
EECS 495: Combinatorial Optimization Lecture 11
Submodular Functions

Reading: Schrijver, Chapter 44

Announcements

• Homeworks: only required to do 10 total
(so 5 more). They are due by March 9
(last day of quarter).

• Lectures: there is no lecture next Wed.
Instead, schedule a two-hour meeting
with me to present your reading project
on Wed. or Thu. (time slots 10-12, 12-2,
2-4 on Wed., 10-12, 3-5 on Thu.)

– Presentations are 1.5 hours long.

– Be prepared to explain how you will
divide the work.

– Bring notes indicating exactly what
you plan to write on the board.

– Present your project to me. This
presentation will factor into your fi-
nal presentation grade.

• Reading Projects:

– schedule a presentation on Feb. 28,
March 2, or March 7.

– prepare a handout at least one day
before your presentation with sec-
tions: introduction (informal prob-
lem statement, motivation), model
(formal problem statement), solu-
tion (list techniques you’re using;
if we haven’t discussed them yet,

define them), followup questions
(at least two, these can be “exer-
cises” to help us understand things,
or “open questions”; at least one
should be an exercise)

Submodularity

Def: f : 2S → R is submodular if

∀A,B ⊆ S, f(A)+f(B) ≥ f(A∩B)+f(A∪B)

or equivalently,

∀A ⊆ B, e 6∈ B,

f(A+ e)− f(A) ≥ f(B + e)− f(B).

Properties

• non-negative if f(A) ≥ 0

• symmetric if f(A) = f(S \ A)

• monotone (non-decreasing) if f(A) ≤
f(B)∀A ⊆ B

• integer-valued if f(A) ∈ Z

Example: Matroids:

Rank function, sum of rank functions r1(U)+
r2(S \ U).

Example: Cuts:

Given G = (V,E) and capacity c : E →
R+, cut function f : 2V → R+ is f(U) =∑

e∈δ(U) c(e).
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Example: Coverage:

Let {T1, . . . , Tn} be subsets of T and S =
{1, . . . , n}. The coverage function f : 2S →
R+ is f(A) = | ∪i∈A Ti|[[

More generally, f(A) = g(∪i∈ATi) for
monotone submod func g.

]]
Example: Flows:

Le tD = (V,A) be directed graph with arc-
capacity c : A→ R+ and t ∈ V the sink. For
U ⊆ V \ {t}, f(U) = max flow from U to t in
D from sources U .

Minimization

Question: Find U ⊂ S that minimizes
f(U).

Note: Assume wlog f(∅) = 0 (add constant
if necessary).

[[f may be negative. ]]

Example: Matroid intersection is submodu-
lar function minimization.

Idea: (obvious): evaluation f on all possible
subsets.

• exponential time

• no better way for general set functions

• for submodular ones, use structure to get
better alg

Goal: Alg that minimizes submod f in poly-
time given oracle access to function.

Polymatroids

Question: certificate of optimality

For set function f on ground set S with
f(∅) = 0, define polyedron:

Pf = {x ∈ RS|
∑
e∈U

xe ≤ f(U)∀U ⊆ S}.

Example: Draw Pf for S = {1, 2}, f(∅) =
f({1, 2}) = 0, f({1}) = 1, f({2}) = −1.

Def: A polyhedron P is a polymatroid if
there’s a submod f such that P = Pf .

Def: Vector x ∈ Pf is a base vector of Pf or
f if x(S) = f(S). The base polytope Bf = {
base vectors of f} and is a face of Pf :

Bf = {x ∈ RS|x(U) ≤ f(U), x(S) = f(S)}.

Example: Show base polytope of previous
example.

Note: Bf bounded since f({s}) ≥ xs =
x(S)− x(S \ {s}) ≥ f(S)− f(S \ {s}).
Idea: Min-max theorem that certifies opti-
mality in terms of base polytope:

Claim: Let f : 2S → Z be a submodular
function such that f(∅) = 0. Then

min
U⊆S

f(U) = max{x−(S)|x ∈ Bf}

where x−(U) =
∑

i∈U min(0, xi).

