• ddT is matrix with 1 in upper-left, so A11

is
n2

n2 − 1

(
n + 1

n + 1
− 2

n + 1

)
=

n2

(n + 1)(n− 1)

(
n− 1

n + 1

)

=

(
n

n + 1

)2

and Aii = n2/(n2 − 1).

Claim: For any Ek and Ek+1, ratio of vol-
umes is at most exp(− 1

2(n+1)
).

Proof:
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• Let Ek = E(ak, A) and cTx ≤ cTak be
halfspace containing P .

• Consider transformation T (x) =
(B−1)T (x− ak) where A = BTB.

• Note under T , Ek becomes E(0, 1).

• Note under T , x = BTy+ak so halfspace
becomes

{y : cT (ak + BTy) ≤ cTak}

= {y : cTBTy ≤ 0} = {y : dTx ≤ 0}
for d = Bc/

√
cTBTBc = Bc/

√
cTAc.

• New ellipsoid in transformed space is
E(− 1

n+1
d, F ) for F = n2

n2−1
(I − 2

n+1
ddT ).

• Inverse transformation: Ek+1 =
E(ak − 1

n+1
BTd, BTFB) =

E(ak − 1
n+1

b, n2

n2−1
(A − 2

n+1
bbT )) where

b = BTd.

Algorithm: Ellipsoid: For P = {x : Cx ≤
d},

1. Start with k = 0, E0 = E(a0, A0) where
P ⊆ E0.

2. While ak 6∈ P do:

• Let cTx ≤ d be inequality valid for
x ∈ P but cTak > d.

• Let b = Akc√
cTAkc

.

• Let ak+1 = ak − 1
n+1

b.

• Let Ak+1 = n2

n2−1
(Ak − 2

n+1
bbT ).

Analysis: After k iterations, V ol(Ek) ≤
V ol(E0) exp(− k

2(n+1)
), so need at most 2(n +

1) ln V ol(E0)
V ol(P )

iterations.

Claim: Ellipsoid polytime.

Proof: Show for S ⊆ {0, 1} and P =
conv(S).

• Assume P full dimensional (else elimi-
nate variables)

• feasibility to optimization:

– let cTx be objective func with c ∈
Zn (wlog if c rational).

– check feasibility of P ′ = P ∩ {x :
cTx ≤ d + 1/2} and binary search
for d in [−ncmax, ncmax]

– takes O(log n + log cmax) runs of el-
lipsoid, polynomial

• starting ellipsoid:

– need to guarantee we contain poly-
tope P , sufficient to contain hyper-
cube

– for E0 use ball centered at (1
2
, . . . , 1

2
)

of radius 1
2

√
n

– E0 has volume (1
2

√
n)nV ol(Bn)

where Bn is unit ball and
V ol(Bn) < 2n

– log(V ol(E0)) = O(n log n)

• termination: if P ′ non-empty, not too
small (see notes)

• separation oracle (to give halfspace):
polytime black-box

• finding optimum soln: get from x′ of
value at most d + 1

2
to x of value exactly

d by finding any extreme point x with
cTx ≤ cTx′ (see notes)

Applying Ellipsoid

Problem: Maximum weight matching

Recall: Matching polytope

∑
e∈E(S)

xe ≤
|S| − 1

2
, ∀|S| odd
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∑
e∈δ(v)

xe ≤ 1, xe ≥ 0

Goal: Separation oracle.

• Given x∗, last two constraints easily
checked.

• Others checked with sequence of min
cuts.

Claim: There’s a polytime separation oracle.

Proof: Assume |V | even (else add a vertex).

• Let sv = 1 −
∑

e∈δ(v) xe (slack of con-

straint for v).

• Note
∑

e∈E(S) xe ≤ (|S| − 1)/2 becomes∑
v∈S

sv +
∑
e∈δ(S)

xe ≥ 1.

• Let H = (V ∪ {u}, E ∪ {(u, v) : v ∈ V })
new graph with new vertex u connected
everywhere.

• Let capacity ue of edge be xe if e ∈ E or
sv for e = (u, v).

• Note
∑

v∈S sv +
∑

e∈δ(S) xe ≥ 1 iff∑
e∈δH(S) ue ≥ 1.

• Thus just need to find min cut in H
among cuts S ⊆ V with |S| odd; if value
is ≥ 1, x∗ feasible, else found violation.

• This is the min T -odd cut problem and
is polytime.

Polar Duality

Def: Given polytope C ⊆ Rn containing ori-
gin, find representation s.t.

C = {c|ai · c ≤ bi},

where bi = 1 (scale constraints). The polar of
C is C∗ = conv(a1, . . . , ak)

Example:

1. C is unit circle, polar is unit circle.

2. C is square with corners
(1, 1), (1,−1), (−1, 1), (−1,−1).
Polar is diamond with corners
(1, 0), (0, 1), (−1, 0), (0,−1).

3. C is bulging rectangle with corners
(100, 3), (100,−3), (−100, 3), (−100,−3).
Polar is tall thin rectangle with corners
at (+/− 1/100, 0), (0, +/− 1/3).

Note: Facets become vertices and vice versa.
Size/shape reverses.

Claim: Polars have following properties:

• (C∗)∗ = C.

• If C is origin-symmetric, so is C∗.

• If A ⊆ B then B∗ ⊆ A∗.

• If A is scaled up, A∗ is scaled down.

Def: If C ⊆ Rn, the polar of C is the set
C∗ = {x ∈ Rn : xT c ≤ 1∀c ∈ C}.
Claim: Two defns are equiv.

Proof: Exercise.

Claim: (C∗)∗ = C.

Proof: C ⊆ C∗∗:

• C∗ = {x : xT c ≤ 1∀c ∈ C} and C∗∗ =
{y : yTx ≤ 1∀x ∈ C∗}.

• Let y be point in C.

• By defn of polar of C, for all x ∈ C∗,
xTy ≤ 1.
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• By defn of polar of C∗, conclude y ∈ C∗∗.

C∗∗ ⊆ C:

• Assume not and let y ∈ C∗∗ be s.t. y 6∈
C.

• Since y ∈ C∗∗ have yTx ≤ 1 for all x ∈
C∗.

• Since y 6∈ C there’s separating hyper-
plane v with xTv ≤ 1 for x ∈ C and
yTv > 1.

• By first condition, v ∈ C∗ and so second
contradicts y ∈ C∗∗.

So to separate over polar, optimize over poly-
tope.
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