Chapter 2: Nearest
Neighbor Search: Theory

llya Razenshteyn (CSAIL MIT)

Nearest Neighbor Search (NNS)

s
Dataset: n points in R? |
Query: a point in R4

Goal: find the closest datapoint
Appllcatlons

Finding similar
texts/audio/images/proteins/users/etc.
* k-NN rule in machine learning
« Optimization
« Cryptanalysis (short vectors in lattices)
« Training neural networks

Distances

« Euclidean/Cosine (¢,),
Manhattan/Hamming (¢;)

« {4, Jaccard similarity, edit distance,
Earth Mover Distance (EMD), etc.

An example

» Word embeddings algorithm

* Vectors that capture semantic similarity optimization

between words computat!on
computational

* GloVe [Pennigton, Socher, Manning 2014] implementations
 Ten nearest neighbors for “algorithms™? probabilistic

deterministic
architectures
heuristics
methods

art
science

Setup

* Algorithm gets to know the dataset in advance

* Preprocess to be able to answer queries quickly
« Improve upon the linear scan

« Main parameters: space, query time, preprocessing time
« Remark: queries do not belong to the dataset

Curse of dimensionality

NNS becomes hard in high dimensions!

____Method | Space | _Querytime _

Linear scan O(dn) © 0(dn) ®
Full indexing n°@ @ poly(d,logn) ©

Approximate NNS

- -
" S~

Dataset: n points in R .
Query: a point in R Toadel
Goal: find a data point . LonT e
within factor of ¢ from the .o
closest | T

Additional data
« Approximationc > 1

In practice

« Want exact nearest neighbors ™
(c =1)
* Nearest neighbor is much

closer than most of the data
points

* The algorithms work under
this “gap” assumption as well

40000

30000

count

10000

GloVe word embeddings
[Pennigton, Socher, Manning 2014]

0.6

Nearest
neighbor

0.9 1.2

1.5
distance

Related work

* (Mild) exponential dependence on d

[Arya, Mount 1993], [Clarkson 1994], [Arya, Mount, Netanyahu, Silverman, Wu 1998],
[Kleinberg 1997], [Har-Peled 2002], [Arya, Fonseca, Mount 2011], ...

e Polynomial dependence on d

[Kushilevitz, Ostrovsky, Rabani 1998], [Indyk, Motwani 1998], [Indyk 1998, 2001, 2002, 2004],
[Gionis, Indyk, Motwani 1999], [Charikar 2002], [Datar, Immorlica, Indyk, Mirrokni 2004],
[Chakrabarti, Regev 2004], [Panigrahy 2006], [Ailon, Chazelle 2006], [Andoni, Indyk 2006],
[Andoni, Indyk, Nguyen, R 2014], [Bartal, Gottlieb 2014], [Kapralov 2015], [Andoni, R 2015],
[Pagh 2016], [Becker, Ducas, Gama, Laarhoven 2016], [Christiani 2017], [Andoni, Laarhoven,
R, Waingarten 2017], [Andoni, R, Shekel-Nosatzki 2017], [Andoni, Nguyen, Nikolov, R,
Waingarten 2017], [Andoni, Nikolov, R, Waingarten 2017]

Plan

« ANN for Hamming distance (¢, on {0, 1}%)

 Simple, classic algorithm from [Indyk, Motwani 1998], will see the
full analysis

* Locality-Sensitive Hashing (LSH)
« Space 0(n'*/¢ + nd), query time 0(dn'/¢)

« ANN for Euclidean distance (¢, on R%)
 Algorithm from [Andoni, Laarhoven, R, Waingarten 2017]
« Smooth “optimal” trade-off between space and query time
* Yields better results for Hamming as well
« Not so simple, but modular

Hamming distance

Hamming distance between x,y € {0, 1}¢:
number of mismatches, also [|x — y||;

00101001
01110101

Example

« Dataset: 10M uniformly random points from {0, 1}19%*
* One planted pair at distance 150

« Can we find it quickly?

 Naive way: enumerate 10** pairs

- Can we avoid it?

