Lecture 11

Reading: Schrijver, Chapter 44

Announcements

- Homeworks: only required to do 10 total (so 5 more). They are due by March 9 (last day of quarter).
- Lectures: there is no lecture next Wed. Instead, schedule a two-hour meeting with me to present your reading project on Wed. or Thu. (time slots 10-12, 12-2, 2-4 on Wed., 10-12, 3-5 on Thu.)
 - Presentations are 1.5 hours long.
 - Be prepared to explain how you will divide the work.
 - Bring notes indicating exactly what you plan to write on the board.
 - Present your project to me. This presentation will factor into your final presentation grade.
- Reading Projects:
 - schedule a presentation on Feb. 28, March 2, or March 7.
 - prepare a handout at least one day before your presentation with sections: introduction (informal problem statement, motivation), model (formal problem statement), solution (list techniques you're using; if we haven't discussed them yet,

define them), followup questions (at least two, these can be "exercises" to help us understand things, or "open questions"; at least one should be an exercise)

Submodularity

Def:
$$f: 2^S \to \mathbb{R}$$
 is submodular if

$$\forall A, B \subseteq S, f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$

or equivalently,

$$\forall A \subseteq B, e \notin B,$$

$$f(A+e) - f(A) \ge f(B+e) - f(B).$$

Properties

- non-negative if $f(A) \ge 0$
- symmetric if $f(A) = f(S \setminus A)$
- monotone (non-decreasing) if $f(A) \leq f(B) \forall A \subseteq B$
- integer-valued if $f(A) \in \mathbb{Z}$

Example: Matroids:

Rank function, sum of rank functions $r_1(U) + r_2(S \setminus U)$.

Example: Cuts:

Given G = (V, E) and capacity $c : E \to \mathbb{R}^+$, cut function $f : 2^V \to \mathbb{R}^+$ is $f(U) = \sum_{e \in \delta(U)} c(e)$.

Example: Coverage:

Let $\{T_1, \ldots, T_n\}$ be subsets of T and $S = \{1, \ldots, n\}$. The coverage function $f : 2^S \to \mathbb{R}^+$ is $f(A) = |\bigcup_{i \in A} T_i|$

 $\begin{bmatrix} More \ generally, \ f(A) = g(\bigcup_{i \in A} T_i) \ for \\ monotone \ submod \ func \ g. \end{bmatrix}$

Example: Flows:

Let D = (V, A) be directed graph with arccapacity $c : A \to \mathbb{R}^+$ and $t \in V$ the *sink*. For $U \subseteq V \setminus \{t\}, f(U) = \max$ flow from U to t in D from sources U.

Minimization

Question: Find $U \subset S$ that minimizes f(U).

Note: Assume wlog $f(\emptyset) = 0$ (add constant if necessary).

[[f may be negative.]

Example: Matroid intersection is submodular function minimization.

Idea: (obvious): evaluation f on all possible subsets.

- exponential time
- no better way for general set functions
- for submodular ones, use structure to get better alg

Goal: Alg that minimizes submod f in polytime given oracle access to function.

Polymatroids

Question: certificate of optimality

For set function f on ground set S with $f(\emptyset) = 0$, define polyedron:

$$P_f = \{ x \in \mathbb{R}^S | \sum_{e \in U} x_e \le f(U) \forall U \subseteq S \}.$$

Example: Draw P_f for $S = \{1, 2\}, f(\emptyset) = f(\{1, 2\}) = 0, f(\{1\}) = 1, f(\{2\}) = -1.$

Def: A polyhedron P is a *polymatroid* if there's a submod f such that $P = P_f$.

Def: Vector $x \in P_f$ is a base vector of P_f or f if x(S) = f(S). The base polytope $B_f = \{$ base vectors of $f\}$ and is a face of P_f :

$$B_f = \{x \in \mathbb{R}^S | x(U) \le f(U), x(S) = f(S) \}.$$

Example: Show base polytope of previous example.

Note: B_f bounded since $f(\{s\}) \ge x_s = x(S) - x(S \setminus \{s\}) \ge f(S) - f(S \setminus \{s\})$.

Idea: Min-max theorem that certifies optimality in terms of base polytope:

Claim: Let $f : 2^S \to \mathbb{Z}$ be a submodular function such that $f(\emptyset) = 0$. Then

$$\min_{U \subseteq S} f(U) = \max\{x^{-}(S) | x \in B_f\}$$

where $x^{-}(U) = \sum_{i \in U} \min(0, x_i)$.

Note: max \leq min: $x^{-}(S) \leq x(U) \leq f(U)$ for any subset $U \subseteq S$ and base $x \in B_f$.

