Chapter 2: Nearest Neighbor Search: Theory

Ilya Razenshteyn (CSAIL MIT)

Nearest Neighbor Search (NNS)

Dataset: n points in R^d
Query: a point in R^d
Goal: find the closest datapoint

Applications

- Finding similar texts/audio/images/proteins/users/etc.
- *k*-NN rule in machine learning
- Optimization
- Cryptanalysis (short vectors in lattices)
- Training neural networks
- •

Distances

- Euclidean/Cosine (ℓ_2) , Manhattan/Hamming (ℓ_1)
- ℓ_{∞} , Jaccard similarity, edit distance, Earth Mover Distance (EMD), etc.

An example

- Word embeddings
 - Vectors that capture semantic similarity between words
- GloVe [Pennigton, Socher, Manning 2014]
 - Ten nearest neighbors for "algorithms"?

algorithm optimization computation computational implementations probabilistic deterministic architectures heuristics methods

Setup

- Algorithm gets to know the dataset in advance
- Preprocess to be able to answer queries quickly
 - Improve upon the **linear scan**
- Main parameters: **space**, **query time**, preprocessing time
- **Remark:** queries *do not* belong to the dataset

Curse of dimensionality

NNS becomes hard in high dimensions!

Method	Space	Query time
Linear scan	0(dn) 🙂	$O(dn)$ \otimes
Full indexing	$n^{O(d)}$ \mathfrak{S}	poly(d, log n) 🙂

Approximate NNS

Dataset: *n* points in *R^d* **Query:** a point in *R^d* **Goal:** find a data point within factor of *c* from the closest

Additional data

• Approximation c > 1

In practice

- Want **exact** nearest neighbors (*c* = 1)
- Nearest neighbor is much closer than *most* of the data points
- The algorithms work under this "gap" assumption as well

GloVe word embeddings [Pennigton, Socher, Manning 2014]

Related work

• (Mild) exponential dependence on *d*

[Arya, Mount 1993], [Clarkson 1994], [Arya, Mount, Netanyahu, Silverman, Wu 1998], [Kleinberg 1997], [Har-Peled 2002], [Arya, Fonseca, Mount 2011], ...

• Polynomial dependence on *d*

[Kushilevitz, Ostrovsky, Rabani 1998], [Indyk, Motwani 1998], [Indyk 1998, 2001, 2002, 2004], [Gionis, Indyk, Motwani 1999], [Charikar 2002], [Datar, Immorlica, Indyk, Mirrokni 2004], [Chakrabarti, Regev 2004], [Panigrahy 2006], [Ailon, Chazelle 2006], [Andoni, Indyk 2006], [Andoni, Indyk, Nguyen, R 2014], [Bartal, Gottlieb 2014], [Kapralov 2015], [Andoni, R 2015], [Pagh 2016], [Becker, Ducas, Gama, Laarhoven 2016], [Christiani 2017], [Andoni, Laarhoven, R, Waingarten 2017], [Andoni, R, Shekel-Nosatzki 2017], [Andoni, Nguyen, Nikolov, R, Waingarten 2017], [Andoni, Nikolov, R, Waingarten 2017]

Plan

- ANN for Hamming distance (ℓ_1 on $\{0, 1\}^d$)
 - Simple, classic algorithm from **[Indyk, Motwani 1998]**, will see the full analysis
 - Locality-Sensitive Hashing (LSH)
 - Space $O(n^{1+1/c} + nd)$, query time $O(dn^{1/c})$
- ANN for Euclidean distance (ℓ_2 on \mathbb{R}^d)
 - Algorithm from [Andoni, Laarhoven, R, Waingarten 2017]
 - Smooth "optimal" trade-off between space and query time
 - Yields better results for Hamming as well
 - Not so simple, but modular

Hamming distance

Hamming distance between $x, y \in \{0, 1\}^d$: number of mismatches, also $||x - y||_1$

0**0**1**010**01 0**1**1**101**01

Example

- Dataset: 10M uniformly random points from $\{0, 1\}^{1024}$
- One planted pair at distance 150
- Can we find it quickly?
- Naïve way: enumerate 10¹⁴ pairs
- Can we avoid it?

