Chapter 2: Nearest Neighbor Search: Theory

Ilya Razenshteyn (CSAIL MIT)

Nearest Neighbor Search (NNS)

Dataset: n points in R^{d} Query: a point in R^{d}
Goal: find the closest datapoint

Applications

- Finding similar
texts/audio/images/proteins/users/etc.
- k-NN rule in machine learning
- Optimization
- Cryptanalysis (short vectors in lattices)
- Training neural networks

Distances

- Euclidean/Cosine (ℓ_{2}), Manhattan/Hamming $\left(\ell_{1}\right)$
- ℓ_{∞}, Jaccard similarity, edit distance, Earth Mover Distance (EMD), etc.

Recall:

- $\ell_{i 2}$ distance: $\left(\dot{\Sigma}_{i}\left(x_{i}-y_{i}\right)^{2}\right)^{1+2}$
- ℓ_{1} distance: $\sum_{i}\left|x_{i}-y_{i}\right|^{\cdots}=$

An example

- Word embeddings
- Vectors that capture semantic similarity between words
- GloVe [Pennigton, Socher, Manning 2014]
- Ten nearest neighbors for "algorithms"?
algorithm
optimization computation computational implementations probabilistic deterministic architectures heuristics methods

Setup

- Algorithm gets to know the dataset in advance
- Preprocess to be able to answer queries quickly
- Improve upon the linear scan
- Main parameters: space, query time, preprocessing time
- Remark: queries do not belong to the dataset

Curse of dimensionality

```
NNS becomes hard in high dimensions!
```


Method	Space	Query time
Linear scan	$O(d n)$	$(:)$
Full indexing	$n^{O(d)}$	0

Approximate NNS

Dataset: n points in R^{d} Query: a point in R^{d} Goal: find a data point within factor of c from the closest

Additional data

- Approximation $c>1$

In practice

GloVe word embeddings
[Pennigton, Socher, Manning 2014]

- Want exact nearest neighbors ($c=1$)
- Nearest neighbor is much closer than most of the data points
- The algorithms work under this "gap" assumption as well

Related work

- (Mild) exponential dependence on d

[Arya, Mount 1993], [Clarkson 1994], [Arya, Mount, Netanyahu, Silverman, Wu 1998], [Kleinberg 1997], [Har-Peled 2002], [Arya, Fonseca, Mount 2011], ...

- Polynomial dependence on d
[Kushilevitz, Ostrovsky, Rabani 1998], [Indyk, Motwani 1998], [Indyk 1998, 2001, 2002, 2004], [Gionis, Indyk, Motwani 1999], [Charikar 2002], [Datar, Immorlica, Indyk, Mirrokni 2004], [Chakrabarti, Regev 2004], [Panigrahy 2006], [Ailon, Chazelle 2006], [Andoni, Indyk 2006], [Andoni, Indyk, Nguyen, R 2014], [Bartal, Gottlieb 2014], [Kapralov 2015], [Andoni, R 2015], [Pagh 2016], [Becker, Ducas, Gama, Laarhoven 2016], [Christiani 2017], [Andoni, Laarhoven, R, Waingarten 2017], [Andoni, R, Shekel-Nosatzki 2017], [Andoni, Nguyen, Nikolov, R, Waingarten 2017], [Andoni, Nikolov, R, Waingarten 2017]

Plan

- ANN for Hamming distance (ℓ_{1} on $\{0,1\}^{d}$)
- Simple, classic algorithm from [Indyk, Motwani 1998], will see the full analysis
- Locality-Sensitive Hashing (LSH)
- Space $O\left(n^{1+1 / c}+n d\right)$, query time $O\left(d n^{1 / c}\right)$
- ANN for Euclidean distance (ℓ_{2} on R^{d})
- Algorithm from [Andoni, Laarhoven, R, Waingarten 2017]
- Smooth "optimal" trade-off between space and query time
- Yields better results for Hamming as well
- Not so simple, but modular

Hamming distance

Hamming distance between $x, y \in\{0,1\}^{d}$: number of mismatches, also $\|x-y\|_{1}$

00101001
01110101

Example

- Dataset: 10 M uniformly random points from $\{0,1\}^{1024}$
- One planted pair at distance 150
- Can we find it quickly?
- Naïve way: enumerate 10^{14} pairs
- Can we avoid it?

