From univariate polynomials to
probabilistically checkable and
error-tolerant proofs

Computer Science Club, St Petersburg
17-18 November 2018

Petteri Kaski
Department of Computer Science
Aalto University

- What?
- Why?

- How?

What?

Short synopsis of lectures

» Polynomials in one variable are among the most elementary and most useful
mathematical objects, with broad-ranging applications from signal processing to
error-correcting codes and advanced applications such as probabilistically
checkable proofs and error-tolerant computation

» One of the main reasons why polynomials are useful in a myriad of applications is
that highly efficient algorithms are known for computing with polynomials

» These lectures introduce you to this near-linear-time toolbox and its select
applications, with some algorithmic ideas dating back millennia, and some introduced
only in the last few years

Lecture 1:
Polynomials in one variable

» We start with elementary computational tasks involving polynomials, such as
polynomial addition, multiplication, division (quotient and remainder), greatest
common divisor, evaluation, and interpolation

» We observe that polynomials admit two natural representations: coefficient
representation and evaluation representation

» We encounter the more-than-2000-year-old algorithm of Euclid for computing a
greatest common divisor

Lecture 2:
The fast Fourier transform and fast multiplication

» We derive one of the most fundamental and widely deployed algorithms in all of
computing, namely the fast Fourier transform and its inverse

» We explore the consequences of this near-linear-time-computable duality between the
coefficient and evaluation representations of a polynomial

» A key consequence is that we can multiply two polynomials in near-linear-time

Lecture 3:
Quotient and remainder; evaluation and interpolation

» We continue the development of the fast polynomial toolbox with near-linear-time
polynomial division (quotient and remainder)

» We encounter Newton iteration as the key tool for fast division

» We derive near-linear-time algorithms for batch evaluation and interpolation of
polynomials using recursive remaindering along a subproduct tree

Lecture 4:
Extended Euclidean algorithm and interpolation from
erroneous data

» This lecture culminates our development of the near-linear-time toolbox for univariate
polynomials

» First, we develop a divide-and-conquer version of the extended Euclidean algorithm for
polynomials that recursively truncates the inputs to achieve near-linear running time

» Second, we present a near-linear-time polynomial interpolation algorithm that is
robust to errors in the input data up to the information-theoretic maximum number of
errors for correct recovery

» As an application, we encounter Reed—Solomon error-correcting codes together with
near-linear-time encoding and decoding algorithms

Lecture 5:
Identity testing and probabilistically checkable proofs

» We investigate some further applications of the near-linear-time toolbox involving
randomization in algorithm design and proof systems with probabilistic soundness

» We find that the elementary fact that a low-degree nonzero polynomial has only a
small number of roots enables us to (probabilistically) verify the correctness of
intricate computations substantially faster than running the computation from scratch

» Furthermore, we observe that proof preparation intrinsically tolerates errors by virtue
of Reed-Solomon coding

Why?

Motivation (1/3): A showcase of algorithm design techniques

» The toolbox of near-linear-time algorithms for univariate polynomials and large
integers provides a practical showcase of recurrent mathematical ideas in algorithm
design such as

> linearity

> duality

» divide-and-conquer

» dynamic programming
> iteration and invariants
» parameterization

» randomization

Motivation (2/3): Applications

» We gain exposure to a number of classical and recent applications, such as
> secret-sharing

> error-correcting codes
» probabilistically checkable proofs

> error-tolerant computation

Motivation (3/3): Delegating computation

Client

modest resources
reliable

¢ How to verify
that the
solution is
correct ?

Problem
instance

-
P

Solution

Service-provider

massively SIMD-parallel resources
error-prone

* How to design an algorithm to tolerate
(a small number of) errors during computation ?

* How to convince the client or a third party
that the solution is correct ?

How?

Five lectures and problem sets

v

Each lecture (45 minutes + 45 minutes) reviews the key ideas

v

Also learning by doing — a problem set of four problems is associated with each
lecture; solving the problems is recommended to reach a detailed understanding

v

Lecture slides available online to accompany the lectures

v

Model solutions to each problem set available upon request

Lecture schedule

» Today (Saturday):
> 1. Polynomials in one variable

> 2. The fast Fourier transform and fast multiplication

» Tomorrow (Sunday):

> 3. Quotient and remainder; evaluation and interpolation
> 4. Extended Euclidean algorithm and interpolation from erroneous data

» 5. ldentity testing and probabilistically checkable proofs

1. Polynomials in one variable

Computer Science Club, St Petersburg
17-18 November 2018

Petteri Kaski
Department of Computer Science
Aalto University

Key content for Lecture 1

» A boot camp of basic concepts and definitions in algebra

» Polynomials in one variable (univariate polynomials)

» Basic tasks and first algorithms for univariate polynomials
> addition

» multiplication

» division (quotient and remainder)
> evaluation

> interpolation

> greatest common divisor

» Evaluation-interpolation -duality of polynomials

» The (traditional) extended Euclidean algorithm and its analysis

A boot camp of basic concepts and definitions in algebra

Modern Computer Algebra iredition

Joachim von zur Gathen and Jiirgen Gerhard

(von zur Gathen and Gerhard [6],
Sections 2.2-3.2, 25.1-4)

Group

» A group is a nonempty set G with a binary operation - : G X G — G satisfying
1. forall a, b,c € G we have (a- b) - ¢ = a- (b- c), (Associativity)
2. there existsa 1 € Gsuchthata-1=1-a=aforall a€ G, (Identity)

3. forall a € Gthereexistsana™' € Gwitha-a ' =a'-a=1(Inverses)
» A group G is commutative if forall a,b € Gwe havea-b=b-a

» Examples:
« (Z,+,0) and (Zy, +,0) for m € Z5, are commutative groups

« (Q\{0},-,1) and (Z),-, 1) for Z, = {1 < a < m : gcd(a, m) = 1} are commutative groups

ms

(Commutative) ring

v

A ring R is a set with two binary operations + : RX R — Rand-: RXR— R
satisfying

1. Rtogether with + is a commutative group with identity 0,

2. - is associative,

3. R has an identity element 1 for -,

4. for all a, b, c € R we have a(b + ¢) = (ab) + (ac) and (b + c)a = (ba) + (ca)

v

A ring R is commutative if - is commutative

v

A ring R is nontrivial if 0 # 1

v

Unless mentioned otherwise, in what follows we always assume that a ring R is both
commutative and nontrivial

v

Examples:
Z,Q,R,C,Z, forme Zs,

Example: Zs (the integers modulo 5)

» One way to represent a (finite) ring is to give the addition and multiplication tables for
the operations operations + and -

» In the two tables below, the entries at row x column y are x+y and x-y, respectively

+/0 1 2 3 4 10 1 2 3 4

0jo 1 2 3 4 0/{0 0 0 O

111 2 3 4 0 110 1 2 3 4 ()
212 3 4 0 1 210 2 4 1 3

313 4 0 1 2 310 3 1 4 2

414 0 1 2 3 410 4 3 2 1

Example: Z; (the integers modulo 6)

» Below are the addition and multiplication tables for Zg

+(0 1 2 3 4 5 0 1 2 3 45

0/{0 1 2 3 4 5 0/{0 0 0 0 0 O

111 2 3 4 5 0 110 1 2 3 4 5

212 3 4 5 0 1 2/0 2 4 0 2 4 (2)
3/3 4 5 0 1 2 3]0 3 0 3 0 3

414 5 0 1 2 3 410 4 2 0 4 2

5/5 0 1 2 3 4 5/0 5 4 3 2 1

» Compare the multiplication tables for Z¢ (above) and Zs (see (1))
— what qualitative differences can you spot?

Example: Z;, (the integers modulo 10)

» Here is a yet further example, the integers modulo 10

®3)

O NN N AN —
V(O 0 O T N O 0 O I N
NSO SN < m oI N0 M
V(O O NI ©O O AN 0 <
nio wm o mnm o wn o wnm o Lwn
IO T 0N O O T 0 AN VO
N N © N AN WO 0 — < I~
N[O AN < O 0 O N < O ©
O T AN N N OIS0
OO O O OO O O O oo
SO — AN N T 1N O~ 0
AN —m AN N T N O~
N[O OO —m AN N < 1N O~
NS00 VO m AN N <5 1 O
O[O M~ O —m AN M T W
min O~ O —m AN N <
<O O~ NSO —ANM
NN 1N O~ ONO — AN
NN < 10D O~ 0N O —
— AN N <N O ~N0 N O
QO — AN N T IO O~ 0
+|© AN O T 1N O~ 0

» What patterns can you identify from the multiplication table?

Field, unit, associate

» Aunitin aring Ris an element u € R for which there exists a multiplicative inverse
v e Rwith uv =1

v

The set R* of all units of R is a group under multiplication

v

Aring Ris a field if all nonzero elements of R are units

v

Examples: (of fields)
Q,R,C, Z, for p prime

v

We say that a € R is an associate of b € R and write a ~ b if there exists a unit u € R
such that a = ub

» ~ is an equivalence relation on R

Examples / work points

v

Study the multiplication table for Zs in (1)
— how can you identify which elements are units?

v

Based on the units that you identify, conclude that Zs is a field

v

By studying the multiplication table for Z¢ in (2), conclude that Zg is not a field by
identifying a nonzero element in Zg that does not have a multiplicative inverse

v

Study (2) and (3). Which elements are units in Z¢? How about in Zy?

v

Determine the equivalence classes for the associate relation ~ in Zs, Zs, and Z

Polynomials over a ring (1/2)

» Let Rbe aring and let x be a formal indeterminate
» A polynomial a € R[x] in x over R is a finite sequence (@, a1, . . ., a,) of elements of

R (the coefficients of a) which we write as

n
_ 2 n—1 n _ i
a=oypt+ax+ox +...+a,-1X +apx = E aixX
=0

» A polynomial a is nonzero if there existsa j = 0,1,...,nwith a; # 0

» For nonzero a, we assume that a,, # 0 and say that n = deg a is the degree of g; the
coefficient a, = Ic(a) is the leading coefficient of a

» For zero g, it is convenient to assume that a = (0) and set dega = —o0

» A nonzero polynomial is monic if Ic(a) = 1

Polynomials over a ring (2/2)

» The set R[x] equipped with the usual notions of addition and multiplication of
polynomials (recalled in what follows) is a ring with additive identity (0) and
multiplicative identity (1) for 0,1 € R

» As a notational convention when working with polynomials, we use symbols x, y, z, w
late in the Roman alphabet for formal indeterminates, and symbols a, b, c, . . ., s, t
early in the Roman alphabet for polynomials

» We use symbols a, f,y, . ..,w in the Greek alphabet for elements in R

Complexity of an algorithm

» When studying algorithms that compute with given elements of R[x|, we adopt the
convention of counting the number of arithmetic operations in R as a measure of
the "running time" of an algorithm

» Arithmetic operations in R include addition, subtraction, multiplication and taking a
multiplicative inverse (of a unit)

» We focus on worst-case running time (worst-case number of arithmetic operations
in R) as a function of the degree(s) of the input polynomial(s) in R[x]

» To avoid degenerate cases, we tacitly assume that all degrees are at least 1 for
purposes of running time analysis

» We will work with asymptotic notation O() and O()

Addition of polynomials

v

Leta=Y,;aix',b=3;Bix" € R[x] be given as input with dega = nand degh = m

v

The sum c = a+ b= Y,;y;x' € R[x] is the polynomial with deg ¢ < max(n, m) defined
forall i =0,1,...,max(n, m) by

)/,'20{,'+ﬁ,'€R

v

Given a, b as input, it is immediate that we can compute ¢ in O(max(n, m)) operations
in R

v

Subtraction and multiplication with a given element of R are defined analogously

Multiplication of polynomials

v

Let a= Y, a;x',b=Y;fix" € R[x] be given as input with dega = nand degh=m

v

The product ¢ = ab = 3, yix' € R[x] is the polynomial with deg ¢ < n+ m defined for
alli=0,1,...,n+ mby
vi=) apijeR
=0
Given a, b as input, it is immediate that we can compute c in O((n + m)?) operations
in R

\4

v

... but could we do better? The output consists of only O(n+ m) elements of R ...

Polynomial division (quotient and remainder)

v

Let a= Y, a;x', b =Y, Bix" € R[x] be given as input with dega = n, deg b = m,
n > m > 0, and suppose that 8, € Ris a unit

v

We want to compute q, r € R[x] with a = gb+ r and degr < m

v

The classical division algorithm:

1. reap«< B!

2. fori=n—-mn-m-1,...,0do
3. if degr = m+ithenn; « lc(r)y, r < r—n;x'b
elsen; <0

4. return ¢= Y7 " nix' and r

\{

We leave checking that a = gb + r and deg r < m as an exercise; given a, b as input, it
is immediate that we can compute g, r in O((n + m)?) operations in R

\{

... but could we do better? The output consists of only O(n + m) elements of R ...

Example (quotient and remainder)

»a=x"+ X3+ x> +1€Zyx], b=x*+1€Zx]
»n=4m=2

>ﬂ:ﬁ;1:1_]:1ezz

» Tracing the for-loop fori=n—-m,n—m-1,...,0, we have
I‘I],‘ r
XX+ X+ 1
2] 1 x3+1
1] 1 x+1
0] 0 x+1

> g=mxX’+mx+n=x>+x, r=x+1

Evaluation (at a single point)

v

Let a= Y a;x' € R[x] and £ € R be given as input with dega = n

v

We want to compute a(¢) = 37, a;iE e R
» Horner’s rule:

a(€) = (- (((@ng + an1)€ + @n2) & + an-3)E + - a1)§ +

v

Using Horner’s rule, it takes O(n) operations in R to compute a(&)

Batch evaluation (at m points)

v

Let a= Y, a;x' € R[x] and &,&,,...,&, € R be given as input with dega = n

v

We want to compute a(&7), a(&), ..., a(én) € R

v

Repeated application of Horner’s rule achieves this in O(mn) operations in R

v

... but could we do better yet again? ...

Interpolation

Let F be a field

v

v

Let distinct &, &,...,&, € Fand no,n1,...,nn € F be given as input

v

We want to compute the unique polynomial f € F[x] of degree at most n that satisfies

f&)=mno, f&)=m, ... f(&)=mn,

\4

A classical algorithm (with complexity bounded by a polynomial in n) for this task will
be studied in the exercises

v

... but could we do better yet again? ...

