
Longest Path in Graphs: Parameterized Algorithms
Lecture I: Basics of Parameterized Algorithms, Long Path in 80’s and

Representative Sets

Saket Saurabh

The Institute of Mathematical Sciences, India
and University of Bergen, Norway,

RAA 2017, St. Petersburg, May 22–26, 2017

Problems we would be interested in...
Vertex Cover
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a subset V 1 Ď V of size at most k such that for
every edge (u, v) P E either u P V 1 or v P V 1?

Hamiltonian Path
Input: A graphG = (V, E)

Question: Does there exist a path P inG that spans all the vertices?

Longest Path
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a path P inG of length at least k?

Introduction and Kernelization

Fixed Parameter Tractable (FPT) Algorithms

For decision problems with input size n, and a parameter k, (which typically is
the solution size), the goal here is to design an algorithm with running time
f(k) ¨ nO(1), where f is a function of k alone.

Problems that have such an algorithm are said to be fixed parameter tractable
(FPT).

A Few Examples

Vertex Cover
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a subset V 1 Ď V of size at most k such that for
every edge (u, v) P E either u P V 1 or v P V 1?

Longest Path
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a path P inG of length at least k?

Kernelization: A Method for Everyone

Informally: A kernelization algorithm is a polynomial-time transformation that
transforms any given parameterized instance to an equivalent instance of the
same problem, with size and parameter bounded by a function of the parameter.

Kernel: Formally

Formally: A kernelization algorithm, or in short, a kernel for a parameterized
problem L Ď Σ˚ ˆ N is an algorithm that given (x, k) P Σ˚ ˆ N, outputs in
p(|x|+ k) time a pair (x 1, k 1) P Σ˚ ˆ N such that

• (x, k) P L ⇐⇒ (x 1, k 1) P L ,
• |x 1|, k 1 ď f(k),

where f is an arbitrary computable function, and p a polynomial. Any function f
as above is referred to as the size of the kernel.

Polynomial kernel =⇒ f is polynomial.

Kernel: Formally

Formally: A kernelization algorithm, or in short, a kernel for a parameterized
problem L Ď Σ˚ ˆ N is an algorithm that given (x, k) P Σ˚ ˆ N, outputs in
p(|x|+ k) time a pair (x 1, k 1) P Σ˚ ˆ N such that

• (x, k) P L ⇐⇒ (x 1, k 1) P L ,
• |x 1|, k 1 ď f(k),

where f is an arbitrary computable function, and p a polynomial. Any function f
as above is referred to as the size of the kernel.

Polynomial kernel =⇒ f is polynomial.

Kernel: Formally

Formally: A kernelization algorithm, or in short, a kernel for a parameterized
problem L Ď Σ˚ ˆ N is an algorithm that given (x, k) P Σ˚ ˆ N, outputs in
p(|x|+ k) time a pair (x 1, k 1) P Σ˚ ˆ N such that

• (x, k) P L ⇐⇒ (x 1, k 1) P L ,
• |x 1|, k 1 ď f(k),

where f is an arbitrary computable function, and p a polynomial. Any function f
as above is referred to as the size of the kernel.

Polynomial kernel =⇒ f is polynomial.

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k+ 1 then include v in

solution and (G− {v}, k− 1)

... k + 1

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k+ 1 then include v in

solution and (G− {v}, k− 1)

Apply these rules until no longer possible.

What conclusions can we draw ?
Outcome 1: IfG is not empty and k drops to 0 — the answer is No.
Observation: Every vertex has degree at most k — number of edges they can

cover is at most k2.
Outcome 2: If |E| ą k2 — the answer is No. Else |E| ď k2, |V | ď 2k2 and

we have polynomial sized kernel of O(k2).

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k+ 1 then include v in

solution and (G− {v}, k− 1)

Apply these rules until no longer possible.
What conclusions can we draw ?

Outcome 1: IfG is not empty and k drops to 0 — the answer is No.
Observation: Every vertex has degree at most k — number of edges they can

cover is at most k2.
Outcome 2: If |E| ą k2 — the answer is No. Else |E| ď k2, |V | ď 2k2 and

we have polynomial sized kernel of O(k2).