Note: max ≤ min: x−(S) ≤ x(U) ≤ f(U)
for any subset U ⊆ S and base x ∈ Bf .

Proof of hard direction follows.

Claim: Moreover, given maximizer x, U =
{i ∈ S : xi < 0} is minimizer.

Idea: To minimize submod func, max con-
cave func over base polydron.

• want max sum of neg elts

• sum of all elts const
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• thus want min sum pos elts

• intuitively means minimize norm

Claim: For x∗ minimizer of

min
x
||x||22 s.t. x ∈ Bf

a minimizer U∗ for f is

U∗ = {i ∈ S : x∗i ≤ 0}

Problem: To run ellipsoid, must test x ∈
Bf .

Note: optimization implies separation (po-
lar polytopes).

Proof of Min-Max

Claim: For x ∈ Pf , define Fx = {U ⊆
S|x(U) = f(U)} (tight constraints). Then
Fx is closed under taking unions and inter-
sections.

Proof: For any U, V ∈ Fx, have

f(U ∪ V ) ≥ x(U ∪ V )

= x(U) + x(V )− x(U ∩ V )

≥ f(U) + f(V )− f(U ∩ v)

≥ f(U ∪ V ).

Proof: (of min-max relation): Let x be
maximizer. Note for any i, j ∈ S with and
xi < 0, xj > 0, ∃Uij s.t.

1. i ∈ Uij, j 6∈ Uij

2. x(Uij) = f(Uij)

since

• Suppose not, i.e. x(U) < f(U) for all
such U

• Let ε′ = min{f(U)−x(U)|i ∈ U, j 6∈ U}.

• Let ε = min{ε′, |xi|, |xj|}.

• Define x̂i = xi + ε, x̂j = xj − ε, x̂k = xk
for all other k ∈ S.

• Then x̂ ∈ Bf and x̂−(S) = x−(S) + ε >
x−(S) contradicting x is maximizer.

Define V to contain neg elts of S:

V = ∪i:xi<0 ∩j:xj>0 Uij.

Then

• lemma implies x(V ) = f(V )

• since V contains all neg elts, x−(S) =
x(V )

• thus x−(S) = f(V ).

So min-max relation satisfied by set claimed
in lemma.

Note: For norm claim, note ||xε||22 < ||x||22.

Optimize over Polymatroid

Idea: Extend greedy alg for matroids.

Problem:

maxwTx s.t. x ∈ Bf

for w with w1 ≥ . . . ≥ wn ≥ 0.

Idea: Greedy

1. set x1 as high as possible to get large w1

value: x1 = f({v1})

2. subject to this, set x2 as high as possible:

• x2 ≤ f({v2})
• x1 + x2 ≤ f({v1, v2})
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• by submod, f({v1, v2})−f({v1}) ≤
f({v2})

set x2 = f({v1, v2})− f({v1}).

3. ...

Algorithm: Given total ordering ≺ of S, let

• v1 ≺ . . . ≺ vn

• V ≺k = {v1, . . . , vk}

Set b≺1 → f({v1})
For k = 2 . . . n, set b≺k → f(V ≺k )− f(V ≺k−1)

Note: need only ordering, actual weights ir-
relevant.

Claim: Gready outputs optimal feasible vec-
tor.[[

feasibility by induction, optimality by du-
ality as for matroid greedy alg, exercise.

]]
Note: outputs extreme points of base poly-
tope, but want

maxx∈Bf
x−(V )

which may not be extreme point.[[
Hammer: optimization implies separa-
tion, use ellipsoid. More intuition:

]]
Idea: Search over convex combinations of ex-
treme points:

• maintain x =
∑

k λkb
≺k where λk ≥

0,
∑

k λk = 1

• iteratively modify bases in sum by swap-
ping elts in ≺, and update weights
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