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Two Families Theorem: An Illustration
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Two Families Theorem: An Illustration

Draw an edge between two sets if the intersect!
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Two Families Theorem: Sets

Let U be a universe of size n and let Aq,..., A, be p elements
sets and B, ..., B,, be ¢ elements sets such that

Question: What could be the best upper
bound on m?

e Clearly, m < (Z) or m < (Z)
<

f(p,q)?

o An upper bound that is independent of n — the universe
size?

e Could we show that m



Two Families Theorem (Sets): Bollabés

Theorem
Let U be a universe of size n and let Aq,..., A,, be p elements
sets and B, ..., B,, be ¢ elements sets such that

AinBj=g < 1=].
Then m < (p;q).
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Two Families Theorem (Sets): Bollabés
Theorem

Question: Is m < (p;q) — a tight bound?

e This bound is actually tight.

e Take U = {1,...,p+ ¢} and let Aj,..., A,, be the subsets
of U of size p and let By, ..., B, be the sets of size ¢,
where B; = U\ A;.

e This implies that in this case m = (p ;q)!
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Proof — Slightly Weaker Upper Bound

e We call a partition (X,Y") of the universe U good for a pair
(A17B2> if A, € X and B; €Y.
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Proof — Slightly Weaker Upper Bound

e We call a partition (X,Y") of the universe U good for a pair
(AzaBz) if A, € X and B; €Y.

A; B,
X Y

XNy =0 XuUuY=U
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Proof — Slightly Weaker Upper Bound

Suppose a partition (X,Y") of the universe U is good for a pair
(A;, By).

A B,
X Y

Xny=0 XuyY=U



Proof — Slightly Weaker Upper Bound

Suppose a partition (X,Y") of the universe U is good for a pair

(A;, By).
A B,

@ @
X Y

Xny=0 XuyY=U

Is it possible that the partition (X,Y) could be
good for some other pair (A;, B;) where i # j 7
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(Ai, B;) and (4;, B;).




Proof — Slightly Weaker Upper Bound

Suppose a partition (X, Y") of the universe U is good for pairs
(Ai, B;) and (4;, B;).

But this would imply that 4, n Bj = J and A; n B, = J — a
contradiction!



Proof — Slightly Weaker Upper Bound

For every pair (A;, B;) — define
Pi={(X,Y) | (X,Y) is good for (A;, B;)}.

Essentially, a set containing all the partitions of U that are good
for the pair (A;, B;).



Proof — Slightly Weaker Upper Bound

For every pair (A;, B;) — define
P ={(X,Y) | (X,Y) is good for (A;, B;)}.

Essentially, a set containing all the partitions of U that are good
for the pair (A;, B;).

e Observe that for i # j, P, n'P; = (J.



Proof — Slightly Weaker Upper Bound

For every pair (A;, B;) — define
Pi={(X,Y) | (X,Y) is good for (A;, B;)}.
Essentially, a set containing all the partitions of U that are good
for the pair (4;, B;).
e Observe that for ¢ # j, P, nPj = .
Thus,

m

Z |P;| < 2m.

i=1



Proof — Slightly Weaker Upper Bound

e Observe that for ¢ # j, P, nPj = .
Thus,

|7),L| < 2’!),.

INgE

I
—

(2

P;| = 27~ P*9) — fix A; into X and B; into Y and then any
partition of U — (A4; U B;) gives rise to a partition that is good
for (Au Bz)



Proof — Slightly Weaker Upper Bound

Thus,

Pi| = 279  fix A; into X and B; into Y and then any
partition of U — (A; u B;) gives rise to a partition that is good
for (AZ, Bz)

Thus,

m2n~ P+ < Z |Pi| < 2" = m < 2P

1=

[y
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Proof

e Let II be a random permutation of the universe U. That is,
we select I with probability %

e For each i, 1 < i < m, let X; be the event that all the
elements of A; precede all those of B; in this order.

U=1{1,2,3,4,5,6,7,8,9}
II=135426879
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Proof

e Let II be a random permutation of the universe U. That is,
we select I with probability %

e For each i, 1 < i < m, let X; be the event that all the
elements of A; precede all those of B; in this order.
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Proof

e Let II be a random permutation of the universe U. That is,
we select I with probability %

e For each 7, 1 <i < m, let X; be the event that all the
elements of A; precede all those of B; in this order.

(1Pl (n — (p + q))!

