RAA 2017 Longest Paths in Graphs: Parameterized Algorithms – Exercise I

May 23rd 2017

Remark : Several of these problems use the notion of *matroids*. Those who do not know the definition of matroids can find the definitions below. Else, assume that S is a family of sets over a universe U such that each set in S has size exactly p.

- 1. In the VERTEX COVER problem, we are given a graph G = (V, E) and a positive integer k, and the problem is to test whether there exists a vertex subset $X \subseteq V(G)$ such that $|X| \leq k$ and $G \setminus X$ is an independent set. Obtain a $2^k n^{\mathcal{O}(1)}$ -time algorithm for this problem.
- 2. In the *d*-HITTING SET problem, we are given a family \mathcal{F} of sets of size *d* over a universe *U* and a positive integer *k*, and the problem is to test whether there exists a subset $X \subseteq U$ such that $|X| \leq k$ and for every set $F \in \mathcal{F}$, $F \cap X \neq \emptyset$. Obtain a $k^{\mathcal{O}(d)}$ kernel for the problem using the method of representative sets.
- 3. Let A_1, \ldots, A_m be *p*-element sets and B_1, \ldots, B_m be *q*-element sets such that $A_i \cap B_j = \emptyset$ if and only of i = j.
 - (a) Show that $m \leq 2^{p+q}$. (Hint: Think uniform random partition of $U = \bigcup_{i=1}^{m} (A_i \cup B_i)$.)
 - (b) Show that $m \leq {p+q \choose p}$. (Hint: Think of permutations of U.)
 - (c) Show that the bound of $\binom{p+q}{p}$ on *m* is tight.
 - (d) Let $S = \{S_1, \ldots, S_t\}$ be a family of p element sets. Using the above exercises show that the size of q-representative family is upper bounded by $\binom{p+q}{p}$.
- 4. Let $M = (U, \mathcal{I})$ be a matroid and let \mathcal{S} be a *p*-uniform family of subsets of E. Show that if $\mathcal{S}' \subseteq_{rep}^q \mathcal{S}$ and $\widehat{\mathcal{S}} \subseteq_{rep}^q \mathcal{S}'$, then $\widehat{\mathcal{S}} \subseteq_{rep}^q \mathcal{S}$. (If $\widehat{\mathcal{S}} \subseteq \mathcal{S}$ is *q*-representative for \mathcal{S} we write $\widehat{\mathcal{S}} \subseteq_{rep}^q \mathcal{S}$.)
- 5. Let $M = (U, \mathcal{I})$ be a matroid and let S be a *p*-uniform family of subsets of E. Show that if $S = S_1 \cup \cdots \cup S_\ell$ and $\widehat{S}_i \subseteq_{rep}^q S_i$, then $\cup_{i=1}^\ell \widehat{S}_i \subseteq_{rep}^q S$.
- 6. Let G be a connected graph on 2n vertices and \mathcal{L} be a family of forests of G of size n (that is, the number of edges is n). Let $\widehat{\mathcal{L}} \subseteq \mathcal{L}$ be a family of forests such that for any forest F of size n-1, if there exists a forest $X \in \mathcal{L}$ such that $F \cup X$ is a spanning tree of G, then there exists a forest $\widehat{X} \in \widehat{\mathcal{L}}$ such that $F \cup \widehat{X}$ is a spanning tree of G. Could you give a non-trivial upper bound on the size of $|\widehat{\mathcal{L}}|$ (like some c^n)?

Matroid Basics

Now we give definitions related to matroids.

Definition 1 A pair $M = (U, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets (called independent sets) of E, is a matroid if it satisfies the following conditions:

- (I1) $\phi \in \mathcal{I}$.
- (I2) If $A' \subseteq A$ and $A \in \mathcal{I}$ then $A' \in \mathcal{I}$.
- (I3) If $A, B \in \mathcal{I}$ and |A| < |B|, then there is $e \in (B \setminus A)$ such that $A \cup \{e\} \in \mathcal{I}$.