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k+ 1 then include v in

solution and (G− {v}, k− 1)

Apply these rules until no longer possible.
What conclusions can we draw ?

Outcome 1: IfG is not empty and k drops to 0 — the answer is No.

Observation: Every vertex has degree at most k — number of edges they can
cover is at most k2.

Outcome 2: If |E| ą k2 — the answer is No. Else |E| ď k2, |V | ď 2k2 and
we have polynomial sized kernel of O(k2).

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k+ 1 then include v in

solution and (G− {v}, k− 1)

Apply these rules until no longer possible.
What conclusions can we draw ?

Outcome 1: IfG is not empty and k drops to 0 — the answer is No.
Observation: Every vertex has degree at most k — number of edges they can

cover is at most k2.

Outcome 2: If |E| ą k2 — the answer is No. Else |E| ď k2, |V | ď 2k2 and
we have polynomial sized kernel of O(k2).

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k+ 1 then include v in

solution and (G− {v}, k− 1)

Apply these rules until no longer possible.
What conclusions can we draw ?

Outcome 1: IfG is not empty and k drops to 0 — the answer is No.
Observation: Every vertex has degree at most k — number of edges they can

cover is at most k2.
Outcome 2: If |E| ą k2 — the answer is No. Else |E| ď k2, |V | ď 2k2 and

we have polynomial sized kernel of O(k2).

Historical Development of Longest Path

Naive Algorithm for Longest Path

(
n

k

)
k!

Naive Algorithm for Longest Path

(
n

k

)
k!

Longest-Path

• 1985–Monien – k!nm time algorithm.

• Implies we can test whether there is a path of O
(

logn
log logn

)
in polynomial

time.
• Papadimitriou and Yannakakis [Structures 1993] conjectured that testing

whether there is a path of O(logn) is in polynomial time.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.

Technique Invented — COLOR-CODING

Longest-Path

• 1985–Monien – k!nm time algorithm.

• Implies we can test whether there is a path of O
(

logn
log logn

)
in polynomial

time.

• Papadimitriou and Yannakakis [Structures 1993] conjectured that testing
whether there is a path of O(logn) is in polynomial time.

• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.

Technique Invented — COLOR-CODING

Longest-Path

• 1985–Monien – k!nm time algorithm.

• Implies we can test whether there is a path of O
(

logn
log logn

)
in polynomial

time.
• Papadimitriou and Yannakakis [Structures 1993] conjectured that testing

whether there is a path of O(logn) is in polynomial time.

• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.

Technique Invented — COLOR-CODING

Longest-Path

• 1985–Monien – k!nm time algorithm.

• Implies we can test whether there is a path of O
(

logn
log logn

)
in polynomial

time.
• Papadimitriou and Yannakakis [Structures 1993] conjectured that testing

whether there is a path of O(logn) is in polynomial time.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.

Technique Invented — COLOR-CODING

Longest-Path

• 1985–Monien – k!nm time algorithm.

• Implies we can test whether there is a path of O
(

logn
log logn

)
in polynomial

time.
• Papadimitriou and Yannakakis [Structures 1993] conjectured that testing

whether there is a path of O(logn) is in polynomial time.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.

Technique Invented — COLOR-CODING

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.

Technique Invented — Divide and COLOR
Still the fastest deterministic polynomial space algorithm.

Open Problem: Design a deterministic polynomial space algorithm for
Longest-Path running in time (4− ϵ)knc for some fixed ϵ ą 0.

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.

Technique Invented — Divide and COLOR

Still the fastest deterministic polynomial space algorithm.

Open Problem: Design a deterministic polynomial space algorithm for
Longest-Path running in time (4− ϵ)knc for some fixed ϵ ą 0.

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.

Technique Invented — Divide and COLOR
Still the fastest deterministic polynomial space algorithm.

Open Problem: Design a deterministic polynomial space algorithm for
Longest-Path running in time (4− ϵ)knc for some fixed ϵ ą 0.

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.

Technique Invented — Algebraic Methods

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.

Technique Invented — Algebraic Methods

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.
• 2009–Williams 2knc time randomized algorithm.
• 2013– Björklund, Husfeldt, Kaski and Koivisto 1.657knc time randomized

algorithm.

