EECS 495: Combinatorial Optimization
 Lecture 12 Ellipsoid, Polar Polytopes

Problem: For polytope P,

$$
\max \left\{c^{T} x \mid x \in P\right\}
$$

where P may have exponentially many facets.
Goal: Separation iff Optimization

- \rightarrow : ellipsoid method
- \leftarrow : polar polytopes

Ellipsoid Method

Algs for solving LPs:

- simplex (Dantzig, 40s): practical, not known to be in P
- ellipsoid (Shor; Khachyan, 70s): impracticle, but in P, only requires separation oracle
- interior point (Karmarkar, 80s): practical, in P , require explicit representation of polytope

Idea:

- Take big ellipsoid containing P.
- If center not in P, find separating hyperplane through center dividing ellipsoid in half.
- Consider half-ellipsoid containing P and find new ellipsoid containing this halfellipsoid.
- Iterate.

Example: Circle at origin, sep hyperplane $x_{1}=0$, draw new ellipsoid (tall, thin).
Fact: Volume of ellipsoids shrinks exponentially. $\left[\left[\begin{array}{l}\text { Hence we are guaranteed to get to center } \\ \text { and can bound running time by ratio of } \\ \text { initial and final ellipsoid if polytope has } \\ \text { positive volume (for other cases, see pa- } \\ \text { per). }\end{array}\right]\right]$
Algorithm: Ellipsoid (sketch)

1. Let E_{0} be an ellipsoid containing P
2. while center a_{k} of E_{k} is not in P do:

- Let $c^{T} x \leq c^{T} a_{k}$ be s.t. $P \subseteq\{x$: $\left.c^{T} x \leq c^{T} a_{k}\right\}$.
- Let E_{k+1} be min vol ellipsoid containing $E_{k} \cap\left\{x: c^{T} x \leq c^{T} a_{k}\right\}$.
- $k \leftarrow k+1$.

Ellipsoids

Recall: A positive definite iff $x^{T} A x>0$ for all non-zero $x \in \mathbb{R}^{n}$ iff $A=B^{T} B$ for real matrix B.

Def: Given center a and positive definite matrix A, ellipsoid $E(a, A)$ is $\left\{x \in \mathbb{R}^{n}\right.$: $\left.(x-a)^{T} A^{-1}(x-a) \leq 1\right\}$.
Note: Just affine transformations of unit spheres:

- transformation $T(x)=\left(B^{-1}\right)^{T}(x-a)$ for $A=B^{T} B$
- $E(a, A) \rightarrow\left\{y: y^{T} y \leq 1\right\}=E(0, I)$

Shrinking Volume

Claim: $\frac{\operatorname{Vol}\left(E_{k+1}\right)}{\operatorname{Vol}\left(E_{k}\right)}<e^{-\frac{1}{2(n+1)}}$
Idea: Show for unit sphere, use transformations (which preserve ratio of volumes).
Claim: For unit sphere E_{k} and halfspace $x_{1} \geq 0$, ellipsoid containing $E_{k} \cap\left\{x: x_{1} \geq 0\right\}$ is $E_{k+1}=\{x\}$ s.t.

$$
\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2} \leq 1 .
$$

Example: In two dimensions, center at $(1 / 3,0)$, width $2 / 3$, height $4 / 3$.
Proof: For $x \in E_{k} \cap\left\{x: x_{1} \geq 0\right\}$,

$$
\begin{gathered}
\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\ldots \\
=\frac{n^{2}+2 n+1}{n^{2}} x_{1}^{2}-\left(\frac{n+1}{n}\right)^{2} \frac{2 x_{1}}{n+1}+\frac{1}{n^{2}}+\ldots \\
=\frac{2 n+2}{n^{2}} x_{1}^{2}-\frac{2 n+2}{n^{2}} x_{1}+\frac{1}{n^{2}}+\sum_{i=1}^{n} x_{i}^{2} \\
=\frac{2 n+2}{n^{2}} x_{1}\left(x_{1}-1\right)+\frac{1}{n^{2}}+\sum_{i=1}^{n} x_{i}^{2} \\
\leq \frac{1}{n^{2}}+\frac{n^{2}-1}{n^{2}} \leq 1 .
\end{gathered}
$$

Ellipsoid since

- $a=\frac{1}{n+1}(1,0, \ldots, 0)$
- $A=$ diag matrix with $A_{11}=\left(\frac{n}{n+1}\right)^{2}$, $A_{i i}=\left(\frac{n^{2}}{n^{2}-1}\right)$, positive definite (inverse because it's inverse in defn)