Fixed scale

Dataset: n points in $\{0,1\}^{d}$ Query: a point in $\{0,1\}^{d}$ within r from a data point Goal: find a data point within cr from the query

Additional data

- Approximation $c>1$
- Distance scale $r>0$

From fixed scale to the original problem

- Build a data structure for each r
- During the query stage, run binary search on the answer
- Overhead $O(d)$ in space, $O(\log d)$ in query time
- Fine print: assume that the error probability is $1-\frac{1}{10 d}$

Fixed scale

Dataset: n points in $\{0,1\}^{d}$ Query: a point in $\{0,1\}^{d}$ within r from a data point Goal: find a data point within cr from the query

Additional data

- Approximation $c>1$
- Distance scale $r>0$

Coordinate sampling

- Idea: sample K random coordinates
- Given a query, find all the data points that match the query exactly on the selected coordinates (can use a hash table)
- If there is any point within cr from the query, we are done

Analysis

- Number of far points (further than $c r$) that match the query
- $n \cdot\left(1-\frac{c r}{d}\right)^{K}$
- Set K such that this number is around 1
- It means that the query time is $O(d)$
- The probability of success is at least:
- $\left(1-\frac{r}{d}\right)^{K} \gtrsim n^{-1 / c}$
- Repeat $O\left(n^{1 / c}\right)$ times to get success probability 0.99

Overall algorithm for a single scale

- Sample $L=O\left(n^{1 / c}\right)$ random subsets $S_{1}, S_{2}, \ldots, S_{L}$ of coordinates
- Each subset is of the size $\log _{\left(1-\frac{c r}{d}\right)^{-1} n}$
- Given a query, retrieve all the data points that match it exactly, when restricted on some S_{i}
- Stop as soon as we find something within distance cr from the query

Example

- Dataset: 10 M uniformly random points from $\{0,1\}^{1024}$
- One planted pair at distance 150
- Sample 23 coordinates, get $2^{23} \approx 10 \mathrm{M}$ buckets
- Check all pairs in each bucket
- A typical run is ≈ 40 iterations and $\approx 300 \mathrm{M}$ comparisons
- C++ code is short (150 lines with all the bells and whistles)

Euclidean distance

Approximate Nearest Neighbors

- Dataset: n points in R^{d} (denote by P)
- Approximation $c>1$
- Query: $q \in R^{d}$
- Want: $\tilde{p} \in P$ such that

$$
\|q-\tilde{p}\| \leq c \cdot \min _{p^{*} \in P}\left\|q-p^{*}\right\|
$$

- Parameters: space, query time $p^{*} \overbrace{q}^{\hat{p}}$
- The main regime: $d=\widetilde{\Theta}(\log n)$ (assume from now on)
- [Johnson, Lindenstrauss 1984] (random projections)

Approximate Near Neighbors (ANN)

- Dataset: n points in R^{d} (denote by P)
- Approximation $c>1$, distance threshold $r>0$
- Query: $q \in R^{d}$ such that there is $p^{*} \in P$ with $\left\|q-p^{*}\right\| \leq r$
- Want: $\tilde{p} \in P$ such that

$$
\|q-\tilde{p}\| \leq c r
$$

- [Har-Peled, Indyk, Motwani 2012]: (non-trivial) reduction to ANN with $(\log n)^{O(1)}$ overhead

Spherical case

- Can further reduce ANN to the spherical case:
points and queries lie on a unit sphere $S^{d-1} \subset R^{d}$
- Informally: look at the dataset from "far away"
- In practice: cosine similarity, interesting by itself
- Simhash [Charikar 2002]

The core problem: ANN on a sphere

- Dataset: n points in $S^{d-1} \subset R^{d}$ (denote by P)
- Approximation $c>1$, distance threshold $r>0$
- Query: $q \in S^{d-1}$ such that there is $p^{*} \in P$ with $\left\|q-p^{*}\right\| \leq r$
- Want: $\tilde{p} \in P$ such that
$\|q-\tilde{p}\| \leq c r$

Main question

Given a space budget and desired approximation, what is the query time one can achieve?

Our results

$$
c=2
$$

- Simple, modular data structure
- Space $n^{1+\rho_{u}+o(1)}$, query time $n^{\rho_{q}+o(1)}$
- Optimal in a restricted model

Plan

- Simple algorithm for the LSH regime (space $n^{1+\rho}$, time n^{ρ}) assuming a magic oracle
- Full time-space trade-off
- Getting rid of the oracle
- Data-dependent partitioning: an improved trade-off

Basic algorithm with a magic oracle

- T and η - parameters to be chosen later
- Preprocessing
- Sample T Gaussian vectors

$$
z_{1}, z_{2}, \ldots, z_{T} \sim N(0,1)^{\otimes d}
$$

- Form subsets $P_{i}=\left\{p \in P \mid\left\langle p, z_{i}\right\rangle \geq \eta\right\}$
- Store z_{i} and P_{i} for non-empty P_{i} 's
- Query
- Retrieve all the caps such that $\left\langle q, z_{i}\right\rangle \geq \eta$
- Search the retrieved P_{i} 's for a point
 within $c r$ from q