Fixed scale

Dataset: n points in {0, 1}¢
Query: a point in {0, 1}¢
within r from a data point
Goal: find a data point
within cr from the query

Additional data
« Approximationc > 1
« Distancescaler >0

-
P S~

QQQQQ

~

From fixed scale to the original problem

 Build a data structure for each r
 During the query stage, run binary search on the answer
* Overhead 0(d) in space, O(logd) in query time

* Fine print: assume that the error probability is 1 — ﬁ

Fixed scale

Dataset: n points in {0, 1}¢
Query: a point in {0, 1}¢
within r from a data point
Goal: find a data point
within cr from the query

Additional data
« Approximationc > 1
« Distancescaler >0

-
P S~

QQQQQ

~

Coordinate sampling

* Idea: sample K random coordinates

 Given a query, find all t

ne data points that match the query

exactly on the selected coordinates (can use a hash table)

* If there is any point wit

nin cr from the query, we are done

Analysis

« Number of far points (further than cr) that match the query
cr K
cne(1-5)
* Set K such that this number is around 1

* [t means that the query time is 0(d)
* The probability of success is at least:

(15 =

- Repeat 0(n'/¢) times to get success probability 0.99

Overall algorithm for a single scale

- Sample L = 0(n'/¢) random subsets Sy, S, ..., S, of
coordinates

« Each subset is of the size log()-1 n

Ccr
1=

« Given a query, retrieve all the data points that match it
exactly, when restricted on some §;

e Stop as soon as we find something within distance cr from
the query

Example

« Dataset: 10M uniformly random points from {0, 1}19%*

* One planted pair at distance 150

« Sample 23 coordinates, get 223 ~ 10M buckets

* Check all pairs in each bucket

« Atypical runis = 40 iterations and ~ 300M comparisons
« C++ code is short (150 lines with all the bells and whistles)

Euclidean distance

Approximate Nearest Neighbors

@
@
- Dataset: n points in R¢ (denote by P) °
* Approximation c > 1 ©
 Query: g € R @
« Want: p € P such that) -
lg = pll < ¢ - minl|lq — p”|l P .\/;
p eEP
- Parameters: space, query time q

» The main regime: d = ©(logn) (assume from now on)
* [Johnson, Lindenstrauss 1984] (random projections)

Approximate Near Neighbors (ANN)

- Dataset: n points in R¢ (denote by P)

- Approximation ¢ > 1, distance threshold v >0 8 ¢ ™

‘‘‘‘‘‘

- Query: g € R% such that there is p* € Pwith @/ 775\
* 1

lg —p*ll =7 | {e®q) |}
S s !

» Want: § € P such that N et @

lg — Pl| < cr .

- [Har-Peled, Indyk, Motwani 2012]: (non-trivial) ©
reduction to ANN with (logn)°® overhead

——————

Spherical case

 Can further reduce ANN to the spherical case:
points and queries lie on a unit sphere $¢-1 c R
* Informally: look at the dataset from “far away”

* In practice: cosine similarity, interesting by itself
« Simhash [Charikar 2002]

The core problem: ANN on a sphere

- Dataset: n points in 471 c R
(denote by P)

