EECS 495: Combinatorial Optimization
 Lecture 11 Submodular Functions

Reading: Schrijver, Chapter 44

Announcements

- Homeworks: only required to do 10 total (so 5 more). They are due by March 9 (last day of quarter).
- Lectures: there is no lecture next Wed. Instead, schedule a two-hour meeting with me to present your reading project on Wed. or Thu. (time slots 10-12, 12-2, 2-4 on Wed., 10-12, 3-5 on Thu.)
- Presentations are 1.5 hours long.
- Be prepared to explain how you will divide the work.
- Bring notes indicating exactly what you plan to write on the board.
- Present your project to me. This presentation will factor into your final presentation grade.
- Reading Projects:
- schedule a presentation on Feb. 28, March 2, or March 7.
- prepare a handout at least one day before your presentation with sections: introduction (informal problem statement, motivation), model (formal problem statement), solution (list techniques you're using; if we haven't discussed them yet,
define them), followup questions (at least two, these can be "exercises" to help us understand things, or "open questions"; at least one should be an exercise)

Submodularity

Def: $f: 2^{S} \rightarrow \mathbb{R}$ is submodular if
$\forall A, B \subseteq S, f(A)+f(B) \geq f(A \cap B)+f(A \cup B)$ or equivalently,

$$
\forall A \subseteq B, e \notin B
$$

$$
f(A+e)-f(A) \geq f(B+e)-f(B)
$$

Properties

- non-negative if $f(A) \geq 0$
- symmetric if $f(A)=f(S \backslash A)$
- monotone (non-decreasing) if $f(A) \leq$ $f(B) \forall A \subseteq B$
- integer-valued if $f(A) \in \mathbb{Z}$

Example: Matroids:
Rank function, sum of rank functions $r_{1}(U)+$ $r_{2}(S \backslash U)$.
Example: Cuts:
Given $G=(V, E)$ and capacity $c: E \rightarrow$ \mathbb{R}^{+}, cut function $f: 2^{V} \rightarrow \mathbb{R}^{+}$is $f(U)=$ $\sum_{e \in \delta(U)} c(e)$.

Example: Coverage:
Let $\left\{T_{1}, \ldots, T_{n}\right\}$ be subsets of T and $S=$ $\{1, \ldots, n\}$. The coverage function $f: 2^{S} \rightarrow$ \mathbb{R}^{+}is $f(A)=\left|\cup_{i \in A} T_{i}\right|$
$\left[\left[\begin{array}{l}\text { More generally, } f(A)=g\left(\cup_{i \in A} T_{i}\right) \text { for } \\ \text { monotone submod func } g .\end{array}\right]\right]$
Example: Flows:
Le $\mathrm{t} D=(V, A)$ be directed graph with arccapacity $c: A \rightarrow \mathbb{R}^{+}$and $t \in V$ the sink. For $U \subseteq V \backslash\{t\}, f(U)=$ max flow from U to t in D from sources U.

Minimization

Question: Find $U \subset S$ that minimizes $f(U)$.
Note: Assume wlog $f(\emptyset)=0$ (add constant if necessary).
[[f may be negative.
Example: Matroid intersection is submodular function minimization.
Idea: (obvious): evaluation f on all possible subsets.

- exponential time
- no better way for general set functions
- for submodular ones, use structure to get better alg

Goal: Alg that minimizes submod f in polytime given oracle access to function.

Polymatroids

Question: certificate of optimality

For set function f on ground set S with $f(\emptyset)=0$, define polyedron:

$$
P_{f}=\left\{x \in \mathbb{R}^{S} \mid \sum_{e \in U} x_{e} \leq f(U) \forall U \subseteq S\right\}
$$

Example: Draw P_{f} for $S=\{1,2\}, f(\emptyset)=$ $f(\{1,2\})=0, f(\{1\})=1, f(\{2\})=-1$.
Def: A polyhedron P is a polymatroid if there's a submod f such that $P=P_{f}$.
Def: Vector $x \in P_{f}$ is a base vector of P_{f} or f if $x(S)=f(S)$. The base polytope $B_{f}=\{$ base vectors of $f\}$ and is a face of P_{f} :

$$
B_{f}=\left\{x \in \mathbb{R}^{S} \mid x(U) \leq f(U), x(S)=f(S)\right\} .
$$

Example: Show base polytope of previous example.
Note: B_{f} bounded since $f(\{s\}) \geq x_{s}=$ $x(S)-x(S \backslash\{s\}) \geq f(S)-f(S \backslash\{s\})$.
Idea: Min-max theorem that certifies optimality in terms of base polytope:
Claim: Let $f: 2^{S} \rightarrow \mathbb{Z}$ be a submodular function such that $f(\emptyset)=0$. Then

$$
\min _{U \subseteq S} f(U)=\max \left\{x^{-}(S) \mid x \in B_{f}\right\}
$$

where $x^{-}(U)=\sum_{i \in U} \min \left(0, x_{i}\right)$.
Note: $\max \leq \min : x^{-}(S) \leq x(U) \leq f(U)$ for any subset $U \subseteq S$ and base $x \in B_{f}$.
Proof of hard direction follows.
Claim: Moreover, given maximizer $x, U=$ $\left\{i \in S: x_{i}<0\right\}$ is minimizer.
Idea: To minimize submod func, max concave func over base polydron.