Fixed scale

Dataset: *n* points in $\{0, 1\}^d$ **Query:** a point in $\{0, 1\}^d$ within *r* from a data point **Goal:** find a data point within *cr* from the query

Additional data

- Approximation c > 1
- Distance scale r > 0

From fixed scale to the original problem

- Build a data structure for each *r*
- During the query stage, run binary search on the answer
- Overhead O(d) in space, $O(\log d)$ in query time
- Fine print: assume that the error probability is $1 \frac{1}{10 d}$

Fixed scale

Dataset: *n* points in $\{0, 1\}^d$ **Query:** a point in $\{0, 1\}^d$ within *r* from a data point **Goal:** find a data point within *cr* from the query

Additional data

- Approximation c > 1
- Distance scale r > 0

Coordinate sampling

- **Idea:** sample *K* random coordinates
- Given a query, find all the data points that **match the query exactly** on the selected coordinates (can use a hash table)
- If there is any point within *cr* from the query, we are done

Analysis

- Number of far points (further than *cr*) that match the query • $n \cdot \left(1 - \frac{cr}{d}\right)^{K}$
- Set *K* such that this number is around 1
- It means that the query time is O(d)
- The probability of success is at least:
 - $\left(1-\frac{r}{d}\right)^K \gtrsim n^{-1/c}$
- Repeat $O(n^{1/c})$ times to get success probability 0.99

Overall algorithm for a single scale

- Sample $L = O(n^{1/c})$ random subsets $S_1, S_2, ..., S_L$ of coordinates
- Each subset is of the size $\log_{\left(1-\frac{cr}{d}\right)^{-1}} n$
- Given a query, retrieve all the data points that match it exactly, when restricted on some S_i
- Stop as soon as we find something within distance *cr* from the query

Example

- Dataset: 10M uniformly random points from $\{0, 1\}^{1024}$
- One planted pair at distance 150
- Sample 23 coordinates, get $2^{23} \approx 10M$ buckets
- Check all pairs in each bucket
- A typical run is ≈ 40 iterations and $\approx 300M$ comparisons
- C++ code is short (150 lines with all the bells and whistles)

Euclidean distance

Approximate Nearest Neighbors

- **Dataset:** *n* points in *R^d* (denote by *P*)
- Approximation c > 1
- Query: $q \in \mathbb{R}^d$
- Want: $\tilde{p} \in P$ such that $\|q \tilde{p}\| \le c \cdot \min_{p^* \in P} \|q p^*\|$
- Parameters: space, query time
- The main regime: $d = \Theta(\log n)$ (assume from now on)
 - [Johnson, Lindenstrauss 1984] (random projections)

Approximate Near Neighbors (ANN)

- **Dataset:** *n* points in *R^d* (denote by *P*)
- Approximation c > 1, distance threshold r > 0
- **Query:** $q \in R^d$ such that there is $p^* \in P$ with $||q p^*|| \le r$
- Want: $\tilde{p} \in P$ such that

$$\|q - \tilde{p}\| \le cr$$

• [Har-Peled, Indyk, Motwani 2012]: (non-trivial) reduction to ANN with $(\log n)^{O(1)}$ overhead

Spherical case

- Can further reduce ANN to the spherical case: points and queries lie on a unit sphere $S^{d-1} \subset R^d$
- Informally: look at the dataset from "far away"
- In practice: **cosine similarity**, interesting by itself
 - Simhash [Charikar 2002]

The core problem: ANN on a sphere

- **Dataset:** *n* points in $S^{d-1} \subset \mathbb{R}^d$ (denote by *P*)
- Approximation c > 1, distance threshold r > 0
- **Query:** $q \in S^{d-1}$ such that there is $p^* \in P$ with $||q p^*|| \le r$
- Want: $\tilde{p} \in P$ such that $\|q \tilde{p}\| \leq cr$

Main question

Given a space budget and desired approximation, what is the query time one can achieve?

Our results

- Simple, modular data structure
 - Space $n^{1+\rho_u+o(1)}$, query time $n^{\rho_q+o(1)}$
- **Optimal** in a restricted model

Plan

- Simple algorithm for the LSH regime (space $n^{1+\rho}$, time n^{ρ}) assuming a magic oracle
- Full time-space trade-off
- Getting rid of the oracle
- Data-dependent partitioning: an improved trade-off

Basic algorithm with a magic oracle

• *T* and η – parameters to be chosen later

Preprocessing

- Sample *T* Gaussian vectors $z_1, z_2, ..., z_T \sim N(0,1)^{\otimes d}$
- Form subsets $P_i = \{p \in P \mid \langle p, z_i \rangle \ge \eta\}$
- Store z_i and P_i for non-empty P_i 's

• Query

- Retrieve all the caps such that $\langle q, z_i \rangle \geq \eta$
- Search the retrieved P_i 's for a point within cr from q