The key quantity

- Denote for two points $x, y \in S^{d-1}$ with $\|x-y\|=s$

$$
p_{\eta}(s)=\operatorname{Pr}_{z \sim N(0,1)^{\otimes d}}[\langle z, x\rangle \geq \eta,\langle z, y\rangle \geq \eta]
$$

- $p_{0}(s)=1-\frac{\varphi(s)}{\pi}$, where $\varphi(s)$ is the angle for distance s (random hyperplane)
- Next: simple and good estimates on $p_{\eta}(s)$

Estimates on $p_{\eta}(s)$

$p_{\eta}(s)$

Trick: integrate in polar coordinates

Analysis

Need to set:

Que Summary:

- Nlimhar nfranet

Recipe for choosing η

- Use estimates on $p_{\eta}(s)$
- $\rho(r, c) \leq \frac{1}{c^{2}}+o(1)$
- Space $n^{1+\frac{1}{c^{2}}+o(1)}$, query time $n^{\frac{1}{c^{2}}+o(1)}$
- Worst case: $r \rightarrow 0$

Plan

- Simple algorithm for the LSH regime (space $n^{1+\rho}$, time n^{ρ}) assuming an unrealistic oracle
- Full time-space trade-off
- Getting rid of the oracle
- Data-dependent partitioning: an improved trade-off

Main question

Given a space budget and desired approximation, what is the query time one can achieve?

The full trade-off with an oracle

- T, η_{u} and η_{q} - parameters to be chosen later
- Preprocessing
- Sample T Gaussian vectors $z_{1}, z_{2}, \ldots, z_{T} \sim N(0,1)^{\otimes d}$
- Form subsets $P_{i}=\left\{p \in P \mid\left\langle p, z_{i}\right\rangle \geq \eta_{u}\right\}$
- Store z_{i} and P_{i} for non-empty P_{i} 's
- Query
- Retrieve all the caps such that $\left\langle q, z_{i}\right\rangle \geq \eta_{q}$
- Search the retrieved P_{i} 's for a point within $c r$ from q
- Regimes: $\eta_{u}<\eta_{q}$ for faster queries, $\eta_{u}>\eta_{q}$ for less memory

What we get

- Space $n^{1+\rho_{u}+o(1)}$, time $n^{\rho_{q}+o(1)}$ (plot for $c=2$)

Plan

- Simple algorithm for the LSH regime (space $n^{1+\rho}$, time n^{ρ}) assuming an unrealistic oracle
- Full time-space trade-off
- Getting rid of the oracle
- Data-dependent partitioning: an improved trade-off

Getting rid of the oracle

- Idea: "gradual" partitioning, new parameter K
- Preprocessing
- Sample T Gaussian vectors

$$
z_{1}, z_{2}, \ldots, z_{T} \sim N(0,1)^{\otimes d}
$$

- Form subsets $P_{i}=\left\{p \in P \mid\left\langle p, z_{i}\right\rangle \geq \eta_{u}\right\}$
- Recurse on non-empty P_{i} 's
- At level K, store P_{i} 's explicitly

$$
T=3, K=2
$$

- Query
- Recursively query all the caps for which $\left\langle q, z_{i}\right\rangle \geq \eta_{q}$ (search using linear scan!)
- At level K, search the P_{i}^{\prime} 's for a point within cr from q

How to set parameters

- Small K - slow point location
- Large K - bad value of $\rho(c, r)$
- A possible choice $-K \sim \sqrt{\ln n}$

Plan

- Simple algorithm for the LSH regime (space $n^{1+\rho}$, time n^{ρ}) assuming an unrealistic oracle
- Full time-space trade-off
- Getting rid of the oracle
- Data-dependent partitioning: an improved trade-off

Data-dependent partitions

- So far, data-dependent LSH from [Andoni, R 2015] is better for the case $\rho_{u}=\rho_{q}$
- Can we get the best of both worlds?

Random instances

- Dataset: n uniformly random unit vectors (pairwise distances concentrated around $\sqrt{2}$)
- Queries: planted at random within distance $r=\frac{\sqrt{2}}{c}$
- Reduction from worst case to random, can we do the same here?

The general case

- The dataset does not look random
- Remove structure-clusters of small radius with $n^{1-\delta}$ points-until there are none
- Will handle them separately
- The remainder looks like a random set
- No dense areas, hence points are spread
- Sample T caps, recurse
- Clusters can appear again
- Query all the clusters and necessary caps

Handling clusters

- Enclose a cluster of radius
$\sqrt{2}-\varepsilon$ in a ball of radius
$\left(1-\Omega\left(\varepsilon^{2}\right)\right)$
- Recurse with reduced radius

Overall bookkeeping

- For clusters: radius reduction makes the problem more isotropic
- For the remainder: dataindependent partitioning
 works great (for one step)
- In terms of tree: besides cap nodes, we have cluster nodes, each query recurses on all of them

Any questions about the algorithm?