The axiom (I2) is also called the hereditary property and a pair (E, \mathcal{I}) satisfying only (I2) is called hereditary family. An inclusion wise maximal set of \mathcal{I} is called a *basis* of the matroid. Using axiom (I3) it is easy to show that all the bases of a matroid have the same size. This size is called the *rank* of the matroid M, and is denoted by $\mathsf{rank}(M)$.

Linear Matroids and Representable Matroids

Let A be a matrix over an arbitrary field \mathbb{F} and let E be the set of columns of A. For A, we define matroid $M = (U, \mathcal{I})$ as follows. A set $X \subseteq E$ is independent (that is $X \in \mathcal{I}$) if the corresponding columns are linearly independent over \mathbb{F} . The matroids that can be defined by such a construction are called *linear matroids*, and if a matroid can be defined by a matrix A over a field \mathbb{F} , then we say that the matroid is representable over \mathbb{F} . That is, a matroid $M = (U, \mathcal{I})$ of rank d is representable over a field \mathbb{F} if there exist vectors in \mathbb{F}^d corresponding to the elements such that linearly independent sets of vectors correspond to independent sets of the matroid. A matroid $M = (U, \mathcal{I})$ is called *representable* or *linear* if it is representable over some field \mathbb{F} .

- 1. Show that the following families form matroid.
 - (a) Let G = (V, E) be a graph. Let $M = (U, \mathcal{I})$ be a matroid defined on G, where U = E and \mathcal{I} contains all *forests* of G. (Graphic Matroid)
 - (b) Let G = (V, E) be a connected graph. Let $M = (U, \mathcal{I})$ be a matroid defined on G, where U = E and \mathcal{I} contains all $E' \subseteq E$ such that $G' = (V, E \setminus E')$ is connected. (Co-Graphic Matroid)
- 2. Obtain a representation matrix for the following matroid.
 - (a) Graphic Matroid.
 - (b) Uniform Matroids $M = (U, \mathcal{I})$ where \mathcal{I} contains all subsets of U of size at most k for some fixed constant k.
 - (c) Partition Matroids It is defined by a ground set U being partitioned into (disjoint) sets U_1, \ldots, U_ℓ and by ℓ non-negative integers k_1, \ldots, k_ℓ . A set $X \subseteq U$ is independent if and only if $|X \cap U_i| \leq k_i$ for all $i \in \{1, \ldots, \ell\}$. That is,

$$\mathcal{I} = \left\{ X \subseteq U \mid |X \cap U_i| \le k_i, \ i \in \{1, \dots, \ell\} \right\}.$$

- (d) Direct Sum of Matroids Let $M_1 = (U_1, \mathcal{I}_1), M_2 = (U_2, \mathcal{I}_2), \dots, M_t = (U_t, \mathcal{I}_t)$ be t matroids with $U_i \cap U_j = \emptyset$ for all $1 \le i \ne j \le t$. The direct sum $M_1 \oplus \dots \oplus M_t$ is a matroid $M = (U, \mathcal{I})$ with $U := \bigcup_{i=1}^t U_i$ and $X \subseteq U$ is independent if and only if for all $i \le t, X \cap U_i \in \mathcal{I}_i$.
- 3. Let $M_1 = (U_1, \mathcal{I}_1)$ and $M_2 = (U_2, \mathcal{I}_2)$ be two matroids such that $U = U_1 = U_2$. Define $M_1 \cap M_2$ as $M = (U, \mathcal{I})$ such that $X \in \mathcal{I}$ if and only if $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$. Is M always a matroid? (Matroid Intersection)
- 4. Express the following as intersection of matroids (possibly more than two).
 - (a) Finding a maximum matching in a bipartite graph $G = (A \cup B, E)$.
 - (b) Testing whether a graph G = (V, E) contains two edge disjoint spanning trees.
 - (c) Finding a hamiltonian path in a directed graph D = (V, A) between a pair of vertices s and t of D.