Technique Invented — Narrow Sieve
Still the fastest known algorithm (though randomized and works only for
undirected graphs)

Open Problem: Design an algorithm for Longest-Path running in time
(1.657− ϵ)knc for some fixed ϵ ą 0.

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.
• 2009–Williams 2knc time randomized algorithm.
• 2013– Björklund, Husfeldt, Kaski and Koivisto 1.657knc time randomized

algorithm.

Technique Invented — Narrow Sieve

Still the fastest known algorithm (though randomized and works only for
undirected graphs)

Open Problem: Design an algorithm for Longest-Path running in time
(1.657− ϵ)knc for some fixed ϵ ą 0.

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.
• 2009–Williams 2knc time randomized algorithm.
• 2013– Björklund, Husfeldt, Kaski and Koivisto 1.657knc time randomized

algorithm.

Technique Invented — Narrow Sieve
Still the fastest known algorithm (though randomized and works only for
undirected graphs)

Open Problem: Design an algorithm for Longest-Path running in time
(1.657− ϵ)knc for some fixed ϵ ą 0.

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.
• 2009–Williams 2knc time randomized algorithm.
• 2013– Björklund, Husfeldt, Kaski and Koivisto 1.657knc time randomized

algorithm.

Technique Invented — Narrow Sieve
Still the fastest known algorithm (though randomized and works only for
undirected graphs)

Open Problem: Design an algorithm for Longest-Path running in time
(1.657− ϵ)knc for some fixed ϵ ą 0.

More Open Problems

Open Problem: Design an algorithm for Longest-Path running in time (2 −

ϵ)knc for some fixed ϵ ą 0 on directed graphs.

Open Problem: Design an algorithm for Longest-Path running in time (2 −

ϵ)nnc for some fixed ϵ ą 0 on directed graphs. Here, n is the number of
vertices.

More Open Problems

Open Problem: Design an algorithm for Longest-Path running in time (2 −

ϵ)knc for some fixed ϵ ą 0 on directed graphs.

Open Problem: Design an algorithm for Longest-Path running in time (2 −

ϵ)nnc for some fixed ϵ ą 0 on directed graphs. Here, n is the number of
vertices.

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.
• 2009–Williams 2knc time randomized algorithm.
• 2013–Björklund, Husfeldt, Kaski and Koivisto 1.657knc time randomized

algorithm.
• 2014– Fomin, Lokshtanov and Saurabh 2.83knc time deterministic

algorithm.

Technique Invented — Fast Computation of Representative Families

Longest-Path

• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.
• 2009–Williams 2knc time randomized algorithm.
• 2013–Björklund, Husfeldt, Kaski and Koivisto 1.657knc time randomized

algorithm.
• 2014– Fomin, Lokshtanov and Saurabh 2.83knc time deterministic

algorithm.

Technique Invented — Fast Computation of Representative Families

Longest-Path
• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.
• 2009–Williams 2knc time randomized algorithm.
• 2013–Björklund, Husfeldt, Kaski and Koivisto 1.657knc time randomized

algorithm.
• 2014– Fomin, Lokshtanov and Saurabh 2.83knc time deterministic

algorithm.
• 2014 –Fomin, Lokshtanov, Panolan and Saurabh and Shachnai and Zehavi

gave 2.618knc time deterministic algorithm.
• 2014–Zehavi gave 2.597knc time deterministic algorithm.

Technique Invented — Fast Computation of Representative Families combined
with Color Coding
Still the fastest known deterministic algorithm (though takes exponential space)

Longest-Path
• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.
• 2009–Williams 2knc time randomized algorithm.
• 2013–Björklund, Husfeldt, Kaski and Koivisto 1.657knc time randomized

algorithm.
• 2014– Fomin, Lokshtanov and Saurabh 2.83knc time deterministic

algorithm.
• 2014 –Fomin, Lokshtanov, Panolan and Saurabh and Shachnai and Zehavi

gave 2.618knc time deterministic algorithm.
• 2014–Zehavi gave 2.597knc time deterministic algorithm.