The key quantity

- Denote for two points $x, y \in S^{d-1}$ with ||x - y|| = s $p_{\eta}(s) = \Pr_{z \sim N(0,1)^{\otimes d}}[\langle z, x \rangle \geq \eta, \langle z, y \rangle \geq \eta]$ • $p_0(s) = 1 - \frac{\varphi(s)}{\pi}$, where $\varphi(s)$ is the angle for distance s (random hyperplane)
- Next: *simple* and *good* estimates on $p_{\eta}(s)$

Estimates on $p_{\eta}(s)$

 $p_{\eta}(s)$

Trick: integrate in polar coordinates

Recipe for choosing η

• Use estimates on $p_{\eta}(s)$

$$\rho(r,c) \le \frac{1}{c^2} + o(1)$$

• Space
$$n^{1+\frac{1}{c^2}+o(1)}$$
, query
time $n^{\frac{1}{c^2}+o(1)}$

• Worst case:
$$r \rightarrow 0$$

Plan

- Simple algorithm for the LSH regime (space $n^{1+\rho}$, time n^{ρ}) assuming an unrealistic oracle
- Full time-space trade-off
- Getting rid of the oracle
- Data-dependent partitioning: an improved trade-off

Main question

Given a space budget and desired approximation, what is the query time one can achieve?

The full trade-off with an oracle

- *T*, η_u and η_q parameters to be chosen later
- Preprocessing
 - Sample *T* Gaussian vectors $z_1, z_2, ..., z_T \sim N(0,1)^{\otimes d}$
 - Form subsets $P_i = \{p \in P \mid \langle p, z_i \rangle \ge \eta_u\}$
 - Store z_i and P_i for non-empty P_i 's

• Query

- Retrieve all the caps such that $\langle q, z_i \rangle \ge \eta_q$
- Search the retrieved P_i 's for a point within cr from q
- **Regimes:** $\eta_u < \eta_q$ for *faster queries*, $\eta_u > \eta_q$ for *less memory*

What we get

• Space $n^{1+\rho_u+o(1)}$, time $n^{\rho_q+o(1)}$ (plot for c=2)

Plan

- Simple algorithm for the LSH regime (space $n^{1+\rho}$, time n^{ρ}) assuming an unrealistic oracle
- Full time-space trade-off
- Getting rid of the oracle
- Data-dependent partitioning: an improved trade-off

Getting rid of the oracle

- Idea: "gradual" partitioning, new parameter K
- Preprocessing
 - Sample *T* Gaussian vectors $z_1, z_2, ..., z_T \sim N(0,1)^{\otimes d}$
 - Form subsets $P_i = \{p \in P \mid \langle p, z_i \rangle \ge \eta_u\}$
 - *Recurse* on non-empty *P_i*'s
 - At level *K*, store *P_i*'s explicitly
- Query
 - Recursively query all the caps for which $\langle q, z_i \rangle \ge \eta_q$ (search using linear scan!)
 - At level *K*, search the *P_i*'s for a point within *cr* from *q*

How to set parameters

- Small *K* slow point location
- Large K bad value of $\rho(c,r)$
- A possible choice $K \sim \sqrt{\ln n}$

Plan

- Simple algorithm for the LSH regime (space $n^{1+\rho}$, time n^{ρ}) assuming an unrealistic oracle
- Full time-space trade-off
- Getting rid of the oracle
- Data-dependent partitioning: an improved trade-off

Data-dependent partitions

- So far, data-dependent LSH from **[Andoni, R 2015]** is better for the case $\rho_u = \rho_q$
- Can we get the best of both worlds?

Random instances

- Dataset: *n* uniformly random unit vectors (pairwise distances concentrated around $\sqrt{2}$)
- **Queries:** planted at random within distance $r = \frac{\sqrt{2}}{c}$
- Reduction from worst case to random, can we do the same here?

The general case

- The dataset does not look random
- Remove structure—clusters of small radius with $n^{1-\delta}$ points—until there are none
 - Will handle them separately
- The remainder looks like a random set
 - No dense areas, hence points are spread
- Sample *T* caps, recurse
 - Clusters can appear again
- Query all the clusters and necessary caps

Handling clusters

- Enclose a cluster of radius $\sqrt{2} \varepsilon$ in a ball of radius $(1 \Omega(\varepsilon^2))$
- Recurse with reduced radius

Overall bookkeeping

- For clusters: radius reduction makes the problem more isotropic
- For the remainder: dataindependent partitioning works great (for one step)
- In terms of tree: besides cap nodes, we have cluster nodes, each query recurses on all of them

Any questions about the algorithm?