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Dataset: 𝑛 points in 𝑅𝑑

Query: a point in 𝑅𝑑

Goal: find the closest datapoint

Applications
• Finding similar 

texts/audio/images/proteins/users/etc.
• 𝑘-NN rule in machine learning
• Optimization
• Cryptanalysis (short vectors in lattices)
• Training neural networks
• …

Distances
• Euclidean/Cosine (ℓ2), 

Manhattan/Hamming (ℓ1)
• ℓ∞, Jaccard similarity, edit distance, 

Earth Mover Distance (EMD), etc.

Recall:

• ℓ2 distance: σ𝑖 𝑥𝑖 − 𝑦𝑖
2 1/2

• ℓ1 distance: σ𝑖 |𝑥𝑖 − 𝑦𝑖|



• Word embeddings
• Vectors that capture semantic similarity 

between words

• GloVe [Pennigton, Socher, Manning 2014]
• Ten nearest neighbors for “algorithms”?
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• Algorithm gets to know the dataset in advance

• Preprocess to be able to answer queries quickly
• Improve upon the linear scan

• Main parameters: space, query time, preprocessing time

• Remark: queries do not belong to the dataset



NNS becomes hard in high dimensions!

Method Space Query time

Linear scan 𝑂(𝑑𝑛) 𝑂(𝑑𝑛)

Full indexing 𝑛𝑂(𝑑) poly(𝑑, log 𝑛)

 





Dataset: 𝑛 points in 𝑅𝑑

Query: a point in 𝑅𝑑

Goal: find a data point 
within factor of 𝑐 from the 
closest

Additional data
• Approximation 𝑐 > 1

𝑟

𝑐𝑟



• Want exact nearest neighbors 
(𝑐 = 1)

• Nearest neighbor is much 
closer than most of the data 
points

• The algorithms work under 
this “gap” assumption as well

GloVe word embeddings
[Pennigton, Socher, Manning 2014]

Nearest 
neighbor



• (Mild) exponential dependence on 𝑑
[Arya, Mount 1993], [Clarkson 1994], [Arya, Mount, Netanyahu, Silverman, Wu 1998], 
[Kleinberg 1997], [Har-Peled 2002], [Arya, Fonseca, Mount 2011], …

• Polynomial dependence on 𝑑
[Kushilevitz, Ostrovsky, Rabani 1998], [Indyk, Motwani 1998], [Indyk 1998, 2001, 2002, 2004], 
[Gionis, Indyk, Motwani 1999], [Charikar 2002], [Datar, Immorlica, Indyk, Mirrokni 2004], 
[Chakrabarti, Regev 2004], [Panigrahy 2006], [Ailon, Chazelle 2006], [Andoni, Indyk 2006], 
[Andoni, Indyk, Nguyen, R 2014], [Bartal, Gottlieb 2014], [Kapralov 2015], [Andoni, R 2015], 
[Pagh 2016], [Becker, Ducas, Gama, Laarhoven 2016], [Christiani 2017], [Andoni, Laarhoven, 
R, Waingarten 2017], [Andoni, R, Shekel-Nosatzki 2017], [Andoni, Nguyen, Nikolov, R, 
Waingarten 2017], [Andoni, Nikolov, R, Waingarten 2017]



• ANN for Hamming distance (ℓ1 on 0, 1 𝑑)
• Simple, classic algorithm from [Indyk, Motwani 1998], will see the 

full analysis

• Locality-Sensitive Hashing (LSH)

• Space 𝑂(𝑛1+ Τ1 𝑐 + 𝑛𝑑), query time 𝑂(𝑑𝑛 Τ1 𝑐)

• ANN for Euclidean distance (ℓ2 on 𝑅𝑑)
• Algorithm from [Andoni, Laarhoven, R, Waingarten 2017]

• Smooth “optimal” trade-off between space and query time

• Yields better results for Hamming as well

• Not so simple, but modular



Hamming distance between 𝑥, 𝑦 ∈ 0, 1 𝑑: 
number of mismatches, also 𝑥 − 𝑦 1
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• Dataset: 10M uniformly random points from 0, 1 1024

• One planted pair at distance 150

• Can we find it quickly?

• Naïve way: enumerate 1014 pairs

• Can we avoid it?