Integral domain

v

An element a € Rin aring R is a zero divisor if there exists a nonzero b € R with
ab=0

v

Aring D is an integral domain if there are no nonzero zero divisors

\{

Examples: (of integral domains)
Z, any field (exercise: units are not zero divisors), F[x] for a field F

v

Work point:
Using (1), (2), and (3), determine all zero divisors in Zs, Zg, and Z, respectively

Greatest common divisor

v

Let Rbe aringand let a, b € R

v

We say that a divides b and write a|b if there exists a ¢ € Rwith ag = b

v

For a, b, c € R we say that c is a greatest common divisor (or gcd) of a and b if

1. claand c|b,
2. forall d € Rif d|laand d|b, then d|c

» A greatest common divisor need not exist, and need not be unique

v

In an integral domain, any two greatest common divisors are associates

Euclidean domain

» An integral domain E together with a function d : £ — Zso U {—00} is a Euclidean
domain if for all a, b € E with b # 0 there exist g, r € E with a = gb+ r and
d(r) < d(b)

» We say that ¢ = aquo b is a quotient and r = arem b a remainder in the division of
aby b

» We assume that we have available as a subroutine a division algorithm that for
given a, b € E with b # 0 computes g, r € E with a = gb+ r and d(r) < d(b)
» Examples: (of Euclidean domains)
» Z with d(a) = |a| € Z5
> Quotient and remainder can be determined with a division algorithm for integers
> F[x] for a field F with d(a) = dega

> Quotient and remainder can be determined with a division algorithm for polynomials

Traditional Euclidean algorithm

Let E be an Euclidean domain

v

v

Let f, g € E be given as input

v

We seek to compute a greatest common divisor of f and g

> Since E is an integral domain, any two greatest common divisors of f and g are related to
each other by multiplication with a unit

» The Euclidean algorithm both (a) shows that greatest common divisors exist and
(b) gives a way of computing a greatest common divisor by iterative remainders

v

Traditional Euclidean algorithm:
L. rine—fineg
2. 0«1,
whiler;, #0do riyy <« rioqremr, i — i+ 1
3. return ri_; (a greatest common divisor)

v

Why does this algorithm always stop? (Hint: d(ris1) < d(r;))

Traditional extended Euclidean algorithm

» Let f, g € E be given as input from an Euclidean domain E

» Traditional extended Euclidean algorithm:

1.

ro < f,s0 < 1, < 0,
r<«gs <0t <1
P11,
while r; # 0 do
qi<— ri—1 quo r;
Fiy1 < Fi-1 — qir;j

Si+1 < Si-1 — qiSi

tiv1 < tiz1 — qit;

f—i+1
—i—1

return {, r;,s;, t;fori=0,1,...,{+ 1,and g; fori =1,2,...,¢

Example (over Z;|[x])

»letf=x"+x'+ X3+ x>+ x+1€Zyx]and g = x° + x* + 1 € Z,[x]

» We obtain
i I S t qi
0 X +x*+x3+x2+x+1 1 0
1 X+ x4+ 1 0 1 1
2 3+ x>+ x 1 1 x?+1
3 X2+ x+1 x>+ 1 x? X
4 0| x3+x+1|x3+1

» In particular £ = 3 and r, = x> + x + 1is a greatest common divisor of

X Hx+x3+x2+x+Tand xX° +x* + 1

Analysis using invariants (in the problem set)

» Suppose on input f, g € E we obtain the output ¢, r;, s;, t;fori=0,1,...,£ + 1,and g;
fori=1,2,...,¢

» Introduce the matrices

S0 to 2X2 0 1
Ry = eE (Z' =
0 |: 51 t] :| ’ ! [1 —q;

and R = QQi—1 - QRy € E?*?*fori=0,1,...,¢

» The following invariants hold for all i = 0,1,...,¢:

o[

2. Ri=| S

]EEZX2 fori=1,2,...,¢,

Sig1 tigr |
3. rg is a greatest common divisor of r; and ris1.
4, S,'f+ Lg=rj.

Recap of key content in Lecture 1

» A boot camp of basic concepts and definitions in algebra

» Polynomials in one variable (univariate polynomials)

» Basic tasks and first algorithms for univariate polynomials
> addition

» multiplication

» division (quotient and remainder)
> evaluation

> interpolation (exercise)

> greatest common divisor

» Evaluation-interpolation -duality of polynomials (exercise)

» Analysis of the extended Euclidean algorithm via invariants (exercise)

Problem Set 1 -1

1. Warmup with univariate polynomials over Z, = {0, 1}.

(@) Multiply x + x? € Z,[x] and 1+ x + x> € Z;,[x].
(b) Divide a =1+ x*+ x*> + x* + x® € Z,[x] by b = 1+ x> + x* € Z,[x]. Present a quotient

g € Z,[x] and a remainder r € Z,[x] such that a = gb + r and deg r < deg b.
Hints: Recall that arithmetic in Z;, is super-easy. We have 0 + 0 = 1+ 1 =0,
0+1=1+0=1,0-0=0-1=1-0=0,1-1=1,and 17" = 1. If you want, you can
rely on a computer algebra system, or perhaps implement the algorithms from the
lecture slides yourself. Make sure that your solutions are correct and the coefficients

are reduced to {0, 1}.

Problem Set 1 - 11

2. The traditional extended Euclidean algorithm. Present the complete output of the
algorithm (as defined in the lecture slides) in the following two cases.

(a) Find a greatest common divisor of f = 1234567 and g = 123 in Z. Using the output of the
algorithm, find g~" € Zy.

(b) Find a greatest common divisor of f = 1+ x + x> + x* and g = 1+ x? in Z,[x].

Hints: You may want to use a computer algebra system to avoid error-prone manual

calculations. Make sure to present the complete output of the algorithm. Refer to
Problem 4(d) for the second part of 2(a).

Problem Set 1 - IlI

3. Let &, &1, ..., &4 € F be distinct elements in a field F. Show that the Vandermonde

matrix
8oy g
0 ...
== §1 §1 §1 ¢ Fld+nx(d+1)
is invertible. 52 SZ; fj

Hints: For i = 0,1,...,d, define the Lagrange polynomial {; € F[x] by

= l_[7o kz(;/l,kx
1-751

Observe that the polynomial £; has degree d and is well defined because the values
o, &1, ..., &g are distinct. What happens if you evaluate £; at x = £; ? Arrange the
coefficients Aj; into a matrix. Show that this matrix is the inverse of =.

Problem Set 1 -1V

4. Analysis of the traditional extended Euclidean algorithm. Suppose we run the
algorithm on input f, g € E in an Euclidean domain E, and obtain the output ¢, r;, s;, t;
fori=0,1,...,f+1,and g; for i = 1,2,...,{. Introduce the matrices

[1
Ro=| 0 D |epe Q=" € E¥? fori=1,2,...,¢,
| 514 T —qi
and Ri = QQi_1 - QiRy € E??*fori=0,1,...,°¢.
Show that each of the following invariants holds for all i = 0,1,...,¢:
fl_[r
R; = .
(a) [g | i+1
Sj b
by Ri=]|" .
®) |:$+1 ti+1]

(c) reis a greatest common divisor of r; and ri;q.

(d) S,'f+ Lg=ri.

Problem Set 1 -V

Hints: Study the steps of the algorithm as presented in the lecture slides. For (a) and
(b), use induction on i. Do not forget to verify the base case. For (c), use (a), re+1 = 0,

1 0

and the fact that Q; is invertible with QIT] = [g 1] For (d), study (a) and (b). It is
a good idea to solve Problem 2 first and review that the invariants hold in practice.

2. The fast Fourier transform
and fast multiplication

Computer Science Club, St Petersburg
17-18 November 2018

Petteri Kaski
Department of Computer Science
Aalto University

Recap of last lecture

» A boot camp of basic concepts and definitions in algebra

» Polynomials in one variable (univariate polynomials)

» Basic tasks and first algorithms for univariate polynomials
> addition

» multiplication

» division (quotient and remainder)
> evaluation

> interpolation

> greatest common divisor

» Evaluation-interpolation -duality of polynomials

» Analysis of the extended Euclidean algorithm via invariants

Goal: Near-linear-time toolbox for univariate polynomials

Modern Computer Algebra miirsdion

» Multiplication (this lecture)
h I
» Division (quotient and remainder) e —
] I
» Batch evaluation - - HkL
n
» Interpolation
» Extended Euclidean algorithm (gcd) AR preonme
| 4

Interpolation from partly erroneous
data

Further motivation for this lecture

» The fast Fourier transform (FFT) is one of the most widely deployed and useful
algorithms in all of computing
» Quick demo (offline):
FFT and fast polynomial multiplication (fast convolution) over C in signal processing
» In the exercises we will

(a) derive an FFT over a ring R endowed with a primitive root of unity « of order a power of
2, and

(b) prove a version of the convolution theorem

Key content for Lecture 2

» Evaluation-interpolation duality of polynomials
» Multiplication is a pointwise product in the dual

» Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

» Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)
» Fast cyclic convolution (assuming a suitable root of unity exists)

» Fast negative-wrapping cyclic convolution (Schénhage—-Strassen algorithm)

Fast multiplication

Modern Computer Algebra iredition

Joachim von zur Gathen and Jiirgen Gerhard

(von zur Gathen and Gerhard [6],
Sections 8.2 and 8.3)

Coefficient and evaluation representations

» Let F be afield and let &y, &1, ..., &4 € F be distinct

» Leta=ap+aix+...+ag_1x " +ayx? € F[x] be a polynomial of degree at most d

» We can represent a as a list (o, a1, ...,aq) € F4*1 of d + 1 coefficients

v

Alternatively, we can represent a as a list of d + 1 values

(a(&), a(&r),...,a(éy)) € Fd+1

Indeed, we have

v

8 &g - & @ a(&o)
8o ar || ald)

g & - &l ad a(&a)
and the left-hand side Vandermonde matrix is invertible over F
(recall exercise from last problem set)

Evaluation and interpolation

» To evaluate a polynomial (g, a1, ..., aq) € F*1 at distinct points &, &, ..., &4 € F,
we multiply from the left with the Vandermonde matrix:

53 'f(] T 55’ %o a(&)
g &g - a a(&1)
5;3 53, . sr.j Of.d a(éd)

» To interpolate the coefficients of a polynomial with values

(a(&), a(&r), . .., a(éq)) € FI*" at distinct &, &1, ..., &4 € F, we multiply from the left
with the inverse of the Vandermonde matrix

é:(()) §0 000 ag
é—’? §1 000 o
5.2 . §d O;d

Example (evaluation)

> Letusevaluate a=1+2x+3x2 +4x> +5x* € Zizat £ =0,6=1,6=2,5 =3,
§4=4inZ13

» We have
1T 0 0 0 O 1 1
T 1 1 1 1 2 2
1T 2 4 8 3 3 (=] 12
1T 3 9 1 3 4 1
1T 4 3 12 9 5 7
and hence a(0) = 1, a(1) = 2, a(3) = 12, a(4) = 1, a(5) =7

Example (interpolation)

» Let us interpolate the coefficients of the unique polynomial a € Z;3 of degree at most
4 with values a(&) = 1, a(&) = 2,a(&) =12, a(&3) =1, a(éy) =7 at & =0,& =1,
£=2,8=3,8=4inZ;

» We have
1T 0 0 0 O 0 0 0 0 1 1
T 1 1 1 1 12 4 10 10 3 2 2
1 2 4 8 3 2 0 8 2 1 12 (=1 3
1T 3 9 1 3 5 8 11 12 3 1 4
1T 4 3 12 9 6 2 10 2 6 7 5

and henceag =1, 01 =2, 0, =3, a3 =4, a4 =5

» The inverse of the Vandermonde matrix can be computed e.g. by Gaussian elimination
or by using Lagrange polynomials (recall exercise in last problem set)

Evaluation-interpolation duality

» Evaluation—interpolation constitutes and example of two dual representations
(coefficient and value representations of a polynomial)

» Both representations uniquely identify the object (the polynomial) under
consideration

» In many cases one can make use of duality in algorithm design. Often a problem has
a corresponding dual problem that is obtainable from the original (the primal)
problem by means of an easy transformation. The primal and dual control each other,
enabling an algorithm designer to use the interplay between the two representations

Evaluation-interpolation duality

» Often a problem has a corresponding dual problem that is obtainable from the original
(the primal) problem by means of an easy transformation

» Polynomial multiplication (primal):
Given coefficients of a and b as input, output coefficients of ab

> Polynomial multiplication (dual):
Given evaluations of a and b as input, output evaluations of ab

» Transformation:
Evaluation (primal — dual), interpolation (dual — primal)

» The primal and dual control each other, enabling an algorithm designer to use the

interplay between the two representations ...

Multiplication is easy in the dual

» Polynomial multiplication (dual):
Given evaluations of a and b as input, output evaluations of ab

» Suppose dega < nand deghb < m

» Then degab < n+ mand n+ m+ 1 evaluations of ab suffice to uniquely determine ab

» So suppose &y, &1, ..., Enm € F are distinct and we have the evaluations
a(gO)’ a(§1)7 ceey a(§n+m) €F and b(g())’ b(§1)’ cevy b(§n+m) €F
> Then, ab(§) = a(é)b(éo),

ab(&1) = a(&1)b(&1),

ab(§n+m) = a(§n+m)b(§n+m) €F

» Thus, O(n+ m) multiplications suffice to determine ab, assuming we are in the dual

Multiplication in primal representation

» Polynomial multiplication (primal):
Given coefficients of a and b as input, output coefficients of ab

» For dega < d and deg b < d, the classical algorithm uses O(d?) operations
» The primal and dual control each other, enabling and algorithm designer to use the
interplay between the two representations ...

» |ldea:

1. Transform the inputs a and b into dual representation
2. Multiply in the dual
3. Transform the product ab back to primal representation

» Needed:
Fast transformation between primal and dual representations

Fast evaluation and interpolation?

» To evaluate a polynomial (ag, a1, . . .

,aq) € FI*1 at distinct points &, &, ..., & € F,

we multiply from the left with the Vandermonde matrix:

8¢
gl
&g

55’ [24] a(fo)
&g e a(&)

5;’ @ a(éd)

» To interpolate the coefficients of a polynomial with values

(a(&), a(&r), .- s

a(£4)) € FI*1 at distinct &, &, . . .

, &4 € F, we multiply from the left

with the inverse of the Vandermonde matrix

& &
& §1

52

Qo
‘ I :
§d O;d

Fast evaluation and interpolation?

