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Two Families Theorem: Sets

Let U be a universe of size n and let A1, . . . , Am be p elements
sets and B1, . . . , Bm be q elements sets such that

Ai XBj “ H ðñ i “ j
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Two Families Theorem: An Illustration

A1 A2 A3 A4 A5

B5B4B3B2B1
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Two Families Theorem: An Illustration

A1 A2 A3 A4 A5

B5B4B3B2B1

Draw an edge between two sets if the intersect!
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Two Families Theorem: Sets

Let U be a universe of size n and let A1, . . . , Am be p elements
sets and B1, . . . , Bm be q elements sets such that

Ai XBj “ H ðñ i “ j

Question: What could be the best upper
bound on m?

• Clearly, m ď
`

n
p

˘

or m ď
`

n
q

˘

.
• Could we show that m ď fpp, qq?
• An upper bound that is independent of n — the universe
size?
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Two Families Theorem (Sets): Bollabás
Theorem

Let U be a universe of size n and let A1, . . . , Am be p elements
sets and B1, . . . , Bm be q elements sets such that

Ai XBj “ H ðñ i “ j.
Then m ď

`

p`q
p

˘

.
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Two Families Theorem (Sets): Bollabás
Theorem

Question: Is m ď
`

p`q
p

˘

– a tight bound?

• This bound is actually tight.
• Take U “ t1, . . . , p` qu and let A1, . . . , Am be the subsets
of U of size p and let B1, . . . , Bm be the sets of size q,
where Bi “ UzAi.

• This implies that in this case m “
`

p`q
p

˘

!
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Two Families Theorem (Sets)
A Weaker Proof
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Proof – Slightly Weaker Upper Bound

• We call a partition pX,Y q of the universe U good for a pair
pAi, Biq if Ai Ď X and Bi Ď Y .
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X Y

X \ Y = ; X [ Y = U
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Proof – Slightly Weaker Upper Bound

Suppose a partition pX,Y q of the universe U is good for a pair
pAi, Biq.

Ai Bi

X Y

X \ Y = ; X [ Y = U

Is it possible that the partition pX, Y q could be
good for some other pair pAj, Bjq where i ‰ j?

11



Proof – Slightly Weaker Upper Bound

Suppose a partition pX,Y q of the universe U is good for a pair
pAi, Biq.

Ai Bi

X Y

X \ Y = ; X [ Y = U

Is it possible that the partition pX, Y q could be
good for some other pair pAj, Bjq where i ‰ j?

11



Proof – Slightly Weaker Upper Bound

Suppose a partition pX,Y q of the universe U is good for pairs
pAi, Biq and pAj , Bjq.

Ai Bi

X Y

X \ Y = ; X [ Y = U

Aj Bj

But this would imply that Ai XBj “ H and Aj XBi “ H – a
contradiction!
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Proof – Slightly Weaker Upper Bound

For every pair pAi, Biq — define

Pi “ tpX,Y q | pX,Y q is good for pAi, Biqu.

Essentially, a set containing all the partitions of U that are good
for the pair pAi, Biq.
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Proof – Slightly Weaker Upper Bound

• Observe that for i ‰ j, Pi X Pj “ H.
Thus,

m
ÿ

i“1

|Pi| ď 2n.

|Pi| ě 2n´pp`qq – fix Ai into X and Bi into Y and then any
partition of U ´ pAi YBiq gives rise to a partition that is good
for pAi, Biq.
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Proof – Slightly Weaker Upper Bound
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m
ÿ

i“1
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|Pi| ě 2n´pp`qq – fix Ai into X and Bi into Y and then any
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Two Families Theorem (Sets)
A Proof
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Proof

• Let Π be a random permutation of the universe U .

That is,
we select Π with probability 1

n! .
• For each i, 1 ď i ď m, let Xi be the event that all the
elements of Ai precede all those of Bi in this order.
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Proof

• Let Π be a random permutation of the universe U . That is,
we select Π with probability 1

n! .
• For each i, 1 ď i ď m, let Xi be the event that all the
elements of Ai precede all those of Bi in this order.

•

PrrXis “

`

n
p`q

˘

p!q!pn´ pp` qqq!

n!

“

n!
pn´pp`qqq!pp`qq!p!q!pn´ pp` qqq!

n!

“
p!q!

pp` qq!

“
1

`

p`q
p

˘
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Proof

• Let Π be a random permutation of the universe U . That is,
we select Π with probability 1

n! .
• For each i, 1 ď i ď m, let Xi be the event that all the
elements of Ai precede all those of Bi in this order.

• PrrXis “
1

pp`q
p q

• Claim: Xi’s are pairwise disjoint events.
• Let Π be an order in which all the elements of Ai precede
all those of Bi in this order and all the elements of Aj

precede all those of Bj in this order.
• (wlog) the last element of Ai appears before the last element
of Aj . ùñ All elements of Ai precede all those of Bj ,
contradicting the fact that Ai XBj ‰ H.
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Two Families Theorem (Sets)
Application I
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Transversals

• Let U be a universe. For a collection of sets F Ď 2U , we
call T Ď U a transversal of F , if for all A P F ; AX T ‰ H.