Technique Invented — Fast Computation of Representative Families combined
with Color Coding

Still the fastest known deterministic algorithm (though takes exponential space)

Longest-Path
• 1985–Monien – k!nm time algorithm.
• 1995–Alon, Yuster and Zwick– 2O(k)nc time algorithm.
• 2007– Chen, Kneis, Lu, Molle, Richter, Rossmanith, Sze and Zhang 4knc

time algorithm.
• 2008– Koutis 2.83knc time randomized algorithm.
• 2009–Williams 2knc time randomized algorithm.
• 2013–Björklund, Husfeldt, Kaski and Koivisto 1.657knc time randomized

algorithm.
• 2014– Fomin, Lokshtanov and Saurabh 2.83knc time deterministic

algorithm.
• 2014 –Fomin, Lokshtanov, Panolan and Saurabh and Shachnai and Zehavi

gave 2.618knc time deterministic algorithm.
• 2014–Zehavi gave 2.597knc time deterministic algorithm.

Technique Invented — Fast Computation of Representative Families combined
with Color Coding
Still the fastest known deterministic algorithm (though takes exponential space)

Open Problem: Design a deterministic algorithm for Longest-Path running in
time 2.45knc.

The list is not comprehensive and I have left out
algorithms based on treewidth. Will speak about it

if time permits.

Longest-Path

• 1985–Monien – k!nm time algorithm.

Technique we will see — Representative Families/Sets

Longest-Path

• 1985–Monien – k!nm time algorithm.

Technique we will see — Representative Families/Sets

Representative Sets

Why, What and How.

Representative Sets

Why, What and How.

Ham-Path

Dynamic Programming for Hamiltonian Path

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:

Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:

Invalid:

Potentially storing
(
n
i

)
sets.

Ham-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ n− 1 n

v1

...

vj

...

vn

vj

Example:

V[Paths of length i ending at vj]

SETS, NOT SEQUENCES.

Two paths that use the same set of vertices but

visit them in different orders are equivalent.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

u P N(vj)

Valid:Invalid:

Potentially storing
(
n
i

)
sets.

K-Path

Let us now turn to k-Path.

To find paths of length at least k,
we may simply use the DP table for Hamiltonian Path

restricted to the first k columns.

K-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))

K-Path

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆(nk)

Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.

Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.

Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.

Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.

Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.

Example.

Suppose we have a path P on seven edges.

Consider it broken up into the first four and the last three edges.

Example.

Suppose we have a path P on seven edges.

Consider it broken up into the first four and the last three edges.

Example.

Suppose we have a path P on seven edges.

Consider it broken up into the first four and the last three edges.

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

Let’s try a different example.

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

Here’s one more example:

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

For any possible ending of length (k− i), we want to be sure that we store
at least one among the possibly many “prefixes”.

This could also be
(

n
k−i

)
.

The hope for “saving” comes from the fact that a single path of length i is
potentially capable of being a prefix to several distinct endings.

For any possible ending of length (k− i), we want to be sure that we store
at least one among the possibly many “prefixes”.

This could also be
(

n
k−i

)
.

The hope for “saving” comes from the fact that a single path of length i is
potentially capable of being a prefix to several distinct endings.

For any possible ending of length (k− i), we want to be sure that we store
at least one among the possibly many “prefixes”.

This could also be
(

n
k−i

)
.

The hope for “saving” comes from the fact that a single path of length i is
potentially capable of being a prefix to several distinct endings.

For example...

Representative Sets

Why, What and How.

Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.

Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.

Partial solutions: paths of length j ending at vi

A “small” representative family.

If:

vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.

Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.

Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.

Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.

Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.

Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.

Partial solutions: paths of length j ending at vi

A “small” representative family.

If:
vi

(k− j) vertices

j vertices

Then:

We would like to store at least one path of length j

that serves the same purpose.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

This is a valid patch into X.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

This is a guaranteed replacement for S.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A ď
(
n
p

)
family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A ď
(
n
p

)
family F of p-sized subsets of [n].

S1, S2, . . . , St

Known: D
(
k
p

)
subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

Bolobás, 1965.

Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

Want: A subfamily pF of F such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Lovász, 1977

Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

Want: A subfamily pF of F such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Lovász, 1977

Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

Want: A subfamily pF of F such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Lovász, 1977

Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is a subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Lovász, 1977

Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is an efficiently computable subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Márx (2009) and Fomin, Lokshtanov, Saurabh (2013)

Summary.