Dataset: 𝑛 points in {0, 1}𝑑

Query: a point in {0, 1}𝑑

within 𝑟 from a data point
Goal: find a data point
within 𝑐𝑟 from the query

Additional data
• Approximation 𝑐 > 1
• Distance scale 𝑟 > 0

𝑟

𝑐𝑟



• Build a data structure for each 𝑟

• During the query stage, run binary search on the answer

• Overhead 𝑂(𝑑) in space, 𝑂(log 𝑑) in query time

• Fine print: assume that the error probability is 1 −
1

10 𝑑



Dataset: 𝑛 points in {0, 1}𝑑

Query: a point in {0, 1}𝑑

within 𝑟 from a data point
Goal: find a data point
within 𝑐𝑟 from the query

Additional data
• Approximation 𝑐 > 1
• Distance scale 𝑟 > 0

𝑟

𝑐𝑟



• Idea: sample 𝐾 random coordinates

• Given a query, find all the data points that match the query 
exactly on the selected coordinates (can use a hash table)

• If there is any point within 𝑐𝑟 from the query, we are done



• Number of far points (further than 𝑐𝑟) that match the query

• 𝑛 ⋅ 1 −
𝑐𝑟

𝑑

𝐾

• Set 𝐾 such that this number is around 1

• It means that the query time is 𝑂(𝑑)

• The probability of success is at least:

• 1 −
𝑟

𝑑

𝐾
≳ 𝑛−1/𝑐

• Repeat 𝑂 𝑛 Τ1 𝑐 times to get success probability 0.99



• Sample 𝐿 = 𝑂 𝑛 Τ1 𝑐 random subsets 𝑆1, 𝑆2, …, 𝑆𝐿 of 
coordinates

• Each subset is of the size log
1−

𝑐𝑟

𝑑

−1 𝑛

• Given a query, retrieve all the data points that match it 
exactly, when restricted on some 𝑆𝑖

• Stop as soon as we find something within distance 𝑐𝑟 from 
the query



• Dataset: 10M uniformly random points from 0, 1 1024

• One planted pair at distance 150

• Sample 23 coordinates, get 223 ≈ 10M buckets

• Check all pairs in each bucket

• A typical run is ≈ 40 iterations and ≈ 300M comparisons

• C++ code is short (150 lines with all the bells and whistles)





• Dataset: 𝑛 points in 𝑅𝑑 (denote by 𝑃)

• Approximation 𝑐 > 1

• Query: 𝑞 ∈ 𝑅𝑑

• Want: 𝑝 ∈ 𝑃 such that
𝑞 − 𝑝 ≤ 𝑐 ∙ min

𝑝∗∈𝑃
𝑞 − 𝑝∗

• Parameters: space, query time

• The main regime: 𝑑 = ෩Θ log 𝑛 (assume from now on)
• [Johnson, Lindenstrauss 1984] (random projections)

𝑞

𝑝𝑝∗



• Dataset: 𝑛 points in 𝑅𝑑 (denote by 𝑃)

• Approximation 𝑐 > 1, distance threshold 𝑟 > 0

• Query: 𝑞 ∈ 𝑅𝑑 such that there is 𝑝∗ ∈ 𝑃 with
𝑞 − 𝑝∗ ≤ 𝑟

• Want: 𝑝 ∈ 𝑃 such that
𝑞 − 𝑝 ≤ 𝑐𝑟

• [Har-Peled, Indyk, Motwani 2012]: (non-trivial)
reduction to ANN with (log 𝑛)𝑂(1) overhead

𝑞

𝑐𝑟
𝑟



• Can further reduce ANN to the spherical case:

points and queries lie on a unit sphere 𝑆𝑑−1 ⊂ 𝑅𝑑

• Informally: look at the dataset from “far away”

• In practice: cosine similarity, interesting by itself
• Simhash [Charikar 2002]



• Dataset: 𝑛 points in 𝑆𝑑−1 ⊂ 𝑅𝑑

(denote by 𝑃)

• Approximation 𝑐 > 1, distance 
threshold 𝑟 > 0

• Query: 𝑞 ∈ 𝑆𝑑−1 such that there 
is 𝑝∗ ∈ 𝑃 with 𝑞 − 𝑝∗ ≤ 𝑟

• Want: 𝑝 ∈ 𝑃 such that 
𝑞 − 𝑝 ≤ 𝑐𝑟

𝑞

𝑐𝑟
𝑟



Given a space budget and desired approximation, 
what is the query time one can achieve?