Proof of hard direction follows.

Claim: Moreover, given maximizer $x, U = \{i \in S : x_i < 0\}$ is minimizer.

Idea: To minimize submod func, max concave func over base polydron.

- want max sum of neg elts
- sum of all elts const

11

- thus want min sum pos elts
- intuitively means minimize norm

Claim: For x^* minimizer of

$$\min_{x} ||x||_{2}^{2} \ s.t. \ x \in B_{f}$$

a minimizer U^* for f is

$$U^* = \{ i \in S : x_i^* \le 0 \}$$

Problem: To run ellipsoid, must test $x \in B_f$.

Note: optimization implies separation (polar polytopes).

Proof of Min-Max

Claim: For $x \in P_f$, define $\mathcal{F}_x = \{U \subseteq S | x(U) = f(U) \}$ (tight constraints). Then \mathcal{F}_x is closed under taking unions and intersections.

Proof: For any $U, V \in \mathcal{F}_x$, have

$$f(U \cup V) \ge x(U \cup V)$$

= $x(U) + x(V) - x(U \cap V)$
 $\ge f(U) + f(V) - f(U \cap v)$
 $\ge f(U \cup V).$

Proof: (of min-max relation): Let x be maximizer. Note for any $i, j \in S$ with and $x_i < 0, x_j > 0, \exists U_{ij}$ s.t.

1.
$$i \in U_{ij}, j \notin U_{ij}$$

2. $x(U_{ij}) = f(U_{ij})$

since

• Suppose not, i.e. x(U) < f(U) for all such U

- Let $\epsilon' = \min\{f(U) x(U) | i \in U, j \notin U\}.$
- Let $\epsilon = \min\{\epsilon', |x_i|, |x_j|\}.$
- Define $\hat{x}_i = x_i + \epsilon, \hat{x}_j = x_j \epsilon, \hat{x}_k = x_k$ for all other $k \in S$.
- Then $\hat{x} \in B_f$ and $\hat{x}^-(S) = x^-(S) + \epsilon > x^-(S)$ contradicting x is maximizer.

Define V to contain neg elts of S:

$$V = \bigcup_{i:x_i < 0} \bigcap_{j:x_j > 0} U_{ij}.$$

Then

- lemma implies x(V) = f(V)
- since V contains all neg elts, $x^-(S) = x(V)$
- thus $x^{-}(S) = f(V)$.

So min-max relation satisfied by set claimed in lemma.

Note: For norm claim, note $||x_{\epsilon}||_2^2 < ||x||_2^2$.

Optimize over Polymatroid

Idea: Extend greedy alg for matroids. Problem:

$$\max w^T x \ s.t. \ x \in B_f$$

for w with $w_1 \ge \ldots \ge w_n \ge 0$.

Idea: Greedy

- 1. set x_1 as high as possible to get large w_1 value: $x_1 = f(\{v_1\})$
- 2. subject to this, set x_2 as high as possible:
 - $x_2 \leq f(\{v_2\})$
 - $x_1 + x_2 \le f(\{v_1, v_2\})$

• by submod,
$$f(\{v_1, v_2\}) - f(\{v_1\}) \le f(\{v_2\})$$

set $x_2 = f(\{v_1, v_2\}) - f(\{v_1\})$.
3. ...

Algorithm: Given total ordering \prec of S, let

• $v_1 \prec \ldots \prec v_n$

•
$$V_k^{\prec} = \{v_1, \ldots, v_k\}$$

Set $b_1^{\prec} \to f(\{v_1\})$ For $k = 2 \dots n$, set $b_k^{\prec} \to f(V_k^{\prec}) - f(V_{k-1}^{\prec})$

Note: need only ordering, actual weights irrelevant.

Claim: Gready outputs optimal feasible vector.

 $\left[\begin{bmatrix} feasibility \ by \ induction, \ optimality \ by \ du-\\ ality \ as \ for \ matroid \ greedy \ alg, \ exercise. \end{bmatrix} \right]$

Note: outputs extreme points of base polytope, but want

$$max_{x\in B_f}x^-(V)$$

which may not be extreme point.

 $\begin{bmatrix} Hammer: & optimization & implies & separa-\\ tion, & use & ellipsoid. & More & intuition: \end{bmatrix}$

Idea: Search over convex combinations of extreme points:

- maintain $x = \sum_k \lambda_k b^{\prec_k}$ where $\lambda_k \ge 0, \sum_k \lambda_k = 1$
- iteratively modify bases in sum by swapping elts in ≺, and update weights