We have at hand a p-uniform collection of independent sets, F and a number q.
Let X be any set of size at most q. For any set S P F, if:

a X is disjoint from S, and
b X and S together form an independent set,

then a q-representative family pF contains a set pS that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a q-representative family for the given family.

Representative Sets

Back to Why.

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))[RECALL]

(
k
i

)
Representative Set Computation

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))[RECALL](
n
k

)

(
k
i

)
Representative Set Computation

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))[RECALL](
n
k

)

(
k
i

)

Representative Set Computation

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))[RECALL](
n
k

)

(
k
i

)
Representative Set Computation

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))Not so fast!(
n
k

)

(
k
i

)
Representative Set Computation

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))Not so fast!(
n
k

)
is too big!

(
k
i

)
Representative Set Computation

We are going to compute representative families at every intermediate stage of
the computation.

For instance, in the ith column, we are storing i-uniform families.
Before moving on to column (i+ 1), we compute (k− i)-representative families.

This keeps the sizes small as we go along.

We are going to compute representative families at every intermediate stage of
the computation.

For instance, in the ith column, we are storing i-uniform families.
Before moving on to column (i+ 1), we compute (k− i)-representative families.

This keeps the sizes small as we go along.

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))RECALL

Blah blah.

(
k
i

)
Representative Set Computation

n

(
k
1

) (
k
1

)
n

(
k
2

) (
k
2

)
n

(
k
3

)
¨ ¨ ¨

(
k

i−1

)
n

(
k
i

)
¨ ¨ ¨ 2kn2k

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))RECALL

Blah blah.

(
k
i

)
Representative Set Computation

n
(
k
1

)

(
k
1

)
n

(
k
2

) (
k
2

)
n

(
k
3

)
¨ ¨ ¨

(
k

i−1

)
n

(
k
i

)
¨ ¨ ¨ 2kn2k

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))RECALL

Blah blah.

(
k
i

)
Representative Set Computation

n
(
k
1

) (
k
1

)
n

(
k
2

) (
k
2

)
n

(
k
3

)
¨ ¨ ¨

(
k

i−1

)
n

(
k
i

)
¨ ¨ ¨ 2kn2k

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))RECALL

Blah blah.

(
k
i

)
Representative Set Computation

n
(
k
1

) (
k
1

)
n

(
k
2

)

(
k
2

)
n

(
k
3

)
¨ ¨ ¨

(
k

i−1

)
n

(
k
i

)
¨ ¨ ¨ 2kn2k

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))RECALL

Blah blah.

(
k
i

)
Representative Set Computation

n
(
k
1

) (
k
1

)
n

(
k
2

) (
k
2

)
n

(
k
3

)
¨ ¨ ¨

(
k

i−1

)
n

(
k
i

)
¨ ¨ ¨ 2kn2k

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))RECALL

Blah blah.

(
k
i

)
Representative Set Computation

n
(
k
1

) (
k
1

)
n

(
k
2

) (
k
2

)
n

(
k
3

)

¨ ¨ ¨
(

k
i−1

)
n

(
k
i

)
¨ ¨ ¨ 2kn2k

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))RECALL

Blah blah.

(
k
i

)
Representative Set Computation

n
(
k
1

) (
k
1

)
n

(
k
2

) (
k
2

)
n

(
k
3

)
¨ ¨ ¨

(
k

i−1

)
n

(
k
i

)
¨ ¨ ¨ 2kn2k

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))RECALL

Blah blah.

(
k
i

)
Representative Set Computation

n
(
k
1

) (
k
1

)
n

(
k
2

) (
k
2

)
n

(
k
3

)
¨ ¨ ¨

(
k

i−1

)
n

(
k
i

)

¨ ¨ ¨ 2kn2k

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))RECALL

Blah blah.

(
k
i

)
Representative Set Computation

n
(
k
1

) (
k
1

)
n

(
k
2

) (
k
2

)
n

(
k
3

)
¨ ¨ ¨

(
k

i−1

)
n

(
k
i

)
¨ ¨ ¨ 2kn

2k

1 2 3 ¨ ¨ ¨ i ¨ ¨ ¨ k− 1 k

v1

...

vj

...

vn

Worst case running time: O⋆
((

n
k

))RECALL

Blah blah.

