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Problems we would be interested in...
Vertex Cover
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a subset V 1 Ď V of size at most k such that for
every edge (u, v) P E either u P V 1 or v P V 1?

Hamiltonian Path
Input: A graphG = (V, E)

Question: Does there exist a path P inG that spans all the vertices?

Longest Path
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a path P inG of length at least k?



Introduction and Kernelization



Fixed Parameter Tractable (FPT) Algorithms

For decision problems with input size n, and a parameter k, (which typically is
the solution size), the goal here is to design an algorithm with running time
f(k) ¨ nO(1), where f is a function of k alone.

Problems that have such an algorithm are said to be fixed parameter tractable
(FPT).



A Few Examples

Vertex Cover
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a subset V 1 Ď V of size at most k such that for
every edge (u, v) P E either u P V 1 or v P V 1?

Longest Path
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a path P inG of length at least k?



Kernelization: A Method for Everyone

Informally: A kernelization algorithm is a polynomial-time transformation that
transforms any given parameterized instance to an equivalent instance of the
same problem, with size and parameter bounded by a function of the parameter.



Kernel: Formally

Formally: A kernelization algorithm, or in short, a kernel for a parameterized
problem L Ď Σ˚ ˆ N is an algorithm that given (x, k) P Σ˚ ˆ N, outputs in
p(|x|+ k) time a pair (x 1, k 1) P Σ˚ ˆ N such that

• (x, k) P L ⇐⇒ (x 1, k 1) P L ,
• |x 1|, k 1 ď f(k),

where f is an arbitrary computable function, and p a polynomial. Any function f
as above is referred to as the size of the kernel.

Polynomial kernel =⇒ f is polynomial.
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Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k+ 1 then include v in

solution and (G− {v}, k− 1)

Apply these rules until no longer possible.

What conclusions can we draw ?
Outcome 1: IfG is not empty and k drops to 0 — the answer is No.
Observation: Every vertex has degree at most k — number of edges they can

cover is at most k2.
Outcome 2: If |E| ą k2 — the answer is No. Else |E| ď k2, |V | ď 2k2 and

we have polynomial sized kernel of O(k2).
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Historical Development of Longest Path
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Longest-Path

• 1985–Monien – k!nm time algorithm.

• Implies we can test whether there is a path of O
(

logn
log logn

)
in polynomial

time.
• Papadimitriou and Yannakakis [Structures 1993] conjectured that testing

whether there is a path of O(logn) is in polynomial time.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.

Technique Invented — COLOR-CODING
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Open Problem: Design a deterministic polynomial space algorithm for
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Open Problem: Design a deterministic algorithm for Longest-Path running in
time 2.45knc.



The list is not comprehensive and I have left out
algorithms based on treewidth. Will speak about it

if time permits.
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Ham-Path

Dynamic Programming for Hamiltonian Path
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V[Paths of length i ending at vj]
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Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:
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K-Path

Let us now turn to k-Path.

To find paths of length at least k,
we may simply use the DP table for Hamiltonian Path

restricted to the first k columns.
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Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.
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For any possible ending of length (k− i), we want to be sure that we store
at least one among the possibly many “prefixes”.

This could also be
(

n
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)
.

The hope for “saving” comes from the fact that a single path of length i is
potentially capable of being a prefix to several distinct endings.
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Representative Sets

Why, What and How.
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Then:
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that serves the same purpose.



Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.



Partial solutions: paths of length j ending at vi

A “small” representative family.

If:

vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.



Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.



Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.



Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.



Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.



Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.



Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.



Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.
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Given: A ď
(
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)
family F of p-sized subsets of [n].

S1, S2, . . . , St

Known: D
(
k
p

)
subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

Bolobás, 1965.



Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

Want: A subfamily pF of F such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Lovász, 1977
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Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is a subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.
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Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is an efficiently computable subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Márx (2009) and Fomin, Lokshtanov, Saurabh (2013)



Summary.

We have at hand a p-uniform collection of independent sets, F and a number q.
Let X be any set of size at most q. For any set S P F, if:

a X is disjoint from S, and
b X and S together form an independent set,

then a q-representative family pF contains a set pS that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a q-representative family for the given family.



Representative Sets

Back to Why.
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We are going to compute representative families at every intermediate stage of
the computation.

For instance, in the ith column, we are storing i-uniform families.
Before moving on to column (i+ 1), we compute (k− i)-representative families.

This keeps the sizes small as we go along.
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Let Pj
i be the set of all paths of length i ending at vj.

It can be shown that the families thus computed at the ith column, jth row are
indeed (k− i)-representative families for Pj

i .

The correctness is implicit in the notion of a representative family.



Representative Sets

A Different Why.



Vertex Cover
Can you delete k vertices to kill all edges?
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Let (G = (V, E), k) be an instance of Vertex Cover.

Note that E can be thought of as a 2-uniform family over the ground set V .

Goal: Kernelization.

In this context, we are asking if there is a small subset X of the edges such that

G[X] is a YES-instance↔G is a YES-instance.
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Note: IfG is a YES-instance, thenG[X] is a YES-instance for any subset X Ď E.

We get one direction for free!

It is the NO-instances that we have to worry about preserving.

What is a NO-instance?
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IfG is a NO-instance:

For any subset S of size at most k,
there is an edge that is disjoint from S.

Ring a bell?
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Recall.

We have at hand a p-uniform collection of independent sets, F and a number q.
Let X be any set of size at most q. For any set S P F, if:

a X is disjoint from S, and
b X and S together form an independent set,

then a q-representative family contains a set pS that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a q-representative family for the given family.



Claim: A k-representative family for E is in fact
anO(k2) kernel for vertex cover.
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k-Representative Family

O(k2)

Is there a Vertex Cover of size at most k?
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”

O(k2)

Is there a Vertex Cover of size at most k?



Let us show that ifG[X] is a YES-instance, then so isG.

This time, by contradiction.
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Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,

then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!
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A k-representative family for E(G) is in fact
anO(k2) instance kernel for Vertex Cover!



Representative Sets

Why, What and How.



Representative Sets

And that will be all!