» It is too expensive to construct the Vandermonde matrix (or its inverse) in explicit form

> Indeed, the matrix has (d + 1)? elements in F, so working with the matrix in explicit
form yields no better algorithms than classical multiplication in the primal
representation

» For multiplication, both the input and the output use only O(d) elements of F
» We have the freedom to choose any distinct &, &,..., &g € F

» Perhaps a good choice enables evaluation and interpolation in O(d) operations
without constructing the Vandermonde matrix explicitly ...

Fast evaluation and interpolation?

» |dea:
Choose

§0=600, & =o', _fz:wz, cees §d=60d
for a carefully chosen element w € F (whose existence depends on F)

» Intuition:
With such a choice, the Vandermonde matrix should have a great deal of useful
algebraic structure that maybe enables the use of, say, divide-and-conquer for
matrix—vector multiplication, without even explicitly constructing the matrix ...

Key content (revisited)

» Evaluation-interpolation duality of polynomials
» Multiplication is a pointwise product in the dual

» Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

» Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)
» Fast cyclic convolution (assuming a suitable root of unity exists)

» Fast negative-wrapping cyclic convolution (Schénhage—-Strassen algorithm)

Roots of unity

» Let Rbe aring (recall that we tacitly assume that R is commutative with 0 # 1)

» Forne Zsqand w € R, we say that w is a root of unity of order nin Rif »" =1

The discrete Fourier transform (DFT)

» Let w be a root of unity of order nin R and let

f =0 +(p1x+(p2x2 + ...+(,o,,,1x”_1 € R[x]

» The n-point discrete Fourier transform of f at w is the vector of evaluations

DFT,(f) = f = (f(0°). f(@"),....f(@™ ") € R".

> Equivalently, we may view DFT,, : f - f as the R-linear map that takes the vector of
coefficients f = (9o, @1, - - ., Pn—1) € R" to the vector f = (@o, @1, .,Pn-1) € R”
defined forall i =0,1,...,n—1by

Towards a first FFT: Splitting into even and odd parts

v

Suppose that n € Z, is even and let f = 3"/ p;x' € R[x]

i=

v

Introduce the two polynomials

n/2-2 n/2-2

foen= Y X' €RX], faaa=) panix’ € R[x]
i=0 i=0

We observe that

v

f(X) :feven(xz) +X 'ﬂ)dd(xz)

Here f has degree at most n— 1,
whereas feven and fodq have degree at most n/2 — 1

v

Towards a first FFT: Evaluating at a root of unity of order n

v

2-2 ~
Let n € Z5, be even and f = Z, 0 ViX I foven = Z?=/o 021X, fodd = ,/0 Q2i41X"

v

We recall that
(%) = feven(x*) + x - foaa (x?) 4)
Let w € R be a root of unity of order n; that is, @" = 1

We want to compute f(°), f(@"), ..., f(«™"); that is, DFT, (f)

v

v

v

From (4) and " = 1 we have that it suffices to first compute

feven (wo)’feven (a)z)’ e ,f;:ven (0)2”_2) ~ feven ((A)O)efeven ((Uz)e cee ’ﬁeven (wn—Z)
ﬁJdd(wO)’fodd(wz)’ 500 ’fodd(wzn_z) ~ ﬁ)dd (wo)’fédd (0)2), ooc ’ﬁJdd (wn—Z)

That is, DFT 2 (feven) and DFT 2 (fodd)

and then do O(n) arithmetic operations in R

A first FFT: Recursion and analysis

» We just saw that to compute the n-point DFT,,(f), it suffices to

1. split f into the even part foen and the odd part fy4q

2. compute the n/2-point DFT 2 (feven)s

3. compute the n/2-point DFT 2 (fodd), and

4. do O(n) further arithmetic operations in R to recover DFT,,(f)

» That is, the total number of arithmetic operations is T(n) < 2- T(n/2) + O(n)

» This is T(n) = O(nlog, n) when n = 2K for k € Z, and we apply recursion

Primitive root of unity

» A root of unity w € R of order n is primitive if for any prime divisor t of n it holds
that "' — 1 is not a zero divisor in R

» Examples:
« Wy = exp(2ri/n) is a primitive root of unity of order nin C
+ 2is a primitive root of unity of order 12 in Z3

» For
k‘29 71 75 95 108 123

w‘21 287 149 55 64 493

we have that p = k- 2>’ + 1is a prime and w € Z, is the least primitive root of unity of
order 27 in Z,

Properties of primitive roots of unity

Lemma 1
Let w be a primitive root of unity of order n in R.
Then, for all integers s not divisible by n it holds that

(i) w®— 1 is not a zero divisor in R, and

(i) X7y ® =0

Lemma 2
Let w be a primitive root of unity of order n in R.
Then, ®® is a primitive root of unity of order |n/a| in R for all divisors a of n

Proof of Lemma 11

» For any p € Rand any k € Z5, we have

k-1
(p=1)) P =p-1
=0

v

Select any s € Z that is not divisible by n. Since ©" = 1, we may assume
s=12,...,n—1

v

Let 1 < g < sbe the gcd of sand nwith us+vn=gforueZspandv e Z

» Since s < n, we can choose a prime divisor t of nso that g divides n/t

v

Take p = w€ and k = n/(gt) in (5) to obtain that w& — 1 divides w"/! — 1. That is,
(w€ = 1)y = "' — 1 for some y € R

®)

Proof of Lemma 111

» Thus w8 — 1 cannot be a zero divisor since if it were, we could conclude that
0=0-y = (wf—1)By = (@"* = 1)B for a nonzero B € R and hence »"* — 1 would be
a zero divisor, a contradiction

» Take p = w* and k = uin (5) to obtain that »° — 1 divides 0" — 1 = """ =1 = w8 — 1

» Thus, @® — 1 cannot be a zero divisor since if it were, we could conclude that w8 — 1is a
zero divisor, a contradiction

» Take p = w® and k = nin (5) to obtain (®»* —1)Zloa) W =1=1-1=0

» Since w*® — 1is not a zero divisor, we conclude that 27;0 ws=0 O

Proof of Lemma 2

» Let a be a divisor of n

» For |al = n we observe that w” = @™ = 1 and hence w? = 1 is trivially a primitive root
of unity of order 1

» Suppose that |a| < nand let t be any prime divisor of |n/a| > 1

» Then, s = a|n/al/t is not divisible by n and hence Lemma 1 implies that
0¥ = 1= (09!t _1is not a zero divisor

» Since t was arbitrary, ©® is a primitive root of unity of order |n/alin R O

The inverse discrete Fourier transform (inverse DFT)

Lemma 3

Suppose that n is a unit in R and let © € R be a primitive root of order n. Then,

DFT,' = 1. DFT,-

Proof.

It suffices to show that forall k =0,1,...,n— 1 we have

n—1 n—1 n-1

-1

1 i1 — L

;Z ! 2; 4)/0)”0)’ ZZO(PJ'
j:

=0 i=0

—.
Il
o

1 09 = g,
n i=0

Beyond the first (radix-2) FFT

» The rest of the lecture goes beyond the first recursive derivation of a (radix-2) FFT
where we assumed that

1. the ring R has a (primitive) root of unity w of order n = 2%, and
2. we are content with a recursive implementation

» The rest of the lecture contains more advanced material that shows how to (a) unfold
the recursion into a sequence of linear transformations suitable e.g. for parallel
implementation; and (b) work with rings that do not have a suitable root of unity

» This more advanced material is not necessary for successfully following the rest of the
course

The positional number system (base B)

>

v

v

v

v

v

Let B € ZZZ
Suppose that & € Z with 0 < o < BY — 1 for some d € Z,
Then, there is a unique finite sequence

(ad-1,Ad=25 - . ., 1, p) € Zio (6)
with0 < a; < B-—1foralli=0,1,...,d— 1such that

d-1
a= Z a;B = 0(d_1Bd*1 + ad_zBdfz +. .+ mB+a B+ a (7)
i=0

We say that the sequence (6) is the (d-digit) representation of the integer « in the
positional number system with base B (or radix B)

The elements ¢; are the digits of «

We say that ay_q is the most significant digit and « is the least significant digit

Example (base 10)

» Let us represent 123 € Z in base B = 10
We have

v

123=1-10°+2-10+3-1

v

Hence, the sequence (1,2, 3) represents 123 in base 10

v

Question/work point:
Given a representation in base B as input, how do you compute a representation in base
C? Hint: quotient and remainder.

The positional number system (varying base)

» Let B4y_1,B4-2,...,B1,By € Zzz
» Suppose that « € Z with 0 < @ < By_1B4—3 - B1By — 1
» Then, there is a unique finite sequence

(ad-1,Ad=25 - . ., 1, 09) € Zio @)
with0 < a; < Bj—1foralli=0,1,...,d — 1such that

d-1
a= Z aiBi_1Bi_,--- By
i=0

=a4d-1B4g—2Bg—3---Bo+ ...+ ay;B1By + 1By +

©)

» We say that the sequence (8) is the representation of the integer « in the positional
number system with (varying) base (By-3, By-1, . - ., B1, By)

Example (varying base)

» Let us represent 123 € Z in base (9, 8, 7). We have
123=2-8-7+1-7+4-1

» Thus, the representation of 123 in base (9,8,7) is (2, 1,4)

» Question/work point:
Given a representation in base (By—1, B4—2, . . ., B1, By) as input, how do you compute a
representation in base (Ce—1, Ce—2, . . ., C1, Co) ? Hint: quotient and remainder.

Factoring a composite-order DFT (1/3)

>

>

Let w be a primitive root of unity of composite order n = st in R for integers s, t > 2

We can view an index k € {0, 1,...,st — 1} as a varying-base integer k = kst + k; with
ki€ {0,1,...,s—1}and k; € {0,1,...,t— 1}

That is, ks and k; are the digits of k in base (s, t) so that k; is the most significant digit
and k; is the least significant digit

Recall that forall i=0,1,...,st — 1 we have
st—1
@i = Z pj”
j=0
Let us expand the output index 7 in base (s, t) and the input index j in base (t, s)

We have

-1 t—
E E (ist+i) (es+Js)
(pg t+l, jt5+j5 s t (]t Js

Factoring a composite-order DFT (2/3)

» Expand and use the fact that »* = 1 to obtain

3
[
~
|

A _ ist+ir) (Jes+j
Giie = Do, 0V UesH9)
Js=0 ji=0
s—1 t—1
- Z Qjossj, 0 SISt i
t s
Js=0 jr=0
s—1 t—1
_ s, 0 1S ot
t s
Js=0 jr=0
s=1 . t—1 .
_ t\Isls i s\t
= (a)) 'k Z @jys+js (a) .
Js=0 Ji=0
0}
(if)

(iii)

Factoring a composite-order DFT (3/3)

» Let us study (i), (ii), and (iii) as the indices i, i, js, j: range over their domains:

s—1 . t—=1 L.
~ _ t\'s)s i s\t
Pist+i, = § ()™ 0™ § Pjstir(@°)
Js=0 Jt=0

0]
(i)

(iii)
» Part (i) takes the t X s input f and outputs the t X s array obtained by taking the t-point
discrete Fourier transform at w® for each of the s columns of f

» Part (ii) multiplies the resulting t X s array entrywise (Hadamard product) with the t X s
Vandermonde matrix with entries w'/s

» Part (iii) takes as input the t X s array output by (ii) and outputs the t X s array obtained by
taking the s-point discrete Fourier transform at ' for each of the t rows of the array

» Finally, transpose the t X s array to obtain the s X t outputf

Fast Fourier transform (FFT)

> Idea:
Apply the previous factorization recursively for smooth n

> For example, suppose that n = 2% for k € Z,
» Takes=2¥"and t =2
» Compute Parts (i) and (ii) explicitly, and apply the factorization recursively in Part (iii)

> Thus, the DFT at a primitive root of unity o of order 2% in R can be computed in
T(2K) < 2T(2¥") + 0(2%) operations in R (exercise)

» In particular, T(n) = O(nlog n)

Factors in an FFT (1/4)

» Let us now look at a possible implementation of Parts (i), (ii), and (iii) in more detail

v

Let w be a primitive root of order n € Z>4 in Rand let n = pqr for p,q,r € Z>4

v

We will study two types of transformations that take as input an array a € R" and
produce as output an array b € R"

» We assume that the entries q[i] € R of an array are indexed with i =0,1,...,n—1

Let w € R" be an array with w[i] = @' forall i=0,1,...,n—1
(in an implementation this array can be precomputed with O(n) operations in R)

v

Factors in an FFT (2/4)

> The first transformation @, 4 ;) : R" — R" sets

q-—1

bligr + jr+ k] = » w[(jtpr) rem n|aligr + €r + k| (10)
=0
forallie{0,1,...,p—1},j€{0,1,...,9g— 1}, ke {0,1,...,r— 1}
» Observe that the transformation relies on integers in base (p, g, r) for indexing the
input a and the output b

» Also observe that the transformation implements pr disjoint copies of a g-point DFT,
using in total O(pg*r) = O(nq) operations in R

» This transformation can be used to implement Parts (i) and (iii)

Factors in an FFT (3/4)

v

The second transformation ©(, ¢) : R" — R" sets
bligr + jr + k] = w[jkplaligr + jr + k] (11)
forallie{0,1,...,p—1},j€{0,1,...,9g—1}, ke {0,1,...,r—1}

v

Again we observe that we work in base (p, g, r)

v

This transformation runs in O(pgr) = O(n) operations in R

v

This transformation can be used to implement Part (ii)

Factors in an FFT (4/4)

» A naive implementation of Parts (iii), (ii), and (i) would now implement an n-point DFT
for n = st and input f € R" as a sequence of three transformations, read from right to

left, @11 5O, 50 Pa,s, 0 (f)

» This must be followed by transposition of the resulting array from t X sto s X t to
obtain the output f (Why?)

» However, this does not yet reduce the number of operations to O(nlog n) (Why?)