B me!q!(n_ (p+q)!
B n!

plg!
- (p+a)

1
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Proof

e Let II be a random permutation of the universe U. That is,
we select I with probability %

e For each i, 1 < i < m, let X; be the event that all the
elements of A; precede all those of B; in this order.

o Pr[X;] = @
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(wlog) the last element of A; appears before the last element
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Proof

Let IT be a random permutation of the universe U. That is,
we select I with probability %

For each i, 1 < i < m, let X, be the event that all the
elements of A; precede all those of B; in this order.

Pr[X;] = (,,%q)

p
CLAIM: X;’s are pairwise disjoint events.
Let IT be an order in which all the elements of A; precede
all those of B; in this order and all the elements of A;
precede all those of Bj in this order.

(wlog) the last element of A; appears before the last element
of A;. = All elements of A; precede all those of Bj,
contradicting the fact that A; n B; # .
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Let IT be a random permutation of the universe U. That is,
we select I with probability %
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Proof

Let IT be a random permutation of the universe U. That is,
we select I with probability %

For each 7, 1 <17 < m, let X; be the event that all the
elements of A; precede all those of B; in this order.

PI‘[XZ] = 1

("3%)

X,’s are pairwise disjoint events.

m

1= Prf| ] Xi] = > Pr[X;] =m-
; =1
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Transversals

e Let U be a universe. For a collection of sets F < 2V, we
call T'c U a transversal of F, if for all Ae F; AnT # (.
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Transversals

e Let U be a universe. For a collection of sets F < 2V, we
call T € U a transversal of F, if forall Ae F; AnT # (.

o Question: What is the smallest transversal for
a given collection of sets F7

¢ Denote the size of the smallest transversal by 7(F).
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Critical Graphs

e Let U be a universe and F < 2V, A set system F is called
T-critical, if removing any member of F decreases 7(F).
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Critical Graphs

Let U be a universe and F < 2V. A set system F is called
T-critical, if removing any member of F decreases 7(F).

An example of 7-critical system is as follows. Let
U={l,...,p+q}and let F ={A;,..., A} be all the

subsets of U of size p. So m = (p;q).

Smallest transversal has size ¢ + 1, because any set of size
q + 1 intersects every member of 7, whereas no set of size ¢
is a transversal, since its complement is a member of F.

Removing any set A € F decreases 7(F) to ¢, because then
U\A is a transversal of F\{A}.

This is a 7-critical system of size (¥ ;"), where 7(F) =g+ 1
and VA e F; |A| = p.
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Application I: Size of a Critical Graphs

Question: Let U be a universe of size n
and F < 2V,
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Application I: Size of a Critical Graphs

Question: Let U be a universe of size n
and F < 2Y. Suppose F is a 7-critical
system where 7(F) = ¢ + 1 and each
member in F has size p then
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Application I: Size of a Critical Graphs

Question: Let U be a universe of size n
and F < 2Y. Suppose F is a 7-critical
system where 7(F) = ¢ + 1 and each
member in F has size p then

|F| <7777
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Application I: Size of a Critical Graphs

Question: Let U be a universe of size n and F < 2Y. Suppose F
is a T-critical system where 7(F) = ¢ + 1 and each member in F
has size p then |F| <?777?

o Let F ={A1,..., An}.
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Application I: Size of a Critical Graphs

Question: Let U be a universe of size n and F < 2Y. Suppose F
is a T-critical system where 7(F) = ¢ + 1 and each member in F
has size p then |F| <?777?

o Let F={A1,...,An}.
e Then, for each 1 < i < m, there is a transversal B; of size ¢
such that it intersects each of Aj, j # .
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has size p then |F| <?777?

o Let F={A1,...,An}.
e Then, for each 1 < i < m, there is a transversal B; of size ¢
such that it intersects each of Aj, j # .

e However, B; does not intersect A;, otherwise it would also
be a transversal of F.
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Application I: Size of a Critical Graphs

Question: Let U be a universe of size n and F < 2Y. Suppose F
is a T-critical system where 7(F) = ¢ + 1 and each member in F
has size p then |F| <?777?

Let F = {A1,..., An}.
Then, for each 1 < 7 < m, there is a transversal B; of size ¢
such that it intersects each of Aj, j # .

However, B; does not intersect A;, otherwise it would also
be a transversal of F.

BoLLABAS THEOREM: m = |F| < (]9).
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Two Families Theorem (Sets)
Application II
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Vertex Separators

A vertex subset S of a graph G is a vertex separator for
non-adjacent vertices s and ¢ if removal of S from the graph
separates s and ¢ into distinct connected components. In other
words, in G — S there is no path from s to t.
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Vertex Separators

A vertex subset S of a graph G is a vertex separator for
non-adjacent vertices s and t if removal of S from the graph
separates s and ¢ into distinct connected components. In other
words, in G — S there is no path from s to .