Proof: Of vol ratio for these ellipsoids: volume proportional to product of side lengths, so

$$
\begin{aligned}
\frac{\operatorname{Vol}\left(E_{k+1}\right)}{\operatorname{Vol}\left(E_{k}\right)} & =\frac{\left(\frac{n}{n+1}\right)\left(\frac{n^{2}}{n^{2}-1}\right)^{(n-1) / 2}}{1} \\
<e^{-\frac{1}{n+1}} e^{\frac{n-1}{2\left(n^{2}-1\right)}} & =e^{-\frac{1}{n+1}} e^{\frac{1}{2(n+1)}}=e^{-\frac{1}{2(n+1)}}
\end{aligned}
$$

since $1+x \leq e^{x}$ for all x and strict if $x \neq 0$.
Claim: More generally, for unit sphere E_{k} and halfspace $d^{T} x \leq 0$ with $\|d\|=1$ (wlog by scaling), ellipsoid $E_{k+1}=E\left(-\frac{1}{n+1} d, F\right)$ for $F=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} d d^{T}\right)$ contains $E_{k} \cap\{x:$ $\left.d^{T} x \leq 0\right\}$ and ratio of volumes is at most $\exp \left(-\frac{1}{2(n+1)}\right)$.
Example: For halfspace $x_{1} \geq 0$ as above,

- $d=(-1,0, \ldots, 0)$ so $a=\frac{1}{n+1}(1,0, \ldots, 0)$ as claimed
- $d d^{T}$ is matrix with 1 in upper-left, so A_{11} is

$$
\begin{gathered}
\frac{n^{2}}{n^{2}-1}\left(\frac{n+1}{n+1}-\frac{2}{n+1}\right) \\
=\frac{n^{2}}{(n+1)(n-1)}\left(\frac{n-1}{n+1}\right) \\
=\left(\frac{n}{n+1}\right)^{2}
\end{gathered}
$$

and $A_{i i}=n^{2} /\left(n^{2}-1\right)$.

Claim: For any E_{k} and E_{k+1}, ratio of volumes is at most $\exp \left(-\frac{1}{2(n+1)}\right)$.

Proof:

- Let $E_{k}=E\left(a_{k}, A\right)$ and $c^{T} x \leq c^{T} a_{k}$ be halfspace containing P.
- Consider transformation $T(x)=$ $\left(B^{-1}\right)^{T}\left(x-a_{k}\right)$ where $A=B^{T} B$.
- Note under T, E_{k} becomes $E(0,1)$.
- Note under $T, x=B^{T} y+a_{k}$ so halfspace becomes

$$
\begin{gathered}
\left\{y: c^{T}\left(a_{k}+B^{T} y\right) \leq c^{T} a_{k}\right\} \\
=\left\{y: c^{T} B^{T} y \leq 0\right\}=\left\{y: d^{T} x \leq 0\right\}
\end{gathered}
$$

for $d=B c / \sqrt{c^{T} B^{T} B c}=B c / \sqrt{c^{T} A c}$.

- New ellipsoid in transformed space is $E\left(-\frac{1}{n+1} d, F\right)$ for $F=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} d d^{T}\right)$.
- Inverse transformation: $E_{k+1}=$ $E\left(a_{k} \quad-\quad \frac{1}{n+1} B^{T} d, B^{T} F B\right) \quad=$ $E\left(a_{k}-\frac{1}{n+1} b, \frac{n^{2}}{n^{2}-1}\left(A-\frac{2}{n+1} b b^{T}\right)\right)$ where $b=B^{T} d$.

Algorithm: Ellipsoid: For $P=\{x: C x \leq$ $d\}$,

1. Start with $k=0, E_{0}=E\left(a_{0}, A_{0}\right)$ where $P \subseteq E_{0}$.
2. While $a_{k} \notin P$ do:

- Let $c^{T} x \leq d$ be inequality valid for $x \in P$ but $c^{T} a_{k}>d$.
- Let $b=\frac{A_{k} c}{\sqrt{c^{T} A_{k} c}}$.
- Let $a_{k+1}=a_{k}-\frac{1}{n+1} b$.
- Let $A_{k+1}=\frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1} b b^{T}\right)$.

Analysis: After k iterations, $\operatorname{Vol}\left(E_{k}\right) \leq$ $\operatorname{Vol}\left(E_{0}\right) \exp \left(-\frac{k}{2(n+1)}\right)$, so need at most $2(n+$ 1) $\ln \frac{V o l\left(E_{0}\right)}{\operatorname{Vol}(P)}$ iterations.

Claim: Ellipsoid polytime.
Proof: Show for $S \subseteq\{0,1\}$ and $P=$ $\operatorname{conv}(S)$.

