Problem: For polytope *P*,

 $\max\{c^T x | x \in P\}$

where P may have exponentially many facets. Goal: Separation iff Optimization

- \rightarrow : ellipsoid method
- \leftarrow : polar polytopes

Ellipsoid Method

Algs for solving LPs:

- simplex (Dantzig, 40s): practical, not known to be in P
- ellipsoid (Shor; Khachyan, 70s): impracticle, but in P, only requires separation oracle
- interior point (Karmarkar, 80s): practical, in P, require explicit representation of polytope

Idea:

- Take big ellipsoid containing P.
- half.

- Consider half-ellipsoid containing P and find new ellipsoid containing this halfellipsoid.
- Iterate.

Example: Circle at origin, sep hyperplane $x_1 = 0$, draw new ellipsoid (tall, thin).

Fact: Volume of ellipsoids shrinks exponentially.

Hence we are guaranteed to get to center and can bound running time by ratio of initial and final ellipsoid if polytope has positive volume (for other cases, see pa- $\lfloor per).$

Algorithm: Ellipsoid (sketch)

- 1. Let E_0 be an ellipsoid containing P
- 2. while center a_k of E_k is not in P do:
 - Let $c^T x \leq c^T a_k$ be s.t. $P \subseteq \{x : c^T x < c^T a_k\}.$
 - Let E_{k+1} be min vol ellipsoid con-taining $E_k \cap \{x : c^T x \leq c^T a_k\}.$
 - $k \leftarrow k+1$.

Ellipsoids

• If center not in P, find separating hyper- **Recall:** A positive definite iff $x^T A x > 0$ for plane through center dividing ellipsoid in all non-zero $x \in \mathbb{R}^n$ iff $A = B^T B$ for real matrix B.

Def: Given center a and positive definite matrix A, ellipsoid E(a, A) is $\{x \in \mathbb{R}^n : (x-a)^T A^{-1}(x-a) \leq 1\}$.

Note: Just affine transformations of unit spheres:

- transformation $T(x) = (B^{-1})^T (x-a)$ for $A = B^T B$
- $E(a,A) \rightarrow \{y: y^T y \leq 1\} = E(0,I)$

Shrinking Volume

Claim: $\frac{Vol(E_{k+1})}{Vol(E_k)} < e^{-\frac{1}{2(n+1)}}$

Idea: Show for unit sphere, use transformations (which preserve ratio of volumes).

Claim: For unit sphere E_k and halfspace $x_1 \ge 0$, ellipsoid containing $E_k \cap \{x : x_1 \ge 0\}$ is $E_{k+1} = \{x\}$ s.t.

$$\left(\frac{n+1}{n}\right)^2 \left(x_1 - \frac{1}{n+1}\right)^2 + \frac{n^2 - 1}{n^2} \sum_{i=2}^n x_i^2 \le 1.$$

Example: In two dimensions, center at (1/3, 0), width 2/3, height 4/3.

Proof: For $x \in E_k \cap \{x : x_1 \ge 0\}$,

$$\left(\frac{n+1}{n}\right)^2 \left(x_1 - \frac{1}{n+1}\right)^2 + \dots$$
$$= \frac{n^2 + 2n + 1}{n^2} x_1^2 - \left(\frac{n+1}{n}\right)^2 \frac{2x_1}{n+1} + \frac{1}{n^2} + \dots$$
$$= \frac{2n+2}{n^2} x_1^2 - \frac{2n+2}{n^2} x_1 + \frac{1}{n^2} + \sum_{i=1}^n x_i^2$$
$$= \frac{2n+2}{n^2} x_1 (x_1 - 1) + \frac{1}{n^2} + \sum_{i=1}^n x_i^2$$
$$\leq \frac{1}{n^2} + \frac{n^2 - 1}{n^2} \leq 1.$$

Ellipsoid since

- $a = \frac{1}{n+1}(1, 0, \dots, 0)$
- $A = \text{diag matrix with } A_{11} = (\frac{n}{n+1})^2$, $A_{ii} = (\frac{n^2}{n^2-1})$, positive definite (inverse because it's inverse in defn)