> In an implementation with n = 2¥, one can fix ¢ = 2 and proceed with a sequence of
2k — 1 transformations, with p = 2 and r = 2k-1-J forj=0,1,...k—1(completing the
details are an exercise), followed by final permutation of the resulting array

Remarks

» The previous example gave one possibility to implement an FFT

» In general the term “fast Fourier transform” refers to a family of algorithms that rely
on factoring an n X n Vandermonde matrix Q = (w’j 2i,j=0,1,...,n—1) fora
composite n into a sequence of simpler (sparse) matrices such that matrix-vector
multiplication with each matrix in the sequence is cheap to execute

» For example, you may want to view the transformations (10) and (11) as obtaining the
vector b by multiplying a matrix with the vector a

» Van Loan [12] gives an extensive treatment of computational frameworks for the FFT

Key content (revisited)

» Evaluation-interpolation duality of polynomials
» Multiplication is a pointwise product in the dual

» Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

» Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)
» Fast cyclic convolution (assuming a suitable root of unity exists)

» Fast negative-wrapping cyclic convolution (Schénhage—-Strassen algorithm)

Ideal, principal ideal

» Let R be aring

» A nonempty subset / of Ris an ideal if
1. forall a,b € I we have a+ b € I, and
2. forallae land r € Rwe have ar € |
» Examples:
« For any a € R we have that (a) = aR = {ar : r € R} is an ideal;
we say that (a) is the principal ideal generated by a € R

« Forany n € Z, we observe that nZ ={...,—2n,—n,0,n,2n, ...} is a (principal) ideal of Z

Congruence modulo an ideal, residue class

v

Let / be an ideal of R

v

We say that r, s € R are congruent modulo / and write r = s (mod /) if r—se |

» For r € Rwe say thatthesetr+ /= {r+a: ae l}is aresidue class modulo /

v

For all r, s € R we have

r+l=s+1 & r—-sel & r=s (mod))

Residue class ring (factor ring)

» Let / be an ideal of R

» The set R/l = {r+1:r € R} of all residue classes modulo / is a ring (the factor ring or
residue class ring of R modulo /) if we define the ring operations for all r, s € R by

(r+D+(G+D=(r+s)+1
and
(r+D(s+1)=(rs)+1
» Observe in particular that the aforementioned operations are well-defined in the sense

that they do not depend on the choices of representatives r, s for residue classes
modulo / (exercise)

» Example:
For R=7Z and | = nZ with n € Z-, we have R/| = Z/nZ = Z,

Example: Cyclic convolution

\{

Let Rbe aring and let n € Z5,

v

Consider the factor ring R[x]/(x" — 1)

» We may view the elements of R[x]/(x" — 1) as polynomials of degree at most n— 1in
R[x]

Addition and multiplication in R[x]/{x" — 1) are as in R[x], with the exception that
after multiplication we simplify the result with the substitution x” = 1

v

Example: Cyclic convolution

» Suppose that n = 8 and that R = Z4;
» Let us multiply the following two polynomials in R[x]/{x" — 1)

f=1+8x+13x* + 16x° + 15x" + 6x° + 7x° + 10x’
g=4+3x+ 16x% + 7x% + 6x* + 11x° + 9x° + 15x7

» In R[x], the product is
fe=a4+x+7x* +ax* +16x° + 12x° + 10x” + 7x® + x” +9x' + 8x"" + 8x'? + 8x" + 14x™
» In R[x]/{x" — 1), we can first compute fg in R[x] as above, reduce the result with the

substitution x" = 1, and then simplify to obtain the result in R[x]/(x" — 1) (or, what is
the same, first multiply in R[x] and take the remainder in the division with x” — 1):

fe=4+x+7x+4x" +16x° + 12x° + 10x7 + 7 + x + 9x* + 8x> + 8x* + 8x° + 14x°

=11+ 2x + 16x% + 8x> + 12x* + 7x° + 9x°® + 10x’

Cyclic convolution via the DFT

» Let Rbe aring, let n € Zsq, and let @ € R be a primitive root of unity of order n
» For two vectors a = (ag, &1, ..., p—1) € R"and b = (fo, f1, - - -, Pn-1) € R, let us write

a - b for the pointwise product a- b = (afo, @151, - - -» tp—1Pn-1) € R"

Theorem 4 (Convolution Theorem)
Forallf,g € R[x]/{x" — 1) we have DFT,,(fg) = DFT,(f) - DFT,(g)

Proof.
Exercise. O
> Furthermore, if nis a unit in R, we have fg = 1 DFT,,-1(DFT,,(f) - DFT,(g))

» This enables fast algorithms for computing fg assuming (i) R admits a suitable
primitive root of unity, (ii) nis a unit in R, and (iii) n is divisible enough to enable an
FFT by divide and conquer

Example: Cyclic convolution via the DFT (1/2)

» Suppose that n = 8 and that R = Z;
» We observe that w = 2 is a primitive root of unity of order n = 8 in R = Z47; indeed,

=1 0'=20"=40=8 0" =160 =15 =13, ® =9, 0® =1

v

We also observe that 27! =9 € R=7Z; and hence 8 ' =223 =15€ R=7Z;;

v

Using the DFT, let us multiply the following two polynomials in R[x]/{(x" — 1)

f=1+8x+13x* + 16x° + 15x" + 6x° + 7x° + 10x’

g=4+3x+16x% + 7x% + 6x" + 11x° + 9x° + 15x’

» First we compute the n-point DFTs of f and g at w to obtain

DFT,(f) = (8,11,16,7,13,9, 10, 2)
DFTw(g) = (37 147 49 97 167 49 07 16)

Example: Cyclic convolution via the DFT (2/2)

» Next we take the pointwise product of the DFTs
DFT,(f) = (8,11,16,7,13,9,10,2) € R”

DFT(U(g) = (37 14’ 47 99 16, 47 07 16) S Rn
to obtain

DFT,(f) - DFT,(g) = (7,1,13,12,4,2,0,15) € R"
» Finally take the inverse n-point DFT to obtain the result
1 DFT,,-1(DFT,(f) - DFT,(g)) = (11,2, 16,8,12,7,9,10) € R"
or what is thré same as a polynomial

fg =11+ 2x + 16x% + 8x> + 12x* + 7x° + 9x° + 10x’

Remarks (1/2)

» Cyclic convolution via the DFT (when implemented with FFTs) can be used to multiply
polynomials in R[x] fast

» Indeed, simply choose a large enough n so that the degree of the product of the two
polynomials is less than n

» In this situation we can multiply two polynomials using O(nlog n) operations in R;
contrast this with the classical O(n?) operations

» Caveat:
This approach needs (i) that R is endowed with a primitive root of unity » of order n
and (ii) that nis a unitin R

» So what to do when R does not meet (i) and (ii) ?

Remarks (2/2)

» Next we will look at a multiplication algorithm, Schénhage—-Strassen multiplication [10],
that needs very light assumptions about the coefficient ring

» Our present exposition roughly follows the exposition of a polynomial version of the
Schénhage-Strassen algorithm in von zur Gathen and Gerhard [6, Section 8.3]

» For convenience in what follows, let us write S instead of R for the coefficient ring, and
y instead of x for the polynomial indeterminate

» Rather than relying on cyclic convolution, the algorithm will rely on the following
notion of negative-wrapping cyclic convolution ...

Example: Negative-wrapping cyclic convolution

\{

Let S be aring and let n € Z>4

v

Consider the factor ring S[y]/{(y" + 1)
» We may view the elements of S[y]/(y" + 1) as polynomials of degree at most n— 1in
Syl

Addition and multiplication in S[y]/{y" + 1) are as in S[y], with the exception that
after multiplication we simplify the result with the substitution y" = —1

v

Example: Negative-wrapping cyclic convolution

v

Suppose that n = 8 and that S = Zs

v

Let us multiply the following two polynomials in S[y]/{y" + 1)

=142y +2y* +4y° + 3y +4y° + 2y + 3y’
y+2y" +4y" +3y" +4y” +2y" + 3y
g=3+2y+4y* +yt+4y> + 0+ 2y

v

In S[y], the product is
fe=3+3y+ay’+4y’ +y" +2)° +4y® +)7 + 4y + y" 42y 42y 4 M

v

In S[y]/{y" + 1), we can first compute fg in S[y] as above, reduce the result with the
substitution y” = —1, and then simplify to obtain the result in S[y]/{y" + 1) (or, what
is the same, first multiply in S[y] and take the remainder in the division with y" + 1):
fe=3+3y+ay’+4y +yt + 2y —4—y—4y? — P -2yt —2y° — O
=4+2y+3y3+4y4+3y5+y6

Schonhage-Strassen multiplication (1/7)

» Let S be aring

» Suppose that 2is a unitin S (this is the only assumption we make about S)
» Let n = 2% for some k € Zs;

» Let f, g € S[y]/{y" + 1) be given as input

» We want to compute the product fg € S[y]/{y" + 1)

» With foresight, let m = 21¥/2) and t = 2/¥/21; in particular, we have n = mt and
m<t<2m

» The key idea is to reduce one multiplication in S[y]/(y™ + 1) into t multiplications in
S[y]/<y*™ + 1) and then apply recursion

Running example (1/8)

v

It will be convenient to illustrate the algorithm design with a running example

v

Let us work with S = Zs; in particular we observe that 2 is a unit with inverse
271 =3¢€Zs

v

Suppose that n = 8 and that our given input in S[y]/{y" + 1) is
f=1+2y+2y* +4y° + 3y +4y° + 2y + 3y/
g=3+2y+4y2+y4+4y5+y6+2y7

v

We need to produce the output
fe=a+2y+3y° +4y* +3y° +°

» Sincen=8 wehave m=2andt =4

Schonhage-Strassen multiplication (2/7)

» Let us introduce a new indeterminate x and transform f and g so that every monomial
y¥ is replaced with x9y" where g and r are the unique nonnegative integers with
k=gm+rand0<r<m

» Let us write F and G for the resulting two-variable polynomials in S[x, y|
» Let Q, H € S|x, y] be the unique polynomials such that
FG=(x"+1)Q+H (12)
and H has x-degree at most t — 1

» We observe that Q, H above exist by polynomial division (e.g. recall Lecture 1) since
the leading coefficient of x' + 1is a unit in S[y] with (S[y])[x] = S[x, y]

» (It should be noted that the actual algorithm never constructs Q in explicit form, here
we merely use polynomial division to conclude that Q exists.)

Running example (2/8)

» Continuing the running example, we have S = Zs, n = 8, m = 2, t = 4 and the inputs
f=1+2y+2y* +4y> +3y* +4y° + 2% + 3y’
g:3+2y+4y2+ y4+4y5+ y6+2y7

» Substituting y™ = x to f and g, the polynomials F and G in S|x, y] are

F=1+2y+Q+4y)x+ (3+4y)x* + 2+ 3y)x°
G=3+2y+ ax + (1+4y)x* + (1+2y)x°

» For illustration, let us also display the polynomials FG, Q, and H, but also observe that
FG and Q are not computed by the algorithm, and the polynomial H will be obtained
only later

FG = 3+3y+4y2 + (4y+3y2)x+ 3+ yz)x2 +(1+ yz)x3 +(3+ y+4y2)x4 +yx5 +(2+2y+ yz)x6
Q=3+y+4y* +yx+ 2+ 2y + yH)x*
H=2y+ 3y + 3y2)x+ (1 +3y)x2 +(1+ y2)x3

Schonhage-Strassen multiplication (3/7)

» Substitute x = y™ to both sides of (12) to conclude that
Fiym y)Gy™ y) = (y™ + DQ(y™ y) + H(y™, y)
implying
F(y™ y)G(y™.y) = H(y™,y) (mod y™ + 1)

» Since f = F(y™, y) and g = G(y™, y), we conclude that it suffices to compute H(y"™, y)
to determine the product fg in S[y]/{(y™*")

» Indeed, H(y"™, y) is a polynomial in y with degree less than 2mt, which is easily
reduced with the substitution y™ = —1 to yield the result fg

» We observe that (12) implies FG = H (mod x' + 1), so our goal in what follows will be
to multiply given F and G modulo x* + 1

Running example (3/8)

v

Continuing the running example, we have S =Zs, n =8, m=2,t = 4 and
F=1+2y+Q+4y)x+ (3+4y)x* + (2+ 3y)x°
G=3+2y+ 4x + (14 4y)x* + (1+2y)x°

Let us also recall that

v

H=2y+ @y+ 3y2)x +(1+ 3y)x2 +(1+ yz)x3

v

Thus, substituting y™ = x into H, we obtain

H(y™, y) =2y + 3y3 + 4y4 + 3y5 + y6 + y8

\{

Substituting y™ = —1into H(y™, y), we obtain the desired output
fe=a4+2y+3y° +4y* +3y° +°

Schonhage-Strassen multiplication (4/7)

» By construction, F and G both have y-degree less than m, so FG has y-degree less
than 2m

» We may thus work with (S[y]/{(y*™ + 1))[x] in place of S[x, y] when computing FG
from given F and G

» Accordingly, let R = S[y]/{y*™ + 1)

» Restating our goal from the previous slide, given F, G € R[x] as input, we seek to
compute a H € R[x] of x-degree at most t — 1 such that there is a Q € R[x] with
FG=(x'"+1)Q+H

Schonhage-Strassen multiplication (5/7)

» Next we want to reduce our goal from multiplying modulo x' + 1 to multiplying
modulo x! — 1, since the latter can be implemented with cyclic convolution

» Toward this end, it will be useful to have a primitive root of unity of order 2t in R;
here is where our foresight in the choice of the parameters m and t will pay off

> First, observe that y is a primitive root of unity of order 4min R = S[y]/{(y*™ + 1):

indeed, since y*™ = —1 (mod y*™ + 1) holds and 2 is a unit in S by assumption, we
observe that y?™ — 1= -2 (mod y*" + 1) is a unit in R and hence cannot be a zero
divisor in R

» Since mand t are positive integer powers of 2 with t < 2m, we have that

n= y2m/t

is a primitive root of order 2t in R by Lemma 2

Running example (4/8)

» Continuing the running example, we have S=Zs,n =8, m=2,t =4

» Accordingly, in R = S[y]/{y*" + 1) we have that = y?™/! = y is a primitive root of

order 2t

» Indeed, in R we have
4 —

=1L =yv.r=yr=yn=-1r=-yn"==An ==y =1

Schonhage-Strassen multiplication (6/7)

» Given F, G € R[x] as input, we seek to compute a H € R[x] of x-degree at most t — 1
such that there is a Q € R[x] with

FG=(x"+1)Q+H (13)
» Observing that n' = —1in R and substituting nx in place of x in (13), we have, in R[x],
g n gn p

F(nx)G(nx) = ((nx)" + 1)Q(nx) + H(nx)
= (—xt + 1)Q(nx) + H(nx)
= (x' = 1)Q(nx) + H(yx)

» That is, we have F(nx)G(nx) = H(nx) in R[x]/{x" = 1)

» In particular, we can use cyclic convolution and the FFT at the primitive root of unity
o = n? of order t in R to multiply F(x) and G(nx) in R[x]/{x" — 1) to obtain H(nx)

» Substituting 17" x in place of x in H(n7x) yields our desired result H in R[x]

Running example (5/8)

» Continuing the running example, we have S =75, n=8 m=2,t =4 and
F=1+2y+ (2+4y)x+ (3+4y)x*>+(2+3y)x°
G=3+2y+ 4x + (1+4y)x* + (1+2y)x°
H= 2y + By + 3yH)x + (1+ 3y)x* + (1+ y?)x*

» Recalling that n = y in R = S[y]/{y*™ + 1) for our chosen parameters, in R[x] we have
Finx) = 1+2y+ 2y +4y)x+ By* +4y°)x* + (2+2)°)x°
G(nx) =3+ 2y + dyx+ (Y +4y)x%+ 3+)X
H(nx) = 2y + 3y? +3y%)x + (Y2 +3y°)x2 + (4y + yO)x°

» In particular, observe how substituting nx in place of x in F, G, H cyclically shifts the
coefficients (polynomials in y) with negative wrapping because y*™ = —1in R

Schonhage-Strassen multiplication (7/7)

» Let us now summarize the algorithm in one slide

1.