- Assume P full dimensional (else eliminate variables)
- feasibility to optimization:
- let $c^{T} x$ be objective func with $c \in$ \mathbb{Z}^{n} (wlog if c rational).
- check feasibility of $P^{\prime}=P \cap\{x$: $\left.c^{T} x \leq d+1 / 2\right\}$ and binary search for d in $\left[-n c_{\max }, n c_{\text {max }}\right]$
- takes $O\left(\log n+\log c_{\max }\right)$ runs of ellipsoid, polynomial
- starting ellipsoid:
- need to guarantee we contain polytope P, sufficient to contain hypercube
- for E_{0} use ball centered at $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ of radius $\frac{1}{2} \sqrt{n}$
- E_{0} has volume $\left(\frac{1}{2} \sqrt{n}\right)^{n} \operatorname{Vol}\left(B_{n}\right)$ where B_{n} is unit ball and $\operatorname{Vol}\left(B_{n}\right)<2^{n}$
$-\log \left(\operatorname{Vol}\left(E_{0}\right)\right)=O(n \log n)$
- termination: if P^{\prime} non-empty, not too small (see notes)
- separation oracle (to give halfspace): polytime black-box
- finding optimum soln: get from x^{\prime} of value at most $d+\frac{1}{2}$ to x of value exactly d by finding any extreme point x with $c^{T} x \leq c^{T} x^{\prime}$ (see notes)

Applying Ellipsoid

Problem: Maximum weight matching
Recall: Matching polytope

$$
\sum_{e \in E(S)} x_{e} \leq \frac{|S|-1}{2}, \forall|S| \text { odd }
$$

$$
\sum_{e \in \delta(v)} x_{e} \leq 1, x_{e} \geq 0
$$

Goal: Separation oracle.

- Given x^{*}, last two constraints easily checked.
- Others checked with sequence of min cuts.

Claim: There's a polytime separation oracle.
Proof: Assume $|V|$ even (else add a vertex).

- Let $s_{v}=1-\sum_{e \in \delta(v)} x_{e}$ (slack of constraint for v).
- Note $\sum_{e \in E(S)} x_{e} \leq(|S|-1) / 2$ becomes

$$
\sum_{v \in S} s_{v}+\sum_{e \in \delta(S)} x_{e} \geq 1
$$

- Let $H=(V \cup\{u\}, E \cup\{(u, v): v \in V\})$ new graph with new vertex u connected everywhere.
- Let capacity u_{e} of edge be x_{e} if $e \in E$ or s_{v} for $e=(u, v)$.
- Note $\sum_{v \in S} s_{v}+\sum_{e \in \delta(S)} x_{e} \geq 1$ iff $\sum_{e \in \delta_{H}(S)} u_{e} \geq 1$.
- Thus just need to find min cut in H among cuts $S \subseteq V$ with $|S|$ odd; if value is $\geq 1, x^{*}$ feasible, else found violation.
- This is the min T-odd cut problem and is polytime.

Polar Duality

Def: Given polytope $C \subseteq \mathbb{R}^{n}$ containing origin, find representation s.t.

$$
C=\left\{c \mid a_{i} \cdot c \leq b_{i}\right\}
$$

where $b_{i}=1$ (scale constraints). The polar of C is $C^{*}=\operatorname{conv}\left(a_{1}, \ldots, a_{k}\right)$

Example:

1. C is unit circle, polar is unit circle.
2. C is square with corners $(1,1),(1,-1),(-1,1),(-1,-1)$.
Polar is diamond with corners $(1,0),(0,1),(-1,0),(0,-1)$.
3. C is bulging rectangle with corners $(100,3),(100,-3),(-100,3),(-100,-3)$. Polar is tall thin rectangle with corners at $(+/-1 / 100,0),(0,+/-1 / 3)$.

Note: Facets become vertices and vice versa. Size/shape reverses.
Claim: Polars have following properties:

- $\left(C^{*}\right)^{*}=C$.
- If C is origin-symmetric, so is C^{*}.
- If $A \subseteq B$ then $B^{*} \subseteq A^{*}$.
- If A is scaled up, A^{*} is scaled down.

Def: If $C \subseteq \mathbb{R}^{n}$, the polar of C is the set $C^{*}=\left\{x \in \mathbb{R}^{n}: x^{T} c \leq 1 \forall c \in C\right\}$.
Claim: Two defns are equiv.
Proof: Exercise.
Claim: $\left(C^{*}\right)^{*}=C$.
Proof: $C \subseteq C^{* *}$:

- $C^{*}=\left\{x: x^{T} c \leq 1 \forall c \in C\right\}$ and $C^{* *}=$ $\left\{y: y^{T} x \leq 1 \forall x \in C^{*}\right\}$.
- Let y be point in C.
- By defn of polar of C, for all $x \in C^{*}$, $x^{T} y \leq 1$.
- By defn of polar of C^{*}, conclude $y \in C^{* *}$. $C^{* *} \subseteq C:$
- Assume not and let $y \in C^{* *}$ be s.t. $y \notin$ C.
- Since $y \in C^{* *}$ have $y^{T} x \leq 1$ for all $x \in$ C^{*}.
- Since $y \notin C$ there's separating hyperplane v with $x^{T} v \leq 1$ for $x \in C$ and $y^{T} v>1$.
- By first condition, $v \in C^{*}$ and so second contradicts $y \in C^{* *}$.

So to separate over polar, optimize over polytope.