Proof: Of vol ratio for these ellipsoids: volume proportional to product of side lengths, so

$$\frac{Vol(E_{k+1})}{Vol(E_k)} = \frac{\left(\frac{n}{n+1}\right)\left(\frac{n^2}{n^2-1}\right)^{(n-1)/2}}{1}$$
$$< e^{-\frac{1}{n+1}}e^{\frac{n-1}{2(n^2-1)}} = e^{-\frac{1}{n+1}}e^{\frac{1}{2(n+1)}} = e^{-\frac{1}{2(n+1)}}$$

since $1 + x \leq e^x$ for all x and strict if $x \neq 0$. **Claim:** More generally, for unit sphere E_k and halfspace $d^T x \leq 0$ with ||d|| = 1 (wlog by scaling), ellipsoid $E_{k+1} = E(-\frac{1}{n+1}d, F)$ for $F = \frac{n^2}{n^2-1}(I - \frac{2}{n+1}dd^T)$ contains $E_k \cap \{x : d^T x \leq 0\}$ and ratio of volumes is at most $\exp(-\frac{1}{2(n+1)})$.

Example: For halfspace $x_1 \ge 0$ as above,

- $d = (-1, 0, \dots, 0)$ so $a = \frac{1}{n+1}(1, 0, \dots, 0)$ as claimed
- dd^T is matrix with 1 in upper-left, so A_{11} is

$$\frac{n^2}{n^2 - 1} \left(\frac{n+1}{n+1} - \frac{2}{n+1} \right)$$
$$= \frac{n^2}{(n+1)(n-1)} \left(\frac{n-1}{n+1} \right)$$
$$= \left(\frac{n}{n+1} \right)^2$$
and $A_{ii} = n^2/(n^2 - 1).$

Claim: For any E_k and E_{k+1} , ratio of volumes is at most $\exp(-\frac{1}{2(n+1)})$.

Proof:

- Let $E_k = E(a_k, A)$ and $c^T x \leq c^T a_k$ be halfspace containing P.
- Consider transformation $T(x) = (B^{-1})^T (x a_k)$ where $A = B^T B$.
- Note under T, E_k becomes E(0, 1).
- Note under T, $x = B^T y + a_k$ so halfspace becomes

$$\{y: c^T(a_k + B^T y) \le c^T a_k\}$$
$$= \{y: c^T B^T y \le 0\} = \{y: d^T x \le 0\}$$
for $d = Bc/\sqrt{c^T B^T Bc} = Bc/\sqrt{c^T Ac}.$

- New ellipsoid in transformed space is $E(-\frac{1}{n+1}d, F)$ for $F = \frac{n^2}{n^2-1}(I \frac{2}{n+1}dd^T)$.
- Inverse transformation: $E_{k+1} = E(a_k \frac{1}{n+1}B^Td, B^TFB) = E(a_k \frac{1}{n+1}b, \frac{n^2}{n^2-1}(A \frac{2}{n+1}bb^T))$ where $b = B^Td$.

Algorithm: Ellipsoid: For $P = \{x : Cx \le d\},\$

- 1. Start with $k = 0, E_0 = E(a_0, A_0)$ where $P \subseteq E_0$.
- 2. While $a_k \notin P$ do:
 - Let $c^T x \leq d$ be inequality valid for $x \in P$ but $c^T a_k > d$.
 - Let $b = \frac{A_k c}{\sqrt{c^T A_k c}}$. • Let $a_{k+1} = a_k - \frac{1}{n+1}b$.
 - Let $A_{k+1} = \frac{n^2}{n^2 1} (A_k \frac{2}{n+1} b b^T).$

Analysis: After k iterations, $Vol(E_k) \leq Vol(E_0) \exp(-\frac{k}{2(n+1)})$, so need at most $2(n+1) \ln \frac{Vol(E_0)}{Vol(P)}$ iterations.

Claim: Ellipsoid polytime.

Proof: Show for $S \subseteq \{0,1\}$ and P = conv(S).