• Question: What is the smallest transversal for
a given collection of sets F?

• Denote the size of the smallest transversal by τpFq.
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Critical Graphs

• Let U be a universe and F Ď 2U . A set system F is called
τ -critical, if removing any member of F decreases τpFq.

• An example of τ -critical system is as follows. Let
U “ t1, . . . , p` qu and let F “ tA1, . . . , Amu be all the
subsets of U of size p. So m “

`

p`q
p

˘

.
• Smallest transversal has size q ` 1, because any set of size
q ` 1 intersects every member of F , whereas no set of size q
is a transversal, since its complement is a member of F .

• Removing any set A P F decreases τpFq to q, because then
UzA is a transversal of FztAu.

• This is a τ -critical system of size
`

p`q
p

˘

, where τpFq “ q ` 1
and @A P F ; |A| “ p.
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Application I: Size of a Critical Graphs

Question: Let U be a universe of size n
and F Ď 2U .

Suppose F is a τ -critical
system where τpFq “ q ` 1 and each

member in F has size p then

|F | ď????
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Application I: Size of a Critical Graphs

Question: Let U be a universe of size n and F Ď 2U . Suppose F
is a τ -critical system where τpFq “ q ` 1 and each member in F

has size p then |F | ď????

• Let F “ tA1, . . . , Amu.

• Then, for each 1 ď i ď m, there is a transversal Bi of size q
such that it intersects each of Aj , j ‰ i.

• However, Bi does not intersect Ai, otherwise it would also
be a transversal of F .

• Bollabás Theorem: m “ |F | ď
`

p`q
p

˘

.
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Two Families Theorem (Sets)
Application II
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Vertex Separators

A vertex subset S of a graph G is a vertex separator for
non-adjacent vertices s and t if removal of S from the graph
separates s and t into distinct connected components. In other
words, in G´ S there is no path from s to t.
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Minimal Separators

S is a minimal ps, tq-separator if no proper subset of S separates
S and t.
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Minimal Separators

S is a minimal ps, tq-separator if no proper subset of S separates
S and t.

s t

S

Is S shown above a minimal ps, tq-separator?.
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Characterization of Minimal Separators

A ps, tq-vertex separator S in G is minimal if and only if the
graph G´ S, obtained by removing S from G, has two
connected components AS containing s and BS containing t
such that each vertex in S is both adjacent to some vertex in
AS and to some vertex in BS .
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Application 1: Number of Minimal
Separators

Let G be a graph on n vertices and s and t be two
arbitrary vertices in G. How many minimal
ps, tq-vertex separators are there in G?

Let Nps, tq denote the set of minimal ps, tq-vertex separators in
G. Clearly, 2n provides an upper bound on |Nps, tq|.
Can we prove something better?
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• Let F pp, qqst denote the set of minimal ps, tq-vertex
separators S such that |AS | “ p and |S| “ q.

F pp, qqst “ tS | |S| “ q
ľ

S a minimal ps, tq-vertex separator
ľ

|AS | “ pu

Clearly,
|Nps, tq| ď

ÿ

pp,qq,
pďn,qďn,
p`qďn

|F pp, qqst|
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N(s, t)

F (p1 , q1)st

F (p2, q2)
st

F (p�, q�)
st

F
(p

2
,q

2
)s

t

F
(p

3
,q

3
)s

t

· · ·

Clearly,
|Nps, tq| ď

ÿ

pp,qq,
pďn,qďn,
p`qďn

|F pp, qqst|
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Bounding F pp, qqst

S1 S2 S3 Sk Sl Sm

AS1
AS2

AS3 ASk
ASl ASm

s s s s ss

|AS1 | “ |AS2 | “ ¨ ¨ ¨ “ |ASl
| “ |ASm | “ p and

|S1| “ |S2| “ ¨ ¨ ¨ “ |Sl| “ |Sm| “ q.

ASi
X Sj “ H ðñ i “ j

m “ |F pp, qqst| ď

ˆ

p` q

p

˙

Notice that this is true about any p, q. However, let us put
p “ n{2 and q “ n{2 and we get m “ |F pp, qqst| ď

`

p`q
p

˘

„ 2n.
So we need one more trick to get below 2n.
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s t

BSAS

For every minimal separator S, we have that either |AS | ď
n´|S|

2

or |BS | ď
n´|S|

2

Observe that every minimal ps, tq-vertex separator is also a
minimal pt, sq-vertex separator.
Clearly,

|Nps, tq| ď
ÿ

pp,qq,
pďn,qďn,

pďn´q
2

|F pp, qqst| `
ÿ

pp,qq,
pďn,qďn,

pďn´q
2

|F pp, qqts|

Thus to get an upper bound we only need to bound those
separators for which we have that 2p` q ď n.
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Bounding F pp, qqst

S1 S2 S3 Sk Sl Sm

AS1
AS2

AS3 ASk
ASl ASm

s s s s ss

|AS1 | “ |AS2 | “ ¨ ¨ ¨ “ |ASl
| “ |ASm | “ p and

|S1| “ |S2| “ ¨ ¨ ¨ “ |Sl| “ |Sm| “ q.

