RAA 2017
 Longest Paths in Graphs: Parameterized Algorithms Exercise I

May 23rd 2017

Remark : Several of these problems use the notion of matroids. Those who do not know the definition of matroids can find the definitions below. Else, assume that \mathcal{S} is a family of sets over a universe U such that each set in \mathcal{S} has size exactly p.

1. In the Vertex Cover problem, we are given a graph $G=(V, E)$ and a positive integer k, and the problem is to test whether there exists a vertex subset $X \subseteq V(G)$ such that $|X| \leq k$ and $G \backslash X$ is an independent set. Obtain a $2^{k} n^{\mathcal{O}(1)}$-time algorithm for this problem.
2. In the d-Hitting Set problem, we are given a family \mathcal{F} of sets of size d over a universe U and a positive integer k, and the problem is to test whether there exists a subset $X \subseteq U$ such that $|X| \leq k$ and for every set $F \in \mathcal{F}, F \cap X \neq \emptyset$. Obtain a $k^{\mathcal{O}(d)}$ kernel for the problem using the method of representative sets.
3. Let A_{1}, \ldots, A_{m} be p-element sets and B_{1}, \ldots, B_{m} be q-element sets such that $A_{i} \cap B_{j}=\emptyset$ if and only of $i=j$.
(a) Show that $m \leq 2^{p+q}$. (Hint: Think uniform random partition of $U=\cup_{i=1}^{m}\left(A_{i} \cup B_{i}\right)$.)
(b) Show that $m \leq\binom{ p+q}{p}$. (Hint: Think of permutations of U.)
(c) Show that the bound of $\binom{p+q}{p}$ on m is tight.
(d) Let $\mathcal{S}=\left\{S_{1}, \ldots, S_{t}\right\}$ be a family of p element sets. Using the above exercises show that the size of q-representative family is upper bounded by $\binom{p+q}{p}$.
4. Let $M=(U, \mathcal{I})$ be a matroid and let \mathcal{S} be a p-uniform family of subsets of E. Show that if $\mathcal{S}^{\prime} \subseteq_{\text {rep }}^{q} \mathcal{S}$ and $\widehat{\mathcal{S}} \subseteq_{\text {rep }}^{q} \mathcal{S}^{\prime}$, then $\widehat{\mathcal{S}} \subseteq_{\text {rep }}^{q} \mathcal{S}$. (If $\widehat{\mathcal{S}} \subseteq \mathcal{S}$ is q-representative for \mathcal{S} we write $\left.\widehat{\mathcal{S}} \subseteq_{\text {rep }}^{q} \mathcal{S}.\right)$
5. Let $M=(U, \mathcal{I})$ be a matroid and let \mathcal{S} be a p-uniform family of subsets of E. Show that if $\mathcal{S}=\mathcal{S}_{1} \cup \cdots \cup \mathcal{S}_{\ell}$ and $\widehat{\mathcal{S}}_{i} \subseteq_{\text {rep }}^{q} \mathcal{S}_{i}$, then $\cup_{i=1}^{\ell} \widehat{\mathcal{S}}_{i} \subseteq_{\text {rep }}^{q} \mathcal{S}$.
6. Let G be a connected graph on $2 n$ vertices and \mathcal{L} be a family of forests of G of size n (that is, the number of edges is n). Let $\widehat{\mathcal{L}} \subseteq \mathcal{L}$ be a family of forests such that for any forest F of size $n-1$, if there exists a forest $X \in \mathcal{L}$ such that $F \cup X$ is a spanning tree of G, then there exists a forest $\widehat{X} \in \widehat{\mathcal{L}}$ such that $F \cup \widehat{X}$ is a spanning tree of G. Could you give a non-trivial upper bound on the size of $|\widehat{\mathcal{L}}|$ (like some c^{n})?

Matroid Basics

Now we give definitions related to matroids.
Definition 1 A pair $M=(U, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets (called independent sets) of E, is a matroid if it satisfies the following conditions:
(I1) $\phi \in \mathcal{I}$.
(I2) If $A^{\prime} \subseteq A$ and $A \in \mathcal{I}$ then $A^{\prime} \in \mathcal{I}$.
(I3) If $A, B \in \mathcal{I}$ and $|A|<|B|$, then there is $e \in(B \backslash A)$ such that $A \cup\{e\} \in \mathcal{I}$.
The axiom (I2) is also called the hereditary property and a pair (E, \mathcal{I}) satisfying only (I2) is called hereditary family. An inclusion wise maximal set of \mathcal{I} is called a basis of the matroid. Using axiom (I3) it is easy to show that all the bases of a matroid have the same size. This size is called the rank of the matroid M, and is denoted by $\operatorname{rank}(M)$.