- Assume *P* full dimensional (else eliminate variables)
- feasibility to optimization:
 - let $c^T x$ be objective func with $c \in \mathbb{Z}^n$ (wlog if c rational).
 - check feasibility of $P' = P \cap \{x : c^T x \leq d + 1/2\}$ and binary search for d in $[-nc_{max}, nc_{max}]$
 - takes $O(\log n + \log c_{max})$ runs of ellipsoid, polynomial
- starting ellipsoid:
 - need to guarantee we contain polytope P, sufficient to contain hypercube
 - for E_0 use ball centered at $(\frac{1}{2}, \ldots, \frac{1}{2})$ of radius $\frac{1}{2}\sqrt{n}$
 - E_0 has volume $(\frac{1}{2}\sqrt{n})^n Vol(B_n)$ where B_n is unit ball and $Vol(B_n) < 2^n$ - $\log(Vol(E_0)) = O(n \log n)$
- termination: if P' non-empty, not too small (see notes)
- separation oracle (to give halfspace): polytime black-box
- finding optimum soln: get from x' of value at most $d + \frac{1}{2}$ to x of value exactly d by finding any extreme point x with $c^T x \leq c^T x'$ (see notes)

Applying Ellipsoid

Problem: Maximum weight matching**Recall:** Matching polytope

$$\sum_{e \in E(S)} x_e \le \frac{|S| - 1}{2}, \forall |S| \text{ odd}$$

$$\sum_{e \in \delta(v)} x_e \le 1, x_e \ge 0$$

Goal: Separation oracle.

- Given x^* , last two constraints easily checked.
- Others checked with sequence of min cuts.

Claim: There's a polytime separation oracle.

Proof: Assume |V| even (else add a vertex).

• Let $s_v = 1 - \sum_{e \in \delta(v)} x_e$ (slack of constraint for v).

• Note
$$\sum_{e \in E(S)} x_e \le (|S| - 1)/2$$
 becomes
 $\sum s_v + \sum x_e \ge 1.$

 $e \in \delta(S)$

 $v \in S$

• Let
$$H = (V \cup \{u\}, E \cup \{(u, v) : v \in V\})$$

new graph with new vertex u connected
everywhere.

- Let capacity u_e of edge be x_e if $e \in E$ or s_v for e = (u, v).
- Note $\sum_{v \in S} s_v + \sum_{e \in \delta(S)} x_e \ge 1$ iff $\sum_{e \in \delta_H(S)} u_e \ge 1$.
- Thus just need to find min cut in Hamong cuts $S \subseteq V$ with |S| odd; if value is ≥ 1 , x^* feasible, else found violation.
- This is the min *T*-odd cut problem and is polytime.

Polar Duality

Def: Given polytope $C \subseteq \mathbb{R}^n$ containing origin, find representation s.t.

$$C = \{c | a_i \cdot c \le b_i\},\$$

where $b_i = 1$ (scale constraints). The *polar* of C is $C^* = conv(a_1, \ldots, a_k)$

Example:

- 1. C is unit circle, polar is unit circle.
- 2. C is square with corners (1,1), (1,-1), (-1,1), (-1,-1). Polar is diamond with corners (1,0), (0,1), (-1,0), (0,-1).
- 3. C is bulging rectangle with corners (100, 3), (100, -3), (-100, 3), (-100, -3).Polar is tall thin rectangle with corners at (+/ - 1/100, 0), (0, +/ - 1/3).

Note: Facets become vertices and vice versa. Size/shape reverses.

Claim: Polars have following properties:

- $(C^*)^* = C$.
- If C is origin-symmetric, so is C^* .
- If $A \subseteq B$ then $B^* \subseteq A^*$.
- If A is scaled up, A^* is scaled down.

Def: If $C \subseteq \mathbb{R}^n$, the *polar* of *C* is the set $C^* = \{x \in \mathbb{R}^n : x^T c \leq 1 \forall c \in C\}.$

Claim: Two defns are equiv.

Proof: Exercise.

Claim: $(C^*)^* = C$. Proof: $C \subseteq C^{**}$:

- $C^* = \{x : x^T c \le 1 \forall c \in C\}$ and $C^{**} = \{y : y^T x \le 1 \forall x \in C^*\}.$
- Let y be point in C.
- By defn of polar of C, for all $x \in C^*$, $x^T y \leq 1$.

• By definition of C^* , conclude $y \in C^{**}$.

 $C^{**} \subseteq C$:

- Assume not and let $y \in C^{**}$ be s.t. $y \notin C$.
- Since $y \in C^{**}$ have $y^T x \leq 1$ for all $x \in C^*$.
- Since $y \notin C$ there's separating hyperplane v with $x^T v \leq 1$ for $x \in C$ and $y^T v > 1$.
- By first condition, $v \in C^*$ and so second contradicts $y \in C^{**}$.

So to separate over polar, optimize over polytope.