To multiply £, g € S[y]/{y™ + 1), construct F, G € R[x] with R = S[y]/{y*™ + 1) from f
and g by introducing a new indeterminate x and substituting y™ = x

Let n = y*™t € R and substitute 7x in place of x to obtain F(nx), G(nx) € R[]
Compute the product F(nx)G(nx) = H(nx) € R[x]/{x" — 1) via cyclic convolution
1
H(nx) = DFT =1 (DFT,, (F(5x)) - DFT,,(G(1x)))
using t-point fast Fourier transforms at the primitive root w = 5? of order t in R

[[This leads to t recursive multiplications in R = S[y]/{y*™ + 1) when taking the
pointwise product - above.]]

. Substitute 7 'x in place of x in H(nx) to obtain H
. Substitute x = y™ and y™ = —1in H to obtain the output fg € S[y]/{y™ + 1)

Running example (6/8)

» Let us illustrate the execution of the algorithm in our running example
» We have S =Zs, n =8, m=2,t =4 and the input
f=1+2y+2y* +4y> +3y* +4y° +2y° + 3y/
g:3+2y+4y2+ y4+4y5+ y6+2y7
1. Substituting y™ = x, we construct the polynomials
F=1+2y+ (2+4y)x+ (3+4y)x*+ (2+3y)x°
G=3+2y+ 4x + (14 4y)x* + (1+2p)x°
2. Substituting nx in place of x, we obtain
Finx) = 1+2y+ (Qy+4y)x+ By* +4y°)x* + 2+2y°)x°
G(nx) =342y + dyx+ (P +4y)x%+ 3+ yH)x3

Running example (7/8)

» Wehave S=Zs,n=8 m=2,t=4
3. Taking the t-point fast Fourier transforms at « = 52, we obtain
DFT,(F(nx)) = 3+ 4y + 2y2 + y3, 2+4y + 3y3,4 + 4y2 + 2y3,4y2 + 4y3)
DFT,(G(nx)) = (1+y + y% 3+ 3y + y2. 3y + y* + 3%, 3+ y + 2% + 2y%)
This leads to t recursive multiplications in R = S/{y*™ + 1) as follows
(3+4y+2y2+y3)(1 +y+y2) = y+4y2+2y3
(2+4y + 3y3)(3 + 3y + y2) =2+ 4y2 + 3y3
4+ 4y2 + 2y3)(3y + y2 + 3y3) =3y + 3y2 + 4y3
(4y2 + 4y3)(3 +y+ Zy2 + 2y3) =3+4y+ 4y2 + y3
That is, we obtain the pointwise product

DFT, (F(nx))-DFT,(G(nx)) = (y+4y2+2y3, 2+4y2+3y3, 3y+3y2+4y3, 3+4y+4y2+y3)

Running example (8/8)

» Wehave S=Zs,n=8 m=2,t=4
3. (continued)

Taking the t-point inverse FFT, we obtain

=+ DFT,,-1(DFT, (F(7)) - DFT, (Gp)) = (2737 + 3y, y* + 3y 4y +)
or what is the same as a polynomial in two variables
H(nx) = 2y + By* + 3y)x + (y* + 3y")x* + (dy + y*)x°
4. Substituting n7"x in place of x in H(5x), we obtain
H=2y+ @By +3y)x+ (1+3y)x* + (1+ y?)x>
5. Finally, we substitute x = y™ and y™ — 1in H to obtain the output
fe=4+2y+3y° +4y* +3y° +°

Implementation remarks (1/3)

» In an implementation, we can represent a polynomial f € S[y]/{y™ + 1) as an array
consisting of mt elements of S

» Accordingly, we can represent a polynomial F € (S[y]/{y*" + 1))[x]/{x! — 1) as an
array of length 2mt that has been (tacitly) partitioned into t segments, with each
segment consisting of 2m elements of S

» That is, each segment represents a coefficient in R = S[y]/{(y*™ + 1) and the t
segments together represent a polynomial in R[x]/{(x" — 1)

Implementation remarks (2/3)

» Multiplication with powers of y in R = S[y]/{y*™ + 1) is easy: we just cyclically shift
the list of coefficients of a polynomial in y by as many places as is indicated by the
power of y, taking care to adjust the sign of the coefficient in case of wrap-arounds

» Accordingly, multiplication and substitution with powers of n are similarly
negative-wrapping cyclic shifts

> In particular, fast Fourier transforms at @ = n* over R = S[y]/{y*™ + 1) similarly
amount to additions and negative-wrapping cyclic shifts

Implementation remarks (3/3)

» To build F from f, we (i) view f as a collection of t segments of length m each, and (ii)
pad each segment with m zeros of S so that each segment has length 2m

» Multiplication and substitution with a power of 1 rotates each segment cyclically
(with negative wrapping since y>™ = —1)

» Recursive multiplications in R operate on pairs of segments

» To build fg from H, we compress back from length 2mt to length mt so that each of the

mt elements of fg becomes a (signed) sum of 2 elements of H as determined by the
substitutions x = y™ and y™ = —1

Analysis (1/3)

» For n = 2X with k € Z, we claim that Schénhage-Strassen multiplication runs in
O(nlog nlog log n) operations in S for two inputs f, g € S[y]/{(y" + 1) given in
coefficient representation

» Recalling that t = 2T%/21 and m = 2L¥/2) with n = mt > 8, it suffices to analyse the
recurrence

T(n) < tT(2m) + Cnlog, n (14)
with T(1), T(2), T(4) < D where C and D are constants independent of n

» Indeed, for an input of size n > 8, the algorithm makes ¢ recursive calls on inputs of
size 2m < n and does at most Cnlog, n work (operations in S) to prepare the recursive
calls and to prepare the result based on the return values of the calls

Analysis (2/3)

v

Let us reparameterize (14) in terms of k to obtain, for all k > 3,

T(k) < 2T T (Lk/2) + 1) + C - 2%k (15)

v

For all nonnegative integers k we have

Lk/2] + Tk/21 =k, [(k+1)/2] =Tk/2], and [(k+1)/2] =Lk/2]+1 (16)

v

From (16) we have that (15) is equivalent to, for all k > 2,
T(k+1) < 22190 7([k/2] + 1) + C - 2K (k + 1) (17)

» For convenience, let us substitute T(k + 1) = 2X(k — 1)L(k) to (17) and divide by
2K(k — 1) on both sides to obtain the equivalent form, for all k > 2,

(fk/ 1 1 2C(k +1)

L(k) < P

L(Tk/21) + (18)

Analysis (3/3)

» From (18) we obtain that for all kK > 2 we have
L(k) < L(Tk/2]) + 6C (19)
» Now let us observe that at most log, 3k iterations of the map k + [k/2] suffice to

reach the value 1 starting from any positive integer k

» Indeed, the map k — [k/2] is dominated by the map k — | k/2] + 1, which can be
viewed as right-shifting k (viewed as an integer in base 2 representation) by one bit
position and then incrementing the result

» When iterating k — | k/2] + 1, the increments in total contribute at most the least
power of 2 at least k (which is at most 2k), so at most log, 3k right-shifts and
increments suffice to reach the value 1

» In particular, iterating (19), we obtain, for all k > 2,

L(k) < L(Tk/2T) + 6C < L([Tk/21/2]) + 12C < --- < L(1) + 6Clog, 3k = O(log k)
and for k > 3 thus T(k) = 2K-"(k — 2)L(k — 1) = O(2*k log k)

Further remarks

» Using Schonhage-Strassen multiplication, we can multiply two polynomials of degree
at most nin O(nlog nlog log n) operations in the coefficient ring S, provided that 2 is a
unit in §

» With some extra work, the assumption that 2 is a unit in S can be lifted to obtain a
multiplication algorithm that works over any coefficient ring S in O(nlog nlog log n)
operations; cf. von zur Gathen and Gerhard [6, Section 8.3, Exercises 8.29 and 8.30]
and Schonhage [9]

» Cf. also the “three-primes” FFT algorithm for integer multiplication on 64-bit
hardware [6, Section 8.3]

Recap of key content for Lecture 2

» Evaluation-interpolation duality of polynomials
» Multiplication is a pointwise product in the dual

» Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

» Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)
» Fast cyclic convolution (assuming a suitable root of unity exists)

» Fast negative-wrapping cyclic convolution (Schénhage—-Strassen algorithm)

Problem Set 2 - |

1. Multiplication with the discrete Fourier transform. Let us multiply
f=1+x+x* € Zp3[x] and g = 2+ 12x* € Zy3[x] using the discrete Fourier transform.
(a) Compute DFT,,(f) and DFT,,(g) in Z?3 utilizing the fact that w = 4 is a primitive root of
unity of order 6 in Zs.
(b) Compute the Pointwis1e product DFT,, (f) - DFT,,(g) € Z5,.
(c) Compute the inverse ¢ DFT,,-1 (DFT,,(f) - DFT,(g)) € Z¢,.

Hints: To ease your computations, we have 471'=10 € Zy3and 67! = 11 € Z;5. Check
that your result for (c) agrees with the sequence of coefficients of fg € Z3[x].

Problem Set 2 - 11

2. The convolution identity. Let w € R be a primitive root of unity of order nin a ring R.
Show that for all f, g € R[x]/{x" — 1) we have DFT,,(fg) = DFT,(f) - DFT,(g).

Hints: Recall that we may view f and g as elements of R[x] of degree at most n— 1, in
which case we obtain fg € R[x]/(x" — 1) by multiplying f and g in R[x] and then
substituting x” = 1 until the result has degree at most n — 1. Recalling that " = 1,
show that the vectors on the left-hand side and the right-hand side of the identity
agree in each position.

Problem Set 2 - 111

3. The fast Fourier transform. Let @ € R be a primitive root of unity of order n = 2K in a
ring R with k € Z,. Present detailed pseudocode for an algorithm that given

f = ((P09(P1, . -,(Pn—1) € Rn
as input computes the discrete Fourier transform

DFT,(f) = (os @15 - - - s Pn-1) € R”
in O(nlog, n) arithmetic operations in R. Carefully analyse the number of arithmetic
operations in R that your algorithm uses.

Hints: You may want to consider a recursive design that relies on the fact that n = 2k
for some k € Z5(. Consult the factorization of a composite-order DFT into parts (i),

(ii), and (iii) in the lecture slides. Remember to set up base cases for the recursion. You
may set up the recursion, for example, by factoring the order as n = st > 4 with s and
t equal to powers of 2. Also, you may want to precompute powers of w into a look-up
table so that they are immediately available. If you want to test your design, you can

Problem Set 2 - IV

make use of the fact that @ = 19 is a primitive root of unity of order 32 in Zo7.
Compare the output of your algorithm with a reference output obtained by
multiplying the input with an appropriate Vandermonde matrix.

Problem Set2 -V

4. Fast integer multiplication by reduction to polynomial multiplication. Let a, f € Z>4
with [log,] + 1 < mand [log,] + 1 < m be given as input. Furthermore, let us
assume that @ and f are represented in binary as sequences of 64-bit words. That is,
we have a = Z’.L:"Z)/GM 2% and B = ZLm/64J Bi - 2% with a;, f; € Z and
0<a,fi<2%-1. De5|gn an algorithm that computes the product y = aff
represented as a sequence of 64-bit words using O(m) operations in Zyus.

Hints: You may want to apply the Schonhage—Strassen algorithm from the lecture
slides. View a and 8 as polynomials a = Z,L:"(')/MJ a;y' and b = ZLm/W Biy'ina
polynomial ring S[y] for a carefully chosen coefficient ring S. Maybe you want to try
S =27, for some u € Z»;. Suppose you have access to the polynomial product ¢ = ab.
How do you recover from c the sequence of words that represents y? Be careful with
carries in addition. How does the size of S depend on m? Observe also that 2 must be
a unit in S if you want to apply Schonhage—Strassen, so this somewhat limits your
choice for u. Carefully justify that the number of operations in Z,12s used by your
algorithm is O(m(log m)?) for some constant d independent of m. You may use

Problem Set 2 - VI

classical arithmetic algorithms for arithmetic in S, but note that each arithmetic
operation in S may consume multiple operations in Z,2s and these need to be
accounted for in your analysis.

3. Quotient and remainder;
evaluation and interpolation

Computer Science Club, St Petersburg
17-18 November 2018

Petteri Kaski
Department of Computer Science
Aalto University

Recap of last lecture

» Evaluation-interpolation duality of polynomials
» Multiplication is a pointwise product in the dual

» Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

» Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)
» Fast cyclic convolution (assuming a suitable root of unity exists)

» Fast negative-wrapping cyclic convolution (Schénhage—-Strassen algorithm)

Goal: Near-linear-time toolbox for univariate polynomials

Modern Computer Algebra iz

Joachim van ur Gathen and Jirgen Gerhard

v

Multiplication

v

Division (quotient and remainder) (this lecture)

v

Batch evaluation (this lecture)

v

Interpolation (this lecture)

Chapter 5

A NEW ALGORITHM FOR DECODING
REED-SOLOMON CODES

v

Extended Euclidean algorithm (gcd)

v

Interpolation from partly erroneous data

Key content for Lecture 3

» Division (quotient and remainder) for polynomials

» Fast division by reduction to fast multiplication

» Polynomial division via reversal

» Newton iteration

» Newton iteration for the inverse of the reverse of the divisor
» Convergence analysis for Newton iteration

» Fast batch evaluation and interpolation of polynomials

» Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

Fast quotient and remainder (polynomials)

Modern Computer Algebra iredition

Joachim von zur Gathen and Jiirgen Gerhard

(von zur Gathen and Gerhard [6],
Sections 9.1 and 9.4)

Division (quotient and remainder)

v

We start by recalling polynomial division

v

We also recall that we can multiply fast

v

Our goal for this lecture is to develop division algorithms that are essentially
(up to constants) as fast as our multiplication algorithms

v

The key idea is to proceed by reduction to multiplication

» In preparing the reductions, we recall and encounter many useful concepts ...

