

 1

Distributed system models

© Fernando Pedone

Refining intuition

 Good intuition is indispensable

© Fernando Pedone

Refining intuition

 Developing an intuition
– Experimental observation: build and observe.

Even if we may not understand why it works,
this experience enables us to build things in
similar settings.

– Modeling and analysis: simplify and analyze.
Provides a deep understanding of part of the
system, and hopefully the simplified model still
matches reality.

© Fernando Pedone

Good models

 But what’s a model?
– Collection of attributes and a set of rules that

govern how these attributes interact

 Can a model be wrong?

A theory has only the alternative of being right or wrong. A
model has a third possibility: it may be right, but irrelevant.

Manfred Eigen

 2

© Fernando Pedone

Good models

 Accurate models
– Yield truth about the object of interest

 Tractable models
– Analyzing them is actually possible

Low accuracy

High accuracy

Low tractability

High tractability

© Fernando Pedone

Good models

 What to expect from a model
– Feasibility

What classes of problems can be solved?
(in a given model)

– Cost
How expensive is the solution?
(for solvable problems)

© Fernando Pedone

Good models

 A coordination problem
– Processes A and B communicate by sending

and receiving messages on a bidirectional
channel. Neither process can fail, but the
channel may lose messages.

– A and B can execute two actions, α and β.
Devise a protocol in which both processes
take the same action, and neither takes both
actions.

© Fernando Pedone

Good models

 There is no solution to the problem!!!
(in the given model)

 Proof (by contradiction)

– Any protocol executes in rounds of message
exchanges: first (say) A sends a message to
B, then B sends a message to A, and so on.

– Let P be the protocol that solves the problem
using the fewest rounds. Assume that the last
message is sent by A, and let it be m.

 3

© Fernando Pedone

Good models

 Proof (cont’d)
– Observation #1: the action taken by A can’t

depend on m, because its receipt could never
be learned by A (it’s the last message).

– Observation #2: the action taken by B can’t
depend on m, because B must make the same
choice of action even if m is lost (due to a
channel failure).

© Fernando Pedone

Good models

 Proof (cont’d)
– Since the action chosen by A and B does not

depend on m, it follows that m is not needed
and so we can construct a new protocol in
which one fewer message is sent…

…a contradiction! 

© Fernando Pedone

Good models

 What have we learned?
– All protocols between two processes in this

model are equivalent to a series of message
exchanges

– Actions taken by a process depend only on
the sequence of messages it has received

© Fernando Pedone

Good models

 Going farther (or… scientific curiosity)

– What if channels never fail?

– What if channels only lose k messages?

– What if processes know when a message is
lost?

– What about the cases for more than 2
processes?

– …

 4

© Fernando Pedone

Synchronous vs. asynchronous systems

 Asynchronous system
– No assumptions about process execution

speeds and/or message delivery delays

– Weak assumption: any system is asynchronous

 Synchronous system
– Relative process speeds and …

– …Message delays are bounded

© Fernando Pedone

Synchronous vs. asynchronous systems

 How to choose?
– Since any system is asynchronous, a protocol

designed for such a system will work in any
other system

– So, why not develop all protocols for
asynchronous systems?

– So, why not develop all protocols for
synchronous systems?

© Fernando Pedone

Synchronous vs. asynchronous systems

 Election problem
– A set of processes P1, P2, …, Pn must select a

leader. Each Pi has a unique identifier uid(i).
Devise an asynchronous and a synchronous
protocol so that processes learn the identifier
of the leader. Processes start at the same time
and communicate using broadcast.

© Fernando Pedone

Synchronous vs. asynchronous systems

– Asynchronous system: each Pi broadcasts
(i, uid(i)), and waits for the receipt of every
broadcast message. Pi elects the process with
the smallest uid(i).

 5

© Fernando Pedone

Synchronous vs. asynchronous systems

– Synchronous system: let τ be a constant
bigger than the largest message delivery
delay; for simplicity assume local execution
takes no time.
Each process Pi waits until either:

• Pi receives a broadcast, or
• τ * uid(i) time units elapse on Pi’s clock, at which

time Pi broadcasts (uid(i)).

The first process to broadcast is elected.

© Fernando Pedone

Failure models

 Assigning faulty behavior to components
– Processes

– Communication channels

 How it works
– Faulty components

– Not occurrences of faulty behavior

– t-fault tolerant system

© Fernando Pedone

Failure models

 Examples
– Failstop: a process fails by halting. Once it

halts, the process remains in that state. Other
processes can detect the failed process.

– Crash: a process fails by halting. Once it halts,
the process remains in that state. A failure
may or not be detected by other processes.

– Byzantine failures: a process fails by
exhibiting arbitrary behavior.

© Fernando Pedone

Failure models

 Examples
– Crash+Link: a link fails by losing some

messages, but does not delay, duplicate, or
corrupt messages.

– Receive-omission: a process fails by
receiving only a subset of the messages sent
to it, or by halting (i.e., crashing).

– …

 6

© Fernando Pedone

Which model when?

 A theoretical perspective
– Models help understand how attributes affect

the feasibility and cost of solving a problem

 A practical perspective
– How to choose a model?

– The real environment (e.g., databases)

– Risk of failure (e.g., Byzantines and security)

© Fernando Pedone

Which model when?

 A communication example
– Reliable channels

If P sends a message m to Q and Q does not
crash, then Q receives m.

– Quasi-reliable channels
If P sends a message m to Q and both P and
Q do not crash, then Q receives m.

© Fernando Pedone

QRC

RC

Which model when?
P

Q

P

Q

P

Q

P

Q

P

Q

P

Q

P

Q

P

Q

© Fernando Pedone

Which model when?

 Quasi-reliable channels:
better match to real channels
(e.g., what if a process fails before completing the send)

 Why bother about reliable channels?
– Lower bounds