ASi
X Sj “ H ðñ i “ j

m “ |F pp, qqst| ď

ˆ

p` q

p

˙

ď 1.618n when 2p` q ď n

Notice that this is true about any p, q for which 2p` q ď n and
for any s, t. Thus, the number of minimal ps, tq-vertex
separators in a graph is at most 1.618nnOp1q.
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Open Problem

• Can we improve the upper bound on the number of
minimal ps, tq-vertex separators in a graph on n vertices?

• The lower bound is 1.4521n.
• Consequences — Improved exact exponential time
algorithms for computing Treewidth, finding induced
subgraph of constant treewidth (like finding Minimum
Feedback Vertex Set), ........
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Two Families Theorem
Subspaces

35



Two Families Theorem: Subspaces

Let A1, . . . , Am be p dimensional and B1, . . . , Bm be q
dimensional subspaces of a vector space W over a field F such

that
Ai XBj “ t0u ðñ i “ j

Here, t0u denotes the subspace consisting of the zero vector only.
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Two Families Theorem: Subspaces

A1 A2 A3 A4 A5

B5B4B3B2B1
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Two Families Theorem: Subspaces

A1 A2 A3 A4 A5

B5B4B3B2B1

Draw an edge between two subspaces if the intersect!
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Two Families Theorem (Subspaces):
Lovász Theorem

Let A1, . . . , Am be p dimensional and B1, . . . , Bm be q
dimensional subspaces of a vector space W over the field F such

that
Ai XBj “ t0u ðñ i “ j

Here, t0u denotes the subspace consisting of the zero vector

only. Thenm ď
`

p`q
p

˘

.
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Two Families Theorem (Subspaces):
Lovász Theorem

An useful reformulation:

Let M be a matrix of dimension sˆ n over F. Furthermore, let
A1, . . . , Am be p sized subset of columns such that each Ai are

linearly independent and B1, . . . , Bm be q sized subset of
columns such that each Bj are linearly independent. Moreover,

Ai XBj “ H and
Ai YBj is linearly independent ðñ i “ j

Thenm ď
`

p`q
p

˘

.

If s “ pp` qq then we can say,

detrAi YBjs ‰ 0 ðñ i “ j
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Two Families Theorem (Subspaces):
Lovász Theorem

Let M be a matrix of dimension sˆ n over F. Furthermore, let
A1, . . . , Am be p sized subset of columns such that each Ai are
linearly independent. and B1, . . . , Bm be q sized subset of
columns such that each Bj are linearly independent. Moreover,
Ai XBj “ H and Ai YBj is linearly independent ðñ i “ j

Thenm ď
`

p`q
p

˘

.

A1 A2 A3 A4

M =
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Two Families Theorem (Subspace)
Application III
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Application

Let G be a clique on n vertices and let A1, . . . , Am be forests on
p edges and B1, . . . , Bm be forests on n´ 1´ p edges such that
Ai YBj is a spanning tree if and only if i “ j.

Of course m ď
`

n2

p

˘

ď 2Opn lognq.
Can we say something better using Lovász Theorem?

Like m ď
`

p`n´1´p
p

˘

“
`

n´1
p

˘

ď 2n!
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Making our matrix!

Consider the matrix M with a row for each vertex i P V pGq and
a column for each edge e “ ij P EpGq. In the column
corresponding to e “ ij, all entries are 0, except for a 1 in i or j.

»

—

—

—

—

–

e1 e2 e3 ¨ ¨ ¨ em

1 1 0 1 ¨ ¨ ¨ 0
2 0 0 0 ¨ ¨ ¨ 1
3 1 1 0 ¨ ¨ ¨ 0
...

...
...

...
...

...
n 0 1 1 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

fl

nˆ|EpGq|

This is basically vertex-edge incidence graph of G. A set of edge
X forms a forest in G if and only if columns corresponding to X
are linearly independent in M over the finite field F2.
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Proof?

• If G has a cycle then the corresponding columns adds up to
0?
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Proof?

• If G has a cycle then the corresponding columns adds up to
0?

• Let X be a set of columns that are linearly dependent then
the corresponding edges form a subgraph of even degree?
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More Combinatorial Applications

•

Read the two amazing surveys by
Zsolt Tuza
Applications of the Set Pair Method in Extremal Hypergraph
Theory
Applications of the Set Pair Method in Extremal Problems, II
http://gilkalai.wordpress.com/2008/12/25/lovaszs-two-families-
theorem/
http://www.thi.informatik.uni-
frankfurt.de/ jukna/EC_Book_2nd/katona.html
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Final Slide

Thank You!
Any Questions?
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