Polynomial quotient and remainder

» Let Rbe aring

» Leta= Y7 aix' € R[x] and b =37 Bix' € R[x] such that a, # 0 and S, = 1

» That is, dega = nand b is monic with degb = m

» Then, there exist polynomials g, r € R[x] that satisfy a = gb + r with deg r < deg b

» We write aquo b for such a quotient g and arem b for such a remainder r in the
division of a by b

» In fact, such g and r are unique (exercise)

The classical division algorithm (for polynomials)

v

Let a= Y, a;x', b= Y; fix" € R[x] be given as input with dega = n, deg b = m,
n > m > 0, and suppose that f,, € R is a unit

» We want to compute g, r € R[x] with a = gb+ rand degr < m

v

The classical division algorithm:

1. reap<pf;

2. fori=n-mn-m-1,...,0do
3. if degr = m+ ithenn; « lc(r)u, r — r—nx'b
elsen; <0

4. return ¢= Y7 " nix' and r

v

The classical algorithm runs in O((n + m)?) operations in R

v

... But could we do better? After Lecture 2, we know how to multiply in
near-linear-time ...

Fast polynomial multiplication

» Let Rbe aring

» Given f, g € R[x] with deg f < d and deg g < d as input, we can compute the product
f8 € R[x] in O(M(d)) operations in R

» We can take M(d) = O(d log d) if R has a primitive root of unity that supports an
appropriate FFT

» In general, we can take M(d) = O(d log d log log d)

» (In Lecture 2 we explored Schonhage—Strassen multiplication that assumes 2 is a unit
in R; this algorithm can be generalized so that R is an arbitrary ring.)

First reduction towards division: the quotient suffices

» Division (viewed from 36,000ft, see earlier slides for details):
Given a, b we need to compute g, r such that a=gb+r

» Observation:
It suffices to compute q since then we can recover r = a — gb by fast multiplication

High-level idea: iterate for the quotient

» Our approach will be to recover the quotient iteratively

» In essence, we iterate for a multiplicative inverse of the divisor b such that each
iteration increases the accuracy of our inverse

» We want the accuracy (e.g. the polynomial degree) to increase geometrically from n
to 2nin one iteration

» Once a sufficiently accurate version of the inverse is available (n is large enough), we
proceed to solve for the quotient

» Each iteration will involve a constant number of multiplications, additions, and
subtractions on inputs of size O(n)

The cost of a geometric iteration

» We say that a function T : Z>,, — Z5, grows at least linearly if for all
n,ny, Ny € Zsy, it holds that n = ny + ny implies T(n) > T(m) + T(ny)

» Examples:
T(n) = Cnlog, nfor ny = 1 and any constant C > 0
T(n) = Cnlog, nlog, log, nfor ny = 2 and any constant C > 0

Lemma 5 (Last step dominates—the previous steps are “for free”)
Suppose that T grows at least linearly for n > ny > 1 and let 2% be the least integer power of
2 at least ny. Then, for all k > ky we have ZJI'(:/(O T(2) < T(2k1)

Proof.

By induction (exercise). O

Goal for fast polynomial division

v

Let R be a ring

v

Let a, b € R[x] with b monic and d > dega > deg b for some d € Zx,

» We want an algorithm that computes the quotient q and the remainder r in the
division of a by b in O(M(d)) operations in R

Here M(d) = O(dlog d) or M(d) = O(d log d log log d) depending on R

v

Reversal to recover the quotient

» For a polynomial

f=00+@ix+ x>+ ...+ @px"
of degree at most n € Z, the n-reversal of f is the polynomial

revp f = @n + Qn1X + QpaX> + ...+ Pox"
» For the quotient-and-remainder identity a = gb + r with dega = n > m = deg b and
deg r < m— 1, we observe (exercise) that the reversal operator satisfies

revpa = (revp,_mq)(revy, b) + x™ ™ rev,, i r

» In particular, working in the factor ring relative to the ideal (x"™™*1),

rev, a = (revp,_m q)(revp, b) (mod x™™*

» Since b is monic, rev,, b has a multiplicative inverse modulo x"~"*!

» Thus, we can compute the quotient g by computing the inverse of rev,, b modulo

x"™1 multiplying by rev, a, and (n — m)-reversing the result

Example: Reversal (1/2)

» Suppose that in Zs[x] we have
a=3+3x+ x>+ 2+ x* +4x% + x7 +3x% +4x° + 3x"0 + x4 x"?
b=2+x+x*+3x>+3x" +3x° + x°
with n = dega = 12 and m = deg b = 6; we also observe that b is monic
» We have a=gb+rand 0 < degr < degb—1for
q=3+3x+3x2+4x3+x4+3x5+x6
r=2+4x+4x* +4x° + 4x* + 2x°
» Taking reverses, we have
revpa=1 +x+37+ 3 +3x X0+ 4x8 + X%+ 267 + x10 4 3xT 4 3x12
revmb =14 3x + 3x2 +3x° + x* + x° + 2x°
revpmq =1+ 3x + X2+ 4x° + 3x* + 3x° + 3x°

reVim_1 I = 2 + 4x + 4x% + 4x> + 4x* + 2x°

Example: Reversal (2/2)

» Recalling that

revnaz1+x+3x2+4x3+3x4+x5+4x6+x8+2xg+x10+3x”+3x]2
revimb =1+ 3x+3x2 +3x° + x* + x> + 2x°
_ 2 3 4 5 6
revpomq=1+3x+x"+4x" +3x" + 3x” + 3x

revp_1r=2+4x+ 4x% +4x° + 4ax* + 2x°

with n = 12 and m = 6, we can now verify the reversed division equality

m

rev,a = (revo_m q)(revy, b) + x™ “revy_q r

» Indeed,

revpa=1 Fx+37+4 +3x X0 +axC + xB +2x° + x4+ 3x"T + 3x1?
(reVom q)(revim b) = 1+ x + 3x% +4x° + 3x* + x° +4x°® + 3x” + 2x% + 3x° + 2x"* + 4x"" + x"?

X = 2x7 4+ 4x8 + 4x° + 4x10 + 4x'T 4+ 2x1?

The inverse modulo x¢ by reduction to fast multiplication

>

>

Let g = 3 ¥;x/ € R[x] with)y = 1 be given as input

We set up a Newton iteration that doubles d at every step

Assume inductively that f € R[x] satisfies fg =1 (mod x¥) for k € Zsq

To set up the base case k = 0, take f = 1 and observe that the assumption holds

Computef' =(2-fg)f (mod xzkﬂ) using fast multiplication,
truncating both g andf using the substitution X2 =0

Since the assumption holds for f with parameter value k, there exists a h € R[x] with
feg=1+x"h
We observe thatfg =Q2-fg)fg=(0- xzkh)(l + xzkh) =1 (mod xzkﬂ) and thus the

assumption holds for f with parameter value k + 1

The cost of step k is O(M(2%)) since M grows at most polynomially; by Lemma 5 the
total cost is O(M(d)) operations in R

Example: Iterating for the inverse modulo x¢

» Let g = 1+43x +3x% + 3x% + x* + x° + 2x°® € Zs[x]
> Let us compute the multiplicative inverse of g modulo x9 for d = 7

The least integer k for which 2K > d is k = 3, so we need three rounds of Newton
iteration

v

Truncating g andf by setting x**"" = 0and iterating, we have

v

k| f 8

011 1+ 3x

1] 1+2x 1+ 3x + 3x% + 3x3

2| 14 2x 4+ x% + 3x8 T4 3x 4+ 3x% +3x3 + x* + x° + 2x°
30T+ 2x 4+ x%+3x3 + x* +2x° + 2x° + 2x7

Thus, the multiplicative inverse of g modulo x? is

v

T+2x+ x>+ 3% + x* +2x° + 2x°

Example: Division with reversal and Newton iteration

» Suppose that in Zs[x] we have
a=3+3x+ X+ 23+ x* +4x° + x" +3x% + 4x° + 3x" + x" + x"?
b=2+x+x>+3x>+3x"+3x°> + x°

with n = dega = 12 and m = deg b = 6; we also observe that b is monic

v

Reverse a and b to obtain
revpa=1 +x+37+ 03 +3x X0 +4x + X%+ 27 + x10 4 3x"T 4 3x12
revimb =14 3x+3x% +3x° + x* + x° + 2x°

Iterate for the inverse f of rev,,, b modulo x"~™*1 to obtain

v

f=1+2x+x*+3x° +x* +2x° + 2x°

v

Compute f rev, a, truncate with x™™1 = 0, and (n — m)-reverse the result to obtain
the quotient ¢ = 3 + 3x + 3x? + 4x> + x* + 3x° + x°

v

Compute the remainder r = a — gb = 2 + 4x + 4x% + 4x> + 4x* + 2x°

Summary—fast polynomial division

v

Let R be a ring

v

Let a, b € R[x] with b monic and d > dega > deg b for some d € Z5,

v

We have an algorithm that computes the quotient q and the remainder r in the
division of a by b in O(M(d)) operations in R
1. Let n=degaand m=degh
2. m-reverse b and compute the multiplicative inverse of rev,, b modulo x using
Newton iteration, multiply by the result by rev, a modulo x™™1, and (n — m)-reverse
the result to obtain the quotient g
3. Compute remainder rby r = a— gb

Here M(d) = O(dlog d) or M(d) = O(d log d log log d) depending on R

n—-m+1

v

Batch evaluation and interpolation

Modern Computer Algebra iredition

Joachim von zur Gathen and Jiirgen Gerhard

(von zur Gathen and Gerhard [6],
Sections 10.1-10.3 and 5.1-5.4)

Batch evaluation and interpolation

» To evaluate a polynomial (¢o, ¢1,. .., ¢4) € F*1 at (“a batch of”) distinct points
&, &1, ..., &g € F, we multiply from the left with the Vandermonde matrix:

g & o & e f(&)
g & - &dlle| | f&

T | IV I T

» To interpolate the coefficients of a polynomial with values
(F(&) f(ED)s - f(Ea)) € FT* at distinct &, &,

with the inverse of the Vandermonde matrix:

g2 og - @17 fE) %0
g &g - f(&) o1

..., &4 € F, we multiply from the left

g oo || fE) 0

Fast batch evaluation and interpolation?

» Can we go faster than working with the Vandermonde matrix in explicit form?

» Yes, for example, in the case when the points &), &1, . . ., &4 are powers of a primitive
root of unity of composite order d + 1 (recall fast Fourier transform from Lecture 2)

» But what about in general?
That is, when &, &5, . . ., &4 are arbitrary distinct points in a ring R

» We now know how to multiply and divide fast, so maybe we could put these algorithms
into use ...

Polynomial division (quotient and remainder) recalled

» Let R be a ring (commutative and nontrivial, as usual)

» Leta= Y, a;x' € R[x] and b= 3; Bix’ € R[x] be given as input with dega = n,
degb=myandn>m>0

» Let us also assume that 8, = 1 (that is, b is monic)

» We want to compute q, r € R[x] with a = gb+ rand degr < m

» That is, ¢ = aquo b is the quotient and r = arem b is the remainder in the
polynomial division with dividend a and divisor b

» We now have a fast algorithm that divides in O(M(n)) operations in R by reduction to
fast multiplication

» Let us now develop fast algorithms for batch evaluation and interpolation to by
reduction to fast division

Fast batch evaluation by recursive remaindering

> Suppose we have a polynomial f = @o + @1x + @2x* + ... + p4x? € R[x] and we want
to compute the values f (&), f(&1), ..., f(E—1) at e given points &, &,..., .1 € R
» Goal: O(M(d) + M(e) log e) operations in R

» We reduce the multi-point (batch) evaluation task to recursive remaindering along a
subproduct tree enabled by the following to lemmas (proofs: in the problem set)

Lemma 6 (Evaluation at a point via remainder)
Forall ¢ € R and f € R[x] it holds that f (¢) = f rem (x — &)

Lemma 7 (Recursive remaindering)
Let a, b, c € R[x], with b and ¢ monic, and suppose that c divides b. Then,
aremc = (arem b) rem ¢

Example: Batch evaluation

v

The algorithm for fast batch evaluation is perhaps best illustrated by starting with an
example and then proceeding with the details

v

Let us work over R = Z for simplicity

v

Let f = x° — x* + 2x> + 4x — 5 € Z[]

Let=0,6=1,64=2,865=3

v

Example: Batch evaluation (0/4)

0. Place the linear polynomials x — € for j = 0,1,...,e — 1 at the leaves of
a perfect binary tree (can assume that e is a power of 2)

=x—0 =x—1 =x—2 =x—3

Example: Batch evaluation (1/4)

1. For each internal node in post-order, place the product of
the two child nodes at the node

x*—6x3+ 11x%2—6x

x—&o x—&; X—§&2 X—&3
=x—0 =x—1 =xX—2 =x—3

Example: Batch evaluation (2/4)

2. Compute the remainder of f = x5 — x4 + 2x3 + 4x — 5 and
the root node and place it at the root node

x4 —6x3+11x%2— 6Xx
21x3—49x2 + 34x—5

x2—5x+6

x—&o x—&1 x—&2 x—E&3
=x—0 =x—1 =x—2 =x—3

Example: Batch evaluation (3/4)

3. For each nonroot node in preorder, compute the remainder of
the parent node and the subproduct at the node

x4 —6x3+11x%2 — 6x
21x3 —49x2 + 34x—5

x2—5x+6
188x— 341

x—&p x—& x—&> x—&3
=x—0 =x—-1 =x—2 =x—3
-5 1 35 223

Example: Batch evaluation (4/4)

4. The remainders at the leaf nodes are the evaluations f(§)

x—&o x—&; x—& X—&3
=x—0 =x—1 =x—2 =Xx—3
-5 1 35 223

Nodes of a perfect binary tree and binary strings (1/2)

» Let us now present the algorithm in detail

» Without loss of generality we can assume that e = 2X for some k € Z,
(for example, insert new points of evaluation until e is a power of 2)

» We will structure the recursion along a perfect binary tree with 2¥ leaves

> Let us write {0, 1}X for the set of all binary strings of length at most k, including the
empty string €

» For u € {0, 1}X let us write 0 < |u| < k for the length of u

» Example. For k = 3, we have

{0, 1}K = {e,0,1,00,01,10,11,000,001,010,011, 100, 101, 110, 111}

Nodes of a perfect binary tree and binary strings (2/2)

» The 2Kk+1 - 1= Zjl.‘zo 2/ strings in {0, 1}X are in a
natural one-to-one correspondence with the nodes of
a perfect binary tree with 2¥ leaves, with the empty
string € corresponding to the root and the strings of
length k corresponding to the leaves

» Indeed, to navigate from a non-root node to its parent
node, simply delete the last bit from the
corresponding string

» Dually, to navigate from a non-leaf node to one of its
two children, append either the bit 0 (to go the left
child) or the bit 1 (to go the right child) to the string

A subproduct tree for batch evaluation

Let us work with a perfect binary tree with 2 leaves and nodes indexed by the binary
strings in {0, 1)k

v

v

Associate with each leaf v € {0, 1} the linear polynomial

s, =x—¢& (20)

Associate with each internal node u € {0, 1}*=1 the product of the children of u by

v

Su = SuoSul (21)

We observe that s, is a monic polynomial of degree 2¢14! for all u € {0, 1}%

v

Fast batch evaluation using a subproduct tree

» To perform batch evaluation, first compute and store the polynomials s, for all
€ {0, 1} using (20) and (21)

» Then, associate the remainder

re = f rem s (22)
with the root € of the binary tree

» For each nonroot u € {0, 1}X\ {€}, associate with u the remainder

ry = r,rems, (23)

where p € {0, 1}*=1 is the parent of u in the binary tree

» For each leaf v € {0, 1}¥, the remainder r, satisfies r, = f(&)

Analysis

» Recall that s, is a monic polynomial of degree 2¢~14! for all u € {0, 1}%

» From (20) and (21) we have that each s, can be prepared in O(M(2¥14l)) operations in
R using fast multiplication

> There are in total 2/ binary strings u € {0, 1}/, implying that the total cost of level
j=kk=1,...,0is O(2M(2¥7)) operations in R, which is O(M(2¥)) = O(M(e)) by
at-least-linear and at-most-polynomial growth of M

» The root remainder (22) takes O(M(d) + M(e)) operations in R using fast division

» Below the root, each level j = 0, 1,. .., k similarly takes O(M(e)) operations in R using
(23) and fast division

» Since there are k = O(log e) levels, we obtain that that batch evaluation runs in total
O(M(d) + M(e) log e) operations in R

Interpolation

» Let R be aring
> Let &o,&1,...,81 € Rand 19,11, ..., 0e—1 € Rsuch that & — & is a unit in R for all
0<i<j<e-1

» We seek to compute the coefficients of the Lagrange interpolation polynomial

e—1 e—1 e—1

t= Z(’h l_l(ffi - ‘fj)_])]—[(X = &) € R[x]
im0\ j=0 j=0
JEI JEI

that satisfies €(&;) = p;foralli=0,1,...,e—1

Fast interpolation with subproduct trees

» The form
e—1 e—1 e—1
= (n - [o-6) € v
i=0 Jj=0 J=0
J#i J#EI

suggests that one should first seek to construct the coefficients of the polynomial
e—1 e—1

=2 4] |- &) € Rix

i Jj=0
J#EI
from e given scalars Ag, A, ...,Ae—1 € R

» A strategy based on subproduct-trees works also here and leads to an algorithm that
runs in O(M(e) log e) operations in R (exercise)

Application: How to share a secret

“In this paper we show how to divide data D into n pieces in such a way that D is
easily reconstructible from any k pieces, but even complete knowledge of k — 1 pieces
reveals absolutely no information about D. This technique enables the construction of
robust key management schemes for cryptographic systems that can function securely
and reliably even when misfortunes destroy half the pieces and security breaches
expose all but one of the remaining pieces.”

(Shamir [11])

Application: How to share a secret (1/5)

» Let us work over a finite field F (for example, F = Z, for p prime)
» Let f = @o + ¢1x € F[x] be a line (polynomial of degree at most 1)

» How much do we know about the constant ¢, of the line f if we know the value f (&)
for anonzero £ € F?

Application: How to share a secret (2/5)

> Let us work over a finite field F (for example, F = Z, for p prime)
> Let f = @o + @1x + @2x> + ... + @gx9 € F[x] be a polynomial of degree at most d

» How much do we know about the constant ¢, of the polynomial f if we know
(&, f(&))) for exactly d nonzero distinct values £; € Fforj=1,2,...,d?

Application: How to share a secret (3/5)

> Let f = @o + @1x + @2x> + ... + @gx9 € F[x] be a polynomial of degree at most d

» How much do we know about the constant ¢, of the polynomial f if we know
(&, f(&))) for exactly d nonzero distinct values £; € Ffor j=10,1,...,d?

» We claim that this knowledge reveals no information about ¢y;
indeed, let us set & = 0 and recall the interpolation identity

g & & f(&) 0
gog o f(&) o

-1

=

g g g || s -

» Since f(&) = f() = @0, we have that for each choice ¢, € F the values
F(&).f(&),....f(&Eq) are consistent with exactly one choice (¢q, @1, . .., pq) € FI*!

» Thus, the values f (&), f(&), - - ., f(&q) reveal no information about ¢

Application: How to share a secret (4/5)

v

Let f = o + @1x + @ax* + ... + gx? € F[x] be a polynomial of degree at most d

v

How much do we know about the constant ¢, of the polynomial f if we know
(&, f(&))) for exactly e nonzero distinct values & € F for j=1,2,...,e?

v

For e < d, we obtain no information about ¢

v

For e > d + 1, we have full information about ¢, since we can interpolate all the
coefficients of f from any d + 1 evaluations at distinct points

Application: How to share a secret (5/5)

» Suppose ¢y € F is a secret that you want to split into s shares so that
» knowledge of any k shares enables recovery of the secret

» knowledge of any k — 1 or fewer shares reveals no information about the secret

1. Let &, &, ..., & € F be distinct and nonzero
Select elements @1, ¢y, . .., px-1 € F independently and uniformly at random

Let f = o + @1x + q)zxz +...+ ¢k_1xk_1 € F[x]

> W

Forj=1,2,...,s, share j is the pair (§, f(§;)) € F?

» Using fast batch evaluation and interpolation, preparing the shares takes O(M(s) log s)
operations in F, and recovering the secret takes O(M(k) log k) operations in F

Randomization and primal-dual

» The secret ¢, € F resides in the primal (coefficient representation)

» Selecting @1, @2, ..., px—1 € F independently and uniformly at random masks the
secret in the dual (evaluation representation) unless we know k shares

» This is our first example of the use of randomization during this course

» The evaluation—interpolation duality enables us to spread the information in the
coefficient representation uniformly to evaluations in the evaluation representation

» The following lectures will explore both randomization as a tool in algorithm design
and the aforementioned “uniformity” further, the latter in particular as regards
error-correcting codes and error-tolerant computation

Recap of key content for Lecture 3

» Division (quotient and remainder) for polynomials

» Fast division by reduction to fast multiplication

» Polynomial division via reversal

» Newton iteration

» Newton iteration for the inverse of the reverse of the divisor
» Convergence analysis for Newton iteration

» Fast batch evaluation and interpolation of polynomials

» Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

Problem Set 3 - |

1. Polynomial division by reversal. For a polynomial f = ¢o + ¢1x + ... + ¢,x" € R[x] of
degree at most n € Zx(over a ring R, let the n-reversal of f be the polynomial
revof = @n+ @po1x + ... + @ox" € R[x]. Let a, b € R[x] be polynomials with b monic
and n = dega > deg b = m. Show that the quotient g € R[x] and the remainder
r € R[x] with a = gb + r and deg r < m — 1 satisfy the reversal identity

revpa = (revp_mq)(revy, b) + x" ™ rev,, ;r.

Hint: Observe that forall i=0,1,...,n—mand j=0,1,..., mwe have

X—i=i = xn—m=iym—j

Problem Set 3 - 11

2. Evaluation via recursive remaindering. Let R be a ring.

(a) Show that for all £ € Rand f € R[x] we have f(¢) = f rem (x — &).
(b) Let a, b, c € R[x], with b and ¢ monic, and suppose that c divides b. Show that
aremc = (arem b) rem c.

Hints: Recall that the quotient and remainder are unique for a, b € R[x] with b monic.
Use the defining equality a = gb + r with deg r < deg b for both parts. For part (a),
investigate what happens when you evaluate the defining equality at &.

Problem Set 3 - 11l

3. Preliminaries for fast interpolation. Let R be a ring, let &, &7,...,&—1 € R, and
Aos A1, - - -, Ade—1 € R be given as input. The form of the Lagrange interpolation
polynomial (27) suggests that one should first seek to construct the coefficients of the
polynomial

t=> Ai| [(x=¢&) € R[x]. (24)

Show that we can compute the coefficients of £ in O(M(e) log e) operations in R. You
may assume that e = 2¥ for a nonnegative integer k. Here M(e) = elog eloglog e.

Hints: Work with binary strings and the representation of the perfect binary tree using
binary strings in {0, 1}X. To construct the coefficients of the polynomlal (24), first
construct a subproduct tree with polynomials s, for all u € {0, 1}X from &, &1, ..., Eeq

Problem Set 3 - 1V

as during fast evaluation. Next, annotate the tree with another family of polynomials
such that the polynomial at the root will be equal to (24). You may want to try
associating with each leaf v € {0, 1}* the polynomial

&, = A, (25)
and with each internal node u € {0, 1}*=! the polynomial
Cu = Cuosu1 + Suolun - (26)

Why is this a good choice? Prepare a small example, say with k =2 or k = 3 as
necessary. Show that £ = ¢, where € is the empty binary string.

Problem Set3 -V

4. Fast interpolation via subproducts and fast evaluation. Let R be a ring and let
&0, &1,..., 81 € Rand o, 1M1, ..., ne—1 € Rsuch that & — & is a unit in R for all
0 < i< j<e—1 Show that we can compute the coefficients of the Lagrange
interpolation polynomial

=S (m 1e_[<§, 5)ﬂ x = &) € Rl (27)

=0 : Jj=
j¢l JEI

that satisfies (&) = n;foralli=0,1,...,e— 1in O(M(e) log) operations in R. You
may assume that e = 2¥ for a nonnegative integer k.

Hints: Apply your solution to Problem 3 in two passes. In the first pass, set 4, = 1 for
all v € {0, 1}* and compute the coefficients of the polynomial f = ¢, using (25) and
(26). Evaluate f at &, &1, . . ., &1 using fast evaluation. Then do a second pass (with a
different choice for the values 1,) so that at the root you recover the Lagrange
interpolation polynomial (27).

4. Extended Euclidean algorithm and
interpolation from erroneous data

Computer Science Club, St Petersburg
17-18 November 2018

Petteri Kaski
Department of Computer Science
Aalto University

Recap of last lecture

» Division (quotient and remainder) for polynomials

» Fast division by reduction to fast multiplication

» Polynomial division via reversal

» Newton iteration

» Newton iteration for the inverse of the reverse of the divisor
» Convergence analysis for Newton iteration

» Fast batch evaluation and interpolation of polynomials

» Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

Goal: Near-linear-time toolbox for univariate polynomials

Modern Computer Algebra iz

Joachim van ur Gathen and Jirgen Gerhard

v

Multiplication

v

Division (quotient and remainder)

Batch evaluation

v

v

Interpolation

Chapter 5

Extended Euclidean algorithm (gcd) (this lecture) AL SLSeaT AR PreoDNG

v

v

Interpolation from partly erroneous data
(this lecture)

Further motivation for this lecture

» After this lecture we have completed our work on the near-linear time toolbox for
univariate polynomials

» This lecture is also our first encounter with uncertainty in computation

» In this lecture we learn how to cope with uncertainty in the form of errors in data by
using error-correcting codes

» Next lecture looks at errors in computation ...

Fast extended Euclidean algorithm (for polynomials)

Modern Computer Algebra iredition

Joachim von zur Gathen and Jiirgen Gerhard

(von zur Gathen and Gerhard [6],
Section 11.1)

Fast interpolation from partly erroneous data

(Gao [5])

Chapter 5

A NEW ALGORITHM FOR DECODING
REED-SOLOMON CODES

Shuhong Gao

Department of Mathematical Sciences
Clemson University,

Clemson, SC 29634-0975, USA.

Abstract A new algorithm is developed for decoding Reed-Sol codes. It
uses fast Fourier transforms and computes the message symbols directly
without explicitly finding error locations or error magnitudes. In the
decoding radius (up to half of the minimum distance), the new method
is easily adapted for error and erasure decoding. It can also detect
all errors outside the decoding radius. Compared with the Berlekamp-
Massey algorithm, discovered in the late 1960’s, the new method seems
simpler and more natural yet it has a similar time complexity.