Minimal Separators

S is a minimal (s, t)-separator if no proper subset of S separates
S and t.
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Minimal Separators

S is a minimal (s, ¢)-separator if no proper subset of S separates

S and t.

S

Is S shown above a minimal (s,t)-separator?.
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Minimal Separators

S is a minimal (s, t)-separator if no proper subset of S separates
S and t.




Characterization of Minimal Separators

A (s,t)-vertex separator S in G is minimal if and only if the
graph G — S, obtained by removing S from G, has two
connected components Ag containing s and Bg containing ¢
such that each vertex in S is both adjacent to some vertex in
Ag and to some vertex in Bg.



Characterization of Minimal Separators

A (s,t)-vertex separator S in G is minimal if and only if the
graph G — 5, obtained by removing S from G, has two
connected components Ag containing s and Bg containing ¢
such that each vertex in S is both adjacent to some vertex in
Ag and to some vertex in Bg.




Characterization of Minimal Separators
A (s,t)-vertex separator S in G is minimal if and only if the
graph G — 5, obtained by removing S from G, has two
connected components Ag containing s and Bg containing ¢
such that each vertex in S is both adjacent to some vertex in
Ag and to some vertex in Bg.



Application 1: Number of Minimal
Separators

Let G be a graph on n vertices and s and t be two
arbitrary vertices in G. How many minimal
(s,t)-vertex separators are there in G7
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Application 1: Number of Minimal
Separators

Let G be a graph on n vertices and s and t be two
arbitrary vertices in G. How many minimal
(s,t)-vertex separators are there in G?

Let N(s,t) denote the set of minimal (s, t)-vertex separators in
G. Clearly, 2" provides an upper bound on |N (s, t)|.
Can we prove something better?
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e Let F(p,q)*" denote the set of minimal (s, t)-vertex
separators S such that |Ag| = p and |S| = ¢.

F(p,q)® = {S||S]= q/\S a minimal (s, t)-vertex separator

/\ 45| = p}
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e Let F(p,q)*" denote the set of minimal (s, t)-vertex
separators S such that |Ag| = p and |S| = ¢.

F(p,q)® = {S||S]= q/\S a minimal (s, t)-vertex separator

/\ 45| = p}

Clearly,
IN(s, 0 < > |F(p,q)™
(P,9),

p<”’7qsn¢
ptg<sn
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Clearly,

N(s,t)

|N(s,t)| < 2

(p,9),

F(pe,q0)™

|F(p,q)*|

PSN,qsn,

ptgsn
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Bounding F(p, )St

A51 ASz AS3 ASk ASZ Sm
Alaa ﬂ ﬂ ﬂ
) CO C)
S1 S S3 Sk Sl Sm
‘AS1| = ‘AS2’ == ’ASl’ = ‘Asm’ = p and

|S1] = [Sa] = - = |SI] = |Sm| = ¢
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Bounding F(p, )St

A51 ASz AS3 ASk ASZ Sm
(YO (0) ﬂ ﬂ ﬂ
C ) C) )
S So S3 Sk Sl Sm
‘AS1| = ‘AS&’ == ’ASl’ = ‘Asm’ = p and
|S1] = [S2| = -~ =[S = [Sm| = ¢.

AsnSj=0 <= i=7
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Bounding F(p, ¢)*

|As,| = |As,| = --- = |Ag,| = |As,,| = p and
|S1| = 1S2| = - =[] = [Sm| = q.

As NS = — i=7

p+q
m = |F(p,q)%| < < p )

31



Bounding F(p, ¢)*

|As,| = |As,| = --- = |Ag,| = |As,,| = p and
|S1| = 1S2| = - =[] = [Sm| = q.

A nSi =0 — i=]

+
m = |F(p,q)%| < (pp q>

Notice that this is true about any p, q. However, let us put
p=n/2 and ¢ = n/2 and we get m = |F(p,q)*'| < (p;q) ~ 2™,
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Bounding F(p, ¢)*

|As,| = |As,| = --- = |Ag,| = |As,,| = p and
|S1| = 1S2| = - =[] = [Sm| = q.

A NnSj =0 <= 1=

+
m = |F(p,q)%| < (pp q>

Notice that this is true about any p, q. However, let us put

p=n/2and g = n/2 and we get m = |F(p,q)"| < ("}%) ~ 2.