- want max sum of neg elts
- sum of all elts const
- thus want min sum pos elts
- intuitively means minimize norm

Claim: For x^{*} minimizer of

$$
\min _{x}\|x\|_{2}^{2} \text { s.t. } x \in B_{f}
$$

a minimizer U^{*} for f is

$$
U^{*}=\left\{i \in S: x_{i}^{*} \leq 0\right\}
$$

Problem: To run ellipsoid, must test $x \in$ B_{f}.
Note: optimization implies separation (polar polytopes).

Proof of Min-Max

Claim: For $x \in P_{f}$, define $\mathcal{F}_{x}=\{U \subseteq$ $S \mid x(U)=f(U)\}$ (tight constraints). Then \mathcal{F}_{x} is closed under taking unions and intersections.
Proof: For any $U, V \in \mathcal{F}_{x}$, have

$$
\begin{gathered}
f(U \cup V) \geq x(U \cup V) \\
=x(U)+x(V)-x(U \cap V) \\
\geq f(U)+f(V)-f(U \cap v) \\
\geq f(U \cup V) .
\end{gathered}
$$

Proof: (of min-max relation): Let x be maximizer. Note for any $i, j \in S$ with and $x_{i}<0, x_{j}>0, \exists U_{i j}$ s.t.

1. $i \in U_{i j}, j \notin U_{i j}$
2. $x\left(U_{i j}\right)=f\left(U_{i j}\right)$
since

- Suppose not, i.e. $x(U)<f(U)$ for all such U
- Let $\epsilon^{\prime}=\min \{f(U)-x(U) \mid i \in U, j \notin U\}$.
- Let $\epsilon=\min \left\{\epsilon^{\prime},\left|x_{i}\right|,\left|x_{j}\right|\right\}$.
- Define $\hat{x}_{i}=x_{i}+\epsilon, \hat{x}_{j}=x_{j}-\epsilon, \hat{x}_{k}=x_{k}$ for all other $k \in S$.
- Then $\hat{x} \in B_{f}$ and $\hat{x}^{-}(S)=x^{-}(S)+\epsilon>$ $x^{-}(S)$ contradicting x is maximizer.

Define V to contain neg elts of S :

$$
V=\cup_{i: x_{i}<0} \cap_{j: x_{j}>0} U_{i j}
$$

Then

- lemma implies $x(V)=f(V)$
- since V contains all neg elts, $x^{-}(S)=$ $x(V)$
- thus $x^{-}(S)=f(V)$.

So min-max relation satisfied by set claimed in lemma.
Note: For norm claim, note $\left\|x_{\epsilon}\right\|_{2}^{2}<\|x\|_{2}^{2}$.

Optimize over Polymatroid

Idea: Extend greedy alg for matroids.
Problem:
$\max w^{T}$ x s.t. $x \in B_{f}$
for w with $w_{1} \geq \ldots \geq w_{n} \geq 0$.
Idea: Greedy

1. set x_{1} as high as possible to get large w_{1} value: $x_{1}=f\left(\left\{v_{1}\right\}\right)$
2. subject to this, set x_{2} as high as possible:

- $x_{2} \leq f\left(\left\{v_{2}\right\}\right)$
- $x_{1}+x_{2} \leq f\left(\left\{v_{1}, v_{2}\right\}\right)$
- by submod, $f\left(\left\{v_{1}, v_{2}\right\}\right)-f\left(\left\{v_{1}\right\}\right) \leq$ $f\left(\left\{v_{2}\right\}\right)$
set $x_{2}=f\left(\left\{v_{1}, v_{2}\right\}\right)-f\left(\left\{v_{1}\right\}\right)$.

3. ...

Algorithm: Given total ordering \prec of S, let

- $v_{1} \prec \ldots \prec v_{n}$
- $V_{k}^{\prec}=\left\{v_{1}, \ldots, v_{k}\right\}$

Set $b_{1}^{\prec} \rightarrow f\left(\left\{v_{1}\right\}\right)$
For $k=2 \ldots n$, set $b_{k}^{\prec} \rightarrow f\left(V_{k}^{\prec}\right)-f\left(V_{k-1}^{\prec}\right)$
Note: need only ordering, actual weights irrelevant.

Claim: Gready outputs optimal feasible vector.
$\left[\left[\begin{array}{l}\text { feasibility by induction, optimality by du- } \\ \text { ality as for matroid greedy alg, exercise. }\end{array}\right]\right]$
Note: outputs extreme points of base polytope, but want

$$
\max _{x \in B_{f}} x^{-}(V)
$$

which may not be extreme point.
$\left[\left[\begin{array}{l}\text { Hammer: optimization implies separa- } \\ \text { tion, use ellipsoid. More intuition: }\end{array}\right]\right]$
Idea: Search over convex combinations of extreme points:

- maintain $x=\sum_{k} \lambda_{k} b^{\prec_{k}}$ where $\lambda_{k} \geq$ $0, \sum_{k} \lambda_{k}=1$
- iteratively modify bases in sum by swapping elts in \prec, and update weights