• Simple, modular data 
structure
• Space 𝑛1+𝜌𝑢+𝑜(1), query time 
𝑛𝜌𝑞+𝑜(1)

• Optimal in a restricted 
model

𝑐 = 2

Space 𝑛1.77…

query time 𝑛𝑜(1)

𝑛1.14…/𝑛0.14…

𝑛1+𝑜(1)/𝑛0.43…



• Simple algorithm for the LSH regime (space 𝑛1+𝜌, time 𝑛𝜌) 
assuming a magic oracle

• Full time–space trade-off

• Getting rid of the oracle

• Data-dependent partitioning: an improved trade-off



• 𝑇 and 𝜂 – parameters to be chosen 
later

• Preprocessing
• Sample 𝑇 Gaussian vectors 
𝑧1, 𝑧2, … , 𝑧𝑇~𝑁(0,1)

⨂𝑑

• Form subsets 𝑃𝑖 = 𝑝 ∈ 𝑃 | 𝑝, 𝑧𝑖 ≥ 𝜂

• Store 𝑧𝑖 and 𝑃𝑖 for non-empty 𝑃𝑖 ’s

• Query
• Retrieve all the caps such that 𝑞, 𝑧𝑖 ≥ 𝜂

• Search the retrieved 𝑃𝑖 ’s for a point 
within 𝑐𝑟 from 𝑞



• Denote for two points 𝑥, 𝑦 ∈ 𝑆𝑑−1

with 𝑥 − 𝑦 = 𝑠
𝑝𝜂 𝑠 = Pr𝑧~𝑁(0,1)⨂𝑑 𝑧, 𝑥 ≥ 𝜂, 𝑧, 𝑦 ≥ 𝜂

• 𝑝0 𝑠 = 1 −
𝜑(𝑠)

𝜋
, where 𝜑(𝑠) is the 

angle for distance 𝑠 (random 
hyperplane)

• Next: simple and good estimates on 
𝑝𝜂 𝑠



𝑝𝜂(𝑠)

𝑝𝜂 𝑠 = Pr𝑧~𝑁(0,1)⨂𝑑 𝑧, 𝑥 ≥ 𝜂, 𝑧, 𝑦 ≥ 𝜂

= Pr𝑋,𝑌 ~ 𝑁(0,1) 𝑋 ≥ 𝜂, 𝛼(𝑠)𝑋 + 𝛽(𝑠)𝑌 ≥ 𝜂

≈ 𝑒−Δ(𝑠)
2/2

Trick: integrate in polar coordinates



Need to set:
• Number of caps 𝑇
• Threshold 𝜂 of a cap
Need to analyze:
• Space
• Query time
• Probability of success

Probability of success:
• There is a data point 𝑝∗ within 𝑟 from 𝑞
• Pr success ≥ Pr some cap captures 𝑝∗ and 𝑞 = 1 − (1 −

Space
• Store only non-empty 𝑃𝑖 ’s
• E[space] ≲ 𝑛 ⋅ 𝑇 ⋅ Pr a given cap captures a given data point =

𝑛 ⋅ 𝑇 ⋅ 𝑝𝜂 0 ≈ 𝑛 ⋅
𝑝𝜂(0)

𝑝𝜂(𝑟)

Query time
• Oracle returns caps that capture the query 𝑞
• E query time ≲ E #caps that capture 𝑞 + E[#far points in these caps]

• E #caps = 𝑇 ⋅ Pr a given cap captures 𝑞 = 𝑇 ⋅ 𝑝𝜂(0) ≈
𝑝𝜂(0)

𝑝𝜂(𝑟)

• E #far points ≤ 𝑛 ⋅ 𝑇 ⋅ Pr a given cap captures a given far point and 𝒒 ≤ 𝑛 ⋅

𝑇 ⋅ 𝑝𝜂 𝑐𝑟 ≈ 𝑛 ⋅
𝑝𝜂(𝑐𝑟)

𝑝𝜂(𝑟)

• Choose 𝜂 to balance terms: 𝑝𝜂 0 = 𝑛 ⋅ 𝑝𝜂(𝑐𝑟)

• 𝑇 ≈
1

𝑝𝜂 𝑟

• Space 𝑛 ⋅
𝑝𝜂(0)

𝑝𝜂(𝑟)

• 𝑝𝜂 0 = 𝑛 ⋅ 𝑝𝜂(𝑐𝑟)

• Query time 
𝑝𝜂(0)

𝑝𝜂(𝑟)

Summary:
• Choose 𝜂 > 0 such that 𝑝𝜂 0 = 𝑛 ⋅ 𝑝𝜂 𝑐𝑟

• Choose 𝑇 ≈
1

𝑝𝜂 𝑟

• Query time:
𝑝𝜂(0)

𝑝𝜂(𝑟)
= 𝒏𝝆(𝒓,𝒄)

• Space: 𝑛 ⋅
𝑝𝜂 0

𝑝𝜂 𝑟
= 𝒏𝟏+𝝆(𝒓,𝒄)



𝜂

• Use estimates on 𝑝𝜂 𝑠

• 𝜌 𝑟, 𝑐 ≤
1

𝑐2
+ 𝑜 1

• Space 𝑛
1+

1

𝑐2
+𝑜(1)

, query 

time 𝑛
1

𝑐2
+𝑜(1)

• Worst case: 𝑟 → 0

𝑝𝜂(𝑠)

𝑝𝜂(0)

𝑐𝑟𝑟

1

𝑛

1

𝑛𝜌



• Simple algorithm for the LSH regime (space 𝑛1+𝜌, time 𝑛𝜌) 
assuming an unrealistic oracle

• Full time–space trade-off

• Getting rid of the oracle

• Data-dependent partitioning: an improved trade-off



Given a space budget and desired approximation, 
what is the query time one can achieve?



• 𝑇, 𝜂𝑢 and 𝜂𝑞– parameters to be chosen later

• Preprocessing
• Sample 𝑇 Gaussian vectors 𝑧1, 𝑧2, … , 𝑧𝑇~𝑁(0,1)

⨂𝑑

• Form subsets 𝑃𝑖 = 𝑝 ∈ 𝑃 | 𝑝, 𝑧𝑖 ≥ 𝜂𝑢
• Store 𝑧𝑖 and 𝑃𝑖 for non-empty 𝑃𝑖 ’s

• Query
• Retrieve all the caps such that 𝑞, 𝑧𝑖 ≥ 𝜂𝑞
• Search the retrieved 𝑃𝑖 ’s for a point within 𝑐𝑟 from 𝑞

• Regimes: 𝜂𝑢 < 𝜂𝑞 for faster queries, 𝜂𝑢 > 𝜂𝑞 for less memory



• Space 𝑛1+𝜌𝑢+𝑜(1), time 𝑛𝜌𝑞+𝑜(1)

(plot for 𝑐 = 2)



• Simple algorithm for the LSH regime (space 𝑛1+𝜌, time 𝑛𝜌) 
assuming an unrealistic oracle

• Full time–space trade-off

• Getting rid of the oracle

• Data-dependent partitioning: an improved trade-off



• Idea: “gradual” partitioning, new parameter 𝐾

• Preprocessing

• Sample 𝑇 Gaussian vectors 
𝑧1, 𝑧2, … , 𝑧𝑇~𝑁(0,1)

⨂𝑑

• Form subsets 𝑃𝑖 = 𝑝 ∈ 𝑃 | 𝑝, 𝑧𝑖 ≥ 𝜂𝑢
• Recurse on non-empty 𝑃𝑖 ’s

• At level 𝐾, store 𝑃𝑖 ’s explicitly

• Query

• Recursively query all the caps for which 
𝑞, 𝑧𝑖 ≥ 𝜂𝑞 (search using linear scan!)

• At level 𝐾, search the 𝑃𝑖 ’s for a point within 
𝑐𝑟 from 𝑞

𝑃

𝑃1 𝑃2 𝑃3

𝑇 = 3,𝐾 = 2



• Small 𝐾 – slow point location

• Large 𝐾 – bad value of 𝜌(𝑐, 𝑟)

• A possible choice – 𝐾 ~ ln 𝑛



• Simple algorithm for the LSH regime (space 𝑛1+𝜌, time 𝑛𝜌) 
assuming an unrealistic oracle

• Full time–space trade-off

• Getting rid of the oracle

• Data-dependent partitioning: an improved trade-off



• So far, data-dependent LSH 
from [Andoni, R 2015] is 
better for the case 𝜌𝑢 = 𝜌𝑞

• Can we get the best of both 
worlds?



• Dataset: 𝑛 uniformly 
random unit vectors 
(pairwise distances 
concentrated around 2)

• Queries: planted at random 

within distance 𝑟 =
2

𝑐

• Reduction from worst case 
to random, can we do the 
same here?

Worst-case instances



• The dataset does not look random

• Remove structure—clusters of small 
radius with 𝑛1−𝛿 points—until there 
are none
• Will handle them separately

• The remainder looks like a random 
set
• No dense areas, hence points 

are spread

• Sample 𝑇 caps, recurse
• Clusters can appear again

• Query all the clusters and 
necessary caps



• Enclose a cluster of radius 
2 − 𝜀 in a ball of radius 

1 − Ω 𝜀2

• Recurse with reduced radius



• For clusters: radius 
reduction makes the 
problem more isotropic

• For the remainder: data-
independent partitioning 
works great (for one step)

• In terms of tree: besides 
cap nodes, we have 
cluster nodes, each query 
recurses on all of them

𝑃

𝑃1 𝑃2 𝑃3