Linear Matroids and Representable Matroids

Let A be a matrix over an arbitrary field \mathbb{F} and let E be the set of columns of A. For A, we define matroid $M=(U, \mathcal{I})$ as follows. A set $X \subseteq E$ is independent (that is $X \in \mathcal{I}$) if the corresponding columns are linearly independent over \mathbb{F}. The matroids that can be defined by such a construction are called linear matroids, and if a matroid can be defined by a matrix A over a field \mathbb{F}, then we say that the matroid is representable over \mathbb{F}. That is, a matroid $M=(U, \mathcal{I})$ of rank d is representable over a field \mathbb{F} if there exist vectors in \mathbb{F}^{d} corresponding to the elements such that linearly independent sets of vectors correspond to independent sets of the matroid. A matroid $M=(U, \mathcal{I})$ is called representable or linear if it is representable over some field \mathbb{F}.

1. Show that the following families form matroid.
(a) Let $G=(V, E)$ be a graph. Let $M=(U, \mathcal{I})$ be a matroid defined on G, where $U=E$ and \mathcal{I} contains all forests of G. (Graphic Matroid)
(b) Let $G=(V, E)$ be a connected graph. Let $M=(U, \mathcal{I})$ be a matroid defined on G, where $U=E$ and \mathcal{I} contains all $E^{\prime} \subseteq E$ such that $G^{\prime}=\left(V, E \backslash E^{\prime}\right)$ is connected. (Co-Graphic Matroid)
2. Obtain a representation matrix for the following matroid.
(a) Graphic Matroid.
(b) Uniform Matroids $-M=(U, \mathcal{I})$ where \mathcal{I} contains all subsets of U of size at most k for some fixed constant k.
(c) Partition Matroids - It is defined by a ground set U being partitioned into (disjoint) sets U_{1}, \ldots, U_{ℓ} and by ℓ non-negative integers k_{1}, \ldots, k_{ℓ}. A set $X \subseteq U$ is independent if and only if $\left|X \cap U_{i}\right| \leq k_{i}$ for all $i \in\{1, \ldots, \ell\}$. That is,

$$
\mathcal{I}=\left\{X \subseteq U| | X \cap U_{i} \mid \leq k_{i}, i \in\{1, \ldots, \ell\}\right\}
$$

(d) Direct Sum of Matroids - Let $M_{1}=\left(U_{1}, \mathcal{I}_{1}\right), M_{2}=\left(U_{2}, \mathcal{I}_{2}\right), \cdots, M_{t}=\left(U_{t}, \mathcal{I}_{t}\right)$ be t matroids with $U_{i} \cap U_{j}=\emptyset$ for all $1 \leq i \neq j \leq t$. The direct sum $M_{1} \oplus \cdots \oplus M_{t}$ is a matroid $M=(U, \mathcal{I})$ with $U:=\bigcup_{i=1}^{t} U_{i}$ and $X \subseteq U$ is independent if and only if for all $i \leq t, X \cap U_{i} \in \mathcal{I}_{i}$.
3. Let $M_{1}=\left(U_{1}, \mathcal{I}_{1}\right)$ and $M_{2}=\left(U_{2}, \mathcal{I}_{2}\right)$ be two matroids such that $U=U_{1}=U_{2}$. Define $M_{1} \cap M_{2}$ as $M=(U, \mathcal{I})$ such that $X \in \mathcal{I}$ if and only if $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$. Is M always a matroid? (Matroid Intersection)
4. Express the following as intersection of matroids (possibly more than two).
(a) Finding a maximum matching in a bipartite graph $G=(A \cup B, E)$.
(b) Testing whether a graph $G=(V, E)$ contains two edge disjoint spanning trees.
(c) Finding a hamiltonian path in a directed graph $D=(V, A)$ between a pair of vertices s and t of D.