1. Introduction

Reed-Solomon codes are the most popular codes in practical use today
with applications ranging from CD players in our living rooms to space-
crafts in deep space exploration. Their main advantage lies in two facts:
high capability of correcting both random and burst errors; and existence
of efficient decoding algorithm for them, namely the Berlekamp-Massey
algorithm, discovered in the late 1960’s [1, 9]. The Berlekamp-Massey

Key content for Lecture 4

» Extended Euclidean algorithm for polynomials recalled and expanded
> The quotient sequence, the Bézout coefficients, and the halting threshold

» Fast extended Euclidean algorithm for polynomials by divide and conquer

> The two polynomial operands truncated to a prefix of the highest-degree monomials
determine the prefix of the quotient sequence (exercise)

» Coping with errors in data using error-correcting codes

v

A family of error-correcting codes (Reed-Solomon codes) based on
evaluation—interpolation duality for univariate polynomials

> Key observation: low-degree polynomials have few roots (exercise)

» Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Extended Euclidean algorithm (for polynomials)

> Let F be a field and let f, g € F[x] with degf > degg > 0

» Traditional extended Euclidean algorithm:
1. rp—f,s0 < 1, t <0,
r«gs <0t <1
2. 1«1,
while r; # 0 do
Gi < ri-1quor;
Fit1 < Ti-1 — qil;

Si+1 < Sji-1 — qiSi
tiv1 < ti-1— qit;
Pe—i+1

3. L—i—1

return {, r;,s;, t;fori=0,1,...,{+ 1,and g; fori =1,2,...,¢

» We want a faster algorithm

Example (over Z;|[x])

»letf=x"+x'+ X3+ x>+ x+1€Zyx]and g = x° + x* + 1 € Z,[x]

» We obtain
i I S t qi
0 X +x*+x3+x2+x+1 1 0
1 X+ x4+ 1 0 1 1
2 3+ x>+ x 1 1 x?+1
3 X2+ x+1 x>+ 1 x? X
4 0| x3+x+1|x3+1

» In particular £ = 3 and r, = x> + x + 1is a greatest common divisor of

X Hx+x3+x2+x+Tand xX° +x* + 1

Terminology

v

The sequence g1, G2, . . ., g¢ is the quotient sequence produced by the algorithm

v

The polynomial r; is the remainder at iteration i

v

The polynomials s; and t; are the Bézout coefficients at iteration i

v

The Bézout coefficients satisfy r; = s;ry + tir

Desiderata for a fast algorithm

» Let F be a field and let f, g € F[x] with d > degf > degg > 0

» Desired output:
The quotients g1, gy, - . ., g» and two consecutive rows ry, sp, ty and rpi1, Spt1, theq for a

choiceof h=1,2,...,¢
» Using O(M(d) log d) operations in F

The degree sequences m; and n;

» It will be convenient to work with the following two sequences
» Fori=1,2,...,0+1let
m; = deg q;
where, for convenience, we let myy; = o
» Fori=0,1,..., 0+ 1, let
n; = degr;
recalling that ngy = deg0 = —co
» By assumption, we have degry > degry >0
» Since we have ri.1 = ri_; — g;jrjand deg r; > deg iy forall i =1,2,...,¢, it follows that

Nji-1 = n; + m;

Example (over Z;|[x])

»letf=x"+x'+ X3+ x>+ x+1€Zyx]and g = x° + x* + 1 € Z,[x]

» We obtain
i ri Si ti qi | mj n;
0l x+x*+x3+ x>+ x+1 1 0 5
1 X+ x4+ 1 0 1 11 0| 5
2 X3+ x%+x 1 1| x2+1] 2 3
3 X+ x+1 X2+ 1 x? X 1 2
4 0| x>+x+1[x3+1 00 | —co

» In particular £ = 3 and r, = x> + x + 1is a greatest common divisor of

X Hx+x3+x2+x+Tand xX° +x* + 1

The halting threshold h = h(k)

» Given a threshold parameter k =0, 1,.. ., ny as input, we want the algorithm to halt
at iteration h = h(k) determined by

m+m+...+mp<k

and

mi+my+...+mp+ mpq >k

» In particular, we observe that 0 < h < ¢

The halting threshold h = h(k)

» Equivalently, since nj = nj_y — m;fori=1,2,...,{ + 1, we have
np > ng—k
and
Npe1 < np — k

» That is, the algorithm halts at the unique iteration h =0, 1,...,¢ when the degree of
rp+1 for the first time decreases below ny — k

Truncating a polynomial

» Let
f=0xX"+ @nax™ "+ ...+ o1x + @y € F[X]
with leading coefficient Icf = ¢, # 0
» For k € Z, define the truncated polynomial

k-1

frk:(pnxk+(pn,1x + .+ Qg1 X + @pi € F[X]

where we set ¢; = 0 for i < 0 as necessary

» For k > 0 we have that f [k is a polynomial of degree k whose coefficients are the
k + 1 highest coefficients of f

» For k < 0wehave fT k=0
» Foralli=0,1,...wehave (fx) [k = f| k

Example: Truncating a polynomial

» Let us work with the polynomial
f=2+9x+10x* + 4x> € Zy[x]

» We obtain the truncations

fr-2=0

fr=1=0
fro=4
F11=10+4x

F12=9+10x + 4x*
F13=2+9x+10x* +4x°
fr4a=2x+9x>+10x> + 4x*

F15=2x%+9x3 + 10x* + 4x°

Coinciding pairs of polynomials

> Let f,g.f.8 € F[x] \ {0} with deg f > deg g and deg f > degg
> For k € Z, we say that (f,g) and (f,) coincide up to k and write (f, g) = (f, g) if
frk=frk
gh(k - (deg f — degg)) = gl (k - (degf - degg))

» Remark:

If (f,8) =« (f.8) and k > deg f — deg g, then deg f — deg g = deg f — deg g

Example: Coinciding pairs of polynomials

» The pairs
F=7+2x+x*+x>+10x" + 7x° + x® + 5x7 + 9x® + 5x” + 7x'° € Z11[x]
g=3+7x+4x* +2x> + 2x" + 6x° + 3x° + 2x” + 4x® € Z1;[x]
and
f: 1+5x +9x% +5x° + 7x* € Z1[x]
g =3+2x+4x* € Z[]
coincide up to 4
» Indeed, we have deg f = 10, deg g = 8, degf = 4, and deg g = 2, with

fla=f14=1+5x+9"+5x +7x*
g12=2812=3+2x+4x*

Quotients of coinciding pairs of polynomials

» The following lemma enables us to design a divide-and-conquer extended Euclidean
algorithm by truncating the operands to division

Lemma 8 (Sufficiently coinciding pairs of polynomials have identical quotients)
Suppose that (f, g) =y (f, &) for k € Z with k > deg f — deg g > 0. Define q,r, 4, F € F[x]
by division with quotients and remainders as follows

f=qg+r, degr < degg,

f=q8+F, degr < degg.
Then, q = q and at least one of the following holds (g, r) =y(k-deg q) (& T) orr =0 or
k—degq < degg—degr.

Proof.
Exercise =

Example: Quotient of coinciding pairs of polynomials

» The pairs
F=7+2x+x*+x>+10x" + 7x° + x® + 5x7 + 9x® + 5x” + 7x'° € Z11[x]
g=3+7x+4x* +2x> + 2x" + 6x° + 3x° + 2x” + 4x® € Z;;[x]
and
f: 1+5x +9x% +5x° + 7x* € Z1[x]
g =3+2x+4x* € Z[]
coincide up to 4, with 4 > deg f — degg = 2
» Accordingly (by Lemma 8), the quotients agree:
fquog =9+ 10x + 10x*
fquog =9+ 10x + 10x

Quotient sequences of coinciding pairs of polynomials

» Now let us study what happens in the extended Euclidean algorithm if we execute it
for two inputs, (ry, r1) and (ro, 1), with deg rp > degry > 0 and degry > degry > 0:

ro=qin + r, Ih=qn+n

r = qxn +r3, n=qQn+r
i1 = qiri + riz1, i1 = QI + Fiz
re-1 = qere, iy =q;ry

» In particular, our interest is on the case (ry, r1) =k (o, 1) ...

Quotient sequences of coinciding pairs of polynomials

» We can now study the execution on two coinciding inputs (ry, r) and (rp, F1) with
degry > degry > 0 and degry > degry > 0 as follows

Lemma 9 (Identical quotient sequences up to the halting threshold)
Let k € Z with (ry, r1) =5k (Fo, F1). Then, h(k) = f)(k) with q; = q; foralli=1,2,..., h(k).

Proof sketch.

By induction on i and using Lemma 8 for the induction step, the following holds for all
0 < i < h(k): we have i < h(k), g; = g;, and at least one of the following holds: i = h(k) or

(r,-, ri+1) Ez(k_zj::] mj) (r,-, ri+1)' a

Example: Quotient sequences of coinciding pairs

> Let us run the extended Euclidean algorithm for a pair of polynomials in Z11[x]:

i gi ri Si &
0 7+ x+3x2 +5x° +9x7 + 10x° + 7x° 1 0
1 4| 44+10x + 7x% +4x3 + 7x* + 4x° + 10x° 0 1
2| 4+2x 24 5x+8x2 +3x* +5x° 1 7
3| 4+10x 7+ 8x +9x2 + 10x3 + 6x* 7+9x 6+ 8x
4| 243x 74 2x+2x2 +2x3 6 + 4x + 9x? 54 7x + 8x2
5 | 10+9x 4+ 5x + 10x% 6+ 5x +3x2 + 6x3 74 x+7x% +9x3
6 | 4+8x ax 1+10x +x3 + x4 1+6x2+x3+7x*
7 X 4 24 x+2x% +10x* +3x° 34 4x+5x% + x5+ 8x* + 10x°
8 0 | 1T+8x+10x%+x3 +10x* +x° +8x% | 1+8x+2x2 +7x% +6x% +3x% + x°

» Here is a run on a pair that coincides with the first pair up to length 2k = 4:

i| qi | ri | si | t
0 34 5x+9x2 + 10x° + 7x7 1 0
1 4 | 7+4ax+7x% +4x3 +10x* 0 1
2| 4+2x 8+ 3x% +5x° 1 7
3| 4+10x 8 + 10x + 6x2 7+ 9x 6+ 8x
4 6x 9+ x 6 + 4x + 9x? 5+ 7x + 8x2
5| 8+7x 8 7+6x+9x% +x3 6+ 2x% + 7x°
6 0 | 5+6x+5x2+6x>+4x* | 1+9x+3x%2+7x> +6x*

» Observe that the quotient sequences agree up to total degree
deg qi +deg gy + ... + deg qn) < k with h(k) =3

A divide-and-conquer extended Euclidean algorihtm

» We now use Lemma 9 to design a fast divide-and-conquer version of the extended
Euclidean algorihtm

» For a given input (ro, r) € F[x]? with deg ry > deg r; > 0 and halting parameter k > 0,
the key idea is to truncate the input using the “|”-operator and build the quotient

sequence qi, G2, - - - » Gn(k) Using two recursive calls with halting parameter at most
Lk/2] each
» That is, the idea essentially to use the first recursive call to recover qi1, qa, . . ., Gn(|k/2))s

then compute (as needed) the next quotient gp(|«/2))+1 explicitly, and then make a
second recursive call (as needed) to recover the rest of the quotient sequence

q1,q2, ..., CIh(k)

» With careful implementation, this leads to an algorithm that runs in O(M(k) log k)
operations in F

» Before describing the algorithm in detail, let us recall some further terminology ...

Invariants of the extended Euclidean algorithm

» Recall the matrices
so by 1 0 0 1 .
R = = P = f =1,2 o
0 [51 t‘l] |:0]:|’ QI [.I _q’] or1/ < 75
and R = QiQi—1 -+ QiRy € F[x]*?*fori=0,1,...,¢ from the analysis of the
traditional extended Euclidean algorithm in Problem Set 1

S ti ri ri
» We recall that forall i=0,1,...,0 we have R, = | ' "l and R; o =1"
Si+1 L+ n T

» Our algorithm design will be such that on input (ry, r1) and k it produces as output (i)
the value h(k), (ii) the quotient sequence qi, g2, . . ., Gn(k)» and (iii) the matrix Ry ...

Truncating inputs to the extended Euclidean algorithm

> Let us write h(k), g1, G2, Gh(k)» Rnky < extged(k, ro, r1) to indicate that the
algorithm produces the output h(k), 1, qa. . . ., Gn(k)> Rnk) on input k, ro, ry with
degry > degr; >0

» Lemma 9 now implies that we have

extged(k, ro, ry) = extgcd(k, rol 2k, ri1(2k — (deg ry — deg r1))) (28)

» In particular, we can assemble the output recursively so that the input polynomials to
each recursive call are truncated in degree to the minimum enabled by (28)

» We are now ready for the detailed pseudocode of the algorithm ...

A divide-and-conquer extended Euclidean algorithm |

» Let F be a field and let k € Z and ry, r; € F[x] with deg ry > deg r; and ry # 0 be given
as input

1. If k < deg ry — deg r; holds, then return with output h(k) < 0 and Ry « [(1) (1)]

Icry

2. If k =0 and deg ry = deg ry hold, then return with output h(k) < 1, g; = 2, and

lcry?

0 1
Ry < lc ro
T =ien
3. Set ki « | k/2]
4. Make the first recursive call
h, qﬁ”, q£1), e q;:]), R extgcd(lq, rol 2k, ri [(2ky — (deg ry — deg rI)))

. rh rol 2k
5. Compute the matrix-vector product | . — R(M []
P P [Py] ri M2k - (deg ro — deg 1))

A divide-and-conquer extended Euclidean algorithm Il

6.

10.

11.

If deg q§1) + deg qg) +...+deg qz]) + deg rn, — deg rp,+1 > k holds, then return with

output h(k) < h1, g1, G2, ..., Guk) < q1 ,qé”, e q;:]), and Ry « R

. - - . 0 1
Compute the quotient gp,4+1 < Fp, quO rp, 41 and the matrix Qp, 1 < [1 0]
- h1+1

Compute the remainder ry 4y < 'y, = Qhy+17h+1

Set ky « k — (deg q?) + deg qé” +...+deg qm) + deg qp,+1)

Make the second recursxve call
ho, g\, 0y, . g R« extged (K, Py o1 1 2K1, Py o2 P(2ky = (deg P, 41 — deg 7y +2)))

Return with output h(k) < hy + 1+ hy,

1 1 2
15 Q25 - - -5 Qh(k) < qg),qg),...,q;,]),qh]ﬂ,qg),qg),.--,qﬁ,z) nd

Rugy — R@ Q41 RM

Remarks and analysis

>

Caveat: In Step 1 we may have deg r; = —co (that is, r; = 0) and in Step 6 we may have
deg rp,+1 = —oo (that is, rp,+1 = 0)

After Step 1 it holds that k > deg ry — deg r; > 0, after Step 2 it holds that kK > 1 and
degry > degry > 0;thus, 0 < ky < k—1

After Step 5 we have
deg q?) + deg q§1) +...+deg qg) < ky
and, also recalling that k; = | k/2],
deg qﬁl) + deg qé” + ...+ deg qZ? + deg ry, —deg rp,1 = ki + 1 > [k/2]
Assuming that rp, .1 # 0, we have deg qp,+1 = deg rp,, — deg rp, 11
Thus, k; < |k/2] < k-1

The algorithm runs