(
k
i

)
Representative Set Computation

n
(
k
1

) (
k
1

)
n

(
k
2

) (
k
2

)
n

(
k
3

)
¨ ¨ ¨

(
k

i−1

)
n

(
k
i

)
¨ ¨ ¨ 2kn2k

Let Pj
i be the set of all paths of length i ending at vj.

It can be shown that the families thus computed at the ith column, jth row are
indeed (k− i)-representative families for Pj

i .

The correctness is implicit in the notion of a representative family.

Representative Sets

A Different Why.

Vertex Cover
Can you delete k vertices to kill all edges?

Vertex Cover
Can you delete k vertices to kill all edges?

Let (G = (V, E), k) be an instance of Vertex Cover.

Note that E can be thought of as a 2-uniform family over the ground set V .

Goal: Kernelization.

In this context, we are asking if there is a small subset X of the edges such that

G[X] is a YES-instance↔G is a YES-instance.

Let (G = (V, E), k) be an instance of Vertex Cover.

Note that E can be thought of as a 2-uniform family over the ground set V .

Goal: Kernelization.

In this context, we are asking if there is a small subset X of the edges such that

G[X] is a YES-instance↔G is a YES-instance.

Note: IfG is a YES-instance, thenG[X] is a YES-instance for any subset X Ď E.

We get one direction for free!

It is the NO-instances that we have to worry about preserving.

What is a NO-instance?

Note: IfG is a YES-instance, thenG[X] is a YES-instance for any subset X Ď E.

We get one direction for free!

It is the NO-instances that we have to worry about preserving.

What is a NO-instance?

Note: IfG is a YES-instance, thenG[X] is a YES-instance for any subset X Ď E.

We get one direction for free!

It is the NO-instances that we have to worry about preserving.

What is a NO-instance?

Note: IfG is a YES-instance, thenG[X] is a YES-instance for any subset X Ď E.

We get one direction for free!

It is the NO-instances that we have to worry about preserving.

What is a NO-instance?

IfG is a NO-instance:

For any subset S of size at most k,
there is an edge that is disjoint from S.

Ring a bell?

IfG is a NO-instance:

For any subset S of size at most k,
there is an edge that is disjoint from S.

Ring a bell?

Recall.

We have at hand a p-uniform collection of independent sets, F and a number q.
Let X be any set of size at most q. For any set S P F, if:

a X is disjoint from S, and
b X and S together form an independent set,

then a q-representative family contains a set pS that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a q-representative family for the given family.

Claim: A k-representative family for E is in fact
anO(k2) kernel for vertex cover.

E(G) = {e1, e2, . . . , em}

{f1, f2, . . . , fr}

k-Representative Family

O(k2)

Is there a Vertex Cover of size at most k?

E(G) = {e1, e2, . . . , em}

{f1, f2, . . . , fr}

k-Representative Family

O(k2)

Is there a Vertex Cover of size at most k?

E(G) = {e1, e2, . . . , em}

{f1, f2, . . . , fr}

k-Representative Family

O(k2)

Is there a Vertex Cover of size at most k?

E(G) = {e1, e2, . . . , em}

{f1, f2, . . . , fr}

k-Representative Family

O(k2)

Is there a Vertex Cover of size at most k?

E(G) = {e1, e2, . . . , em}

{f1, f2, . . . , fr}

”

O(k2)

Is there a Vertex Cover of size at most k?

Let us show that ifG[X] is a YES-instance, then so isG.

This time, by contradiction.

Let us show that ifG[X] is a YES-instance, then so isG.

This time, by contradiction.

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,

then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.

Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,

then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.

Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,

then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,

then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,

then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

Try the solution forG[X] onG.Suppose there is an uncovered edge.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

if there is a set e in E such that e X S = H,
then there is a set pe in X such that pe X S = H.

Note that the green edges denoteG[X].

Contradiction!

A k-representative family for E(G) is in fact
anO(k2) instance kernel for Vertex Cover!

Representative Sets

Why, What and How.

Representative Sets

And that will be all!