« Approximation ¢ > 1, distance
threshold r > 0

 Query: g € S% 1 such that there \
isp* e Pwith |lg—p*|| <r @

« Want: p € P such that
lg —pll < cr

¢¢¢¢¢¢

~~~~~



Main question

Given a space budget and desired approximation,
what is the query time one can achieve?



Our results

« Simple, modular data

structure
* Space nttPuto(l) query time
an"'O(l)

« Optimal in a restricted
model

0.8

0.6

50.4
Q

0.2

0.0

C =

2

Space n1.77...
query time n°®

1147014

1+0(1) /,7043...

0.0

0.1

0.3 0.4




Plan

« Simple algorithm for the LSH regime (space n'*?, time n”)
assuming a magic oracle

e Full time-space trade-off
 Getting rid of the oracle
« Data-dependent partitioning: an improved trade-off



Basic algorithm with a magic oracle

* T and n - parameters to be chosen
later

* Preprocessing

« Sample T Gaussian vectors
Z1, 2>, ...,ZT~N(O,1)®d
« Form subsets P, ={p € P | (p, z;) = n}
 Store z; and P; for non-empty P;'s
* Query
 Retrieve all the caps such that (q,z;) = n

 Search the retrieved P;'s for a point
within cr from ¢




The key quantity

- Denote for two points x,y € S¢71
with |[x — y|| = s
py(s) = Pr,_yopyeal{z,x) = 1,(z,y) = 1]

* pols) =1-— %, where ¢(s) is the

angle for distance s (random
hyperplane)

* Next: simple and good estimates on
Py (S)

=
o

gl




Estimates on p,, (s)

Py (S)

Trick: integrate in polar coordinates




Analysis

Need to set:

a NiiormmhAr Af ArAne T

Que Summary:



Recipe for choosing 77

Py (S)
Py (0)

1.00

0.75

0.50

0.25

0.00

0 45 90 135 180

Use estimates on p, (s)
p(r,c) < =+ o(1)

1
Space n' *z*°W query

1
time neztoW
Worst case:r —» 0



Plan

« Simple algorithm for the LSH regime (space n'*?, time n”)
assuming an unrealistic oracle

e Full time-space trade-off
 Getting rid of the oracle
« Data-dependent partitioning: an improved trade-off



Main question

Given a space budget and desired approximation,
what is the query time one can achieve?



The full trade-off with an oracle

- T, n, and n,- parameters to be chosen later

* Preprocessing
- Sample T Gaussian vectors zy, zy, ..., zp~N(0,1)®4
 Form subsets P, = {p € P | (p,z;) = ny,}
« Store z; and P; for non-empty P;'s
* Query
- Retrieve all the caps such that (q, z;) = 1,
 Search the retrieved P;’s for a point within cr from q

- Regimes: n,, < 1, for faster queries, n,, > n, for less memory



What we get

» Space n'*tPuto(D) time nPato)

(plot for ¢ = 2)

?
|
i
15| !
]
!
1
i
\
\
\
1.0 .
> \
- \
\
A
\
AY
AN
\
0.5 .
\
. [Al08]
SO
- ~
. Y
. ‘. = -
" [AR15] S~o o
0.0 - -
0.0 0.2

— - Data-independent bound

- -+ LSH regime




Plan

« Simple algorithm for the LSH regime (space n'*?, time n”)
assuming an unrealistic oracle

e Full time-space trade-off
 Getting rid of the oracle
« Data-dependent partitioning: an improved trade-off



Getting rid of the oracle

* Idea: “"gradual” partitioning, new parameter K

* Preprocessing
« Sample T Gaussian vectors
Z1, 2>, ...,ZT~N(O,1)®d
« Form subsets P, = {p € P | (p, z;) = n,}
* Recurse on non-empty P;'s
* At level K, store P;'s explicitly
* Query
« Recursively query all the caps for which
(q,z;) = 1, (search using linear scan!)

At level K, search the P;’s for a point within
cr from q




How to set parameters

« Small K - slow point location
e Large K - bad value of p(c, 1)

* A possible choice - K ~+vInn



Plan

« Simple algorithm for the LSH regime (space n'*?, time n”)
assuming an unrealistic oracle

e Full time-space trade-off
 Getting rid of the oracle
« Data-dependent partitioning: an improved trade-off



Data-dependent partitions

* So far, data-dependent LSH i
from [Andoni, R 2015] is 15 !
better for the case p, = p,
- Can we get the best of both |
WO rl d S? E ! — f::la;r::;endent bound
| \\\[AIOG]“‘.-""‘.“
LN
00| - "N"[X';sl """""""




Random instances

random unit vectors
(pairwise distances l

concentrated around v/2) \

1.0 \ — - Data-independent bound

* Queries: planted atrandom = | 154 regime

e V2 T
within distance r = — _.--Worst-case instances

e Reduction from worst case
to random, can we do the |
same here? 00| "

0.0 0.2 0.4 0.6

- Dataset: n uniformly i

P

0.5




The general case

« The dataset does not look random

« Remove structure—clusters of small
radius with n'~¢ points—until there
are none

« Will handle them separately

e The remainder looks like a random
set

* No dense areas, hence points
are spread

« Sample T caps, recurse
- Clusters can appear again

« Query all the clusters and
necessary caps




Handling clusters

* Enclose a cluster of radius
V2 — ¢in a ball of radius

(1-0(e?))

 Recurse with reduced radius




Overall bookkeeping

* For clusters: radius
reduction makes the
problem more isotropic

 For the remainder: data-
independent partitioning
works great (for one step)

e In terms of tree: besides

cluster nodes, each query the alaorithm?
recurses on all of them 9 ’