So we need one more trick to get below 2".
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Bs
Ag

i | S| ~
ha
o .
FOI' 1y

—|5]
or |BS| < z p)

n-|

2

S|
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Ag Bs

For every minimal separator S, we have that either |Ag| < ”’_2‘S|

or [Bg| < "5

Observe that every minimal (s, ¢)-vertex separator is also a
minimal (t, s)-vertex separator.
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For every minimal separator S, we have that either |[Ag| < "“2‘5'
or |BS| < 7’1—2|S|

Observe that every minimal (s, ¢)-vertex separator is also a
minimal (%, s)-vertex separator.

Clearly,
NG, < D [Fp.9 [+ D) [Flp,q)"
(p:q)s (p,q),
pPsN,qsn, p<Nn,q<n,

n—gq n—q

32



n—|S]|

For every minimal separator S, we have that either |Ag| < —

or |Bg| < n—2|S|
Observe that every minimal (s, ¢)-vertex separator is also a

minimal (%, s)-vertex separator.

Clearly,
Nl Y e+ Y Fe o]
(p,9), (p,9),
pENn,q<n, pPEN,q<n,
pgngq pgngq

Thus to get an upper bound we only need to bound those
separators for which we have that 2p + ¢ < n.




Bounding F(p, )St

A51 ASz AS3 ASk ASZ Sm
Alaa ﬂ ﬂ ﬂ
) CO C)
S1 S S3 Sk Sl Sm
‘AS1| = ‘AS2’ == ’ASl’ = ‘Asm’ = p and

|S1] = [Sa] = - = |SI] = |Sm| = ¢
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Bounding F(p, )St

A51 ASz AS3 ASk ASZ Sm
(YO (0) ﬂ ﬂ ﬂ
C ) C) )
S So S3 Sk Sl Sm
‘AS1| = ‘AS&’ == ’ASl’ = ‘Asm’ = p and
|S1] = [S2| = -~ =[S = [Sm| = ¢.

AsnSj=0 <= i=7
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Bounding F(p, q)*

|As,| = [As,| = -+ = |Ag| = |As,,| = p and
|S1] = [Sa| = -~ = |Si] = |Sm| = ¢.

AsnSj=0 — i=7

m = |F(p,q)*| < <p N q> < 1.618" when 2p+ g <n
p
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Bounding F(p, q)*

‘A51| = ‘A52’ == ‘Asz| = |ASm’ = p and
|S1] = [S2| = - =[S = [Sm| = ¢.

AsnSj=0 — i=7

m = |F(p,q)*| < <p N q> < 1.618" when 2p+ g < n
p

Notice that this is true about any p, ¢ for which 2p + ¢ < n and
for any s,t. Thus, the number of minimal (s, ¢)-vertex
separators in a graph is at most 1.618"n0M),
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Open Problem

e Can we improve the upper bound on the number of
minimal (s,t)-vertex separators in a graph on n vertices?

34



Open Problem

e Can we improve the upper bound on the number of
minimal (s,t)-vertex separators in a graph on n vertices?

e The lower bound is 1.4521™.
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Open Problem

e Can we improve the upper bound on the number of
minimal (s,t)-vertex separators in a graph on n vertices?

e The lower bound is 1.4521".

e Consequences — Improved exact exponential time
algorithms for computing TREEWIDTH, finding induced
subgraph of constant treewidth (like finding MINIMUM
FEEDBACK VERTEX SET), ........
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Two Families Theorem
Subspaces
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Two Families Theorem: Subspaces

Let Ay, ..., A, be p dimensional and By, ..., B,, be ¢
dimensional subspaces of a vector space W over a field F such
that
AnBj={0} — i=

Here, {0} denotes the subspace consisting of the zero vector only.
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Two Families Theorem: Subspaces

A1 A2 A3 A4 A5

e
vouev

2 3 B4 B5
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Two Families Theorem: Subspaces

Draw an edge between two subspaces if the intersect!
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Two Families Theorem (Subspaces):
Lovasz Theorem

Let Aq,..., A, be p dimensional and By, ..., B,, be ¢
dimensional subspaces of a vector space W over the field F such
that
AinBj={0} < i=
Here, {0} denotes the subspace consisting of the zero vector

only. Then T < (p;;q).
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Two Families Theorem (Subspaces):
Lovasz Theorem

An useful reformulation:

Let M be a matrix of dimension s x n over [F. Furthermore, let
Aq, ..., Ay be p sized subset of columns such that each A; are
linearly independent and By, ..., B,, be ¢ sized subset of
columns such that each B; are linearly independent. Moreover,
Ain Bj = J and
A; U Bj is linearly independent <= 7 = j

p+q
Then M < ( » )
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Two Families Theorem (Subspaces):
Lovasz Theorem

An useful reformulation:

Let M be a matrix of dimension s x n over [F. Furthermore, let
Aq, ..., Ay be p sized subset of columns such that each A; are
linearly independent and By, ..., B,, be ¢ sized subset of
columns such that each B; are linearly independent. Moreover,
Ain Bj = J and
A; U Bj is linearly independent <= 7 = j

p+q
Then M < ( » )

If s = (p+ ¢) then we can say,
det[Aiqu]séO — i:j
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Two Families Theorem (Subspaces):

Lovasz Theorem
Let M be a matrix of dimension s x n over F. Furthermore, let
Aq,..., A, be p sized subset of columns such that each A; are
linearly independent. and Bi, ..., B,, be g sized subset of
columns such that each B; are linearly independent. Moreover,
A; nBj = & and A; U Bj is linearly independent <= i = j

Then M < (p;q).

Ay Ay Az Ay

10



Two Families Theorem (Subspaces):

Lovéasz Theorem
Let M be a matrix of dimension s x n over F. Furthermore, let
Aq, ..., A, be p sized subset of columns such that each A; are
linearly independent. and By, ..., B,, be ¢ sized subset of
columns such that each B; are linearly independent. Moreover,
A; n B; = J and A; U B is linearly independent <= i =j

Then M < (p;q).

By By B3 DBy
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Two Families Theorem (Subspaces):

Lovész Theorem

Let M be a matrix of dimension s x n over F. Furthermore, let
Aq,..., A, be p sized subset of columns such that each A; are
linearly independent. and By, ..., B, be ¢ sized subset of
columns such that each B; are linearly independent. Moreover,
A; n B; = J and A; U B is linearly independent <= i =j

Then M < (p;q).

Al Bl
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Two Families Theorem (Subspace)
Application III

41



Application

Let G be a clique on n vertices and let Aq,..., A,, be forests on
p edges and By, ..., B,, be forests on n — 1 — p edges such that
A; U Bj is a spanning tree if and only if i = j.



Application

Let G be a clique on n vertices and let Aq,..., A,, be forests on
p edges and By, ..., B,, be forests on n — 1 — p edges such that
A; U Bj is a spanning tree if and only if i = j.

Of course m < (T;) < 20(nlogn)



Application

Let G be a clique on n vertices and let Ay, ..., A, be forests on
p edges and By, ..., B,, be forests on n — 1 — p edges such that
A; U Bj is a spanning tree if and only if i = j.
Of course m < (T;) < 20(nlogn)
Can we say something better using Lovasz Theorem?



Application

Let G be a clique on n vertices and let Ay, ..., A, be forests on
p edges and By, ..., B,, be forests on n — 1 — p edges such that
A; U Bj is a spanning tree if and only if i = j.
Of course m < (T;) < 20(nlogn)
Can we say something better using Lovasz Theorem?
Like m < (77" 177) = (") < 2m1



Making our matrix!

Consider the matrix M with a row for each vertex i € V(G) and
a column for each edge ¢ = ij € E(G). In the column
corresponding to e = i7j, all entries are 0, except for a 1 in i or j.

e €y ez - Em

W N

n nx|E(G)|



Making our matrix!

Consider the matrix M with a row for each vertex i € V(G) and
a column for each edge ¢ = ij € E(G). In the column
corresponding to e = i7j, all entries are 0, except for a 1 in i or j.

€1 €y €3 - Em

n nx|E(G)|

This is basically vertex-edge incidence graph of GG. A set of edge
X forms a forest in G if and only if columns corresponding to X
are linearly independent in M over the finite field Fs.



Proof?

e If G has a cycle then the corresponding columns adds up to
07



Proof?

e If G has a cycle then the corresponding columns adds up to
07

e Let X be a set of columns that are linearly dependent then
the corresponding edges form a subgraph of even degree?



More Combinatorial Applications



More Combinatorial Applications

Read the two amazing surveys by

Zsolt Tuza

Applications of the Set Pair Method in Extremal Hypergraph
Theory

Applications of the Set Pair Method in Extremal Problems, II
http://gilkalai.wordpress.com/2008 /12 /25 /lovaszs-two-families-
theorem/

http://www.thi.informatik.uni-

frankfurt.de/ jukna/EC _Book 2nd/katona.html



Thank Youl!
Any Questions?

Final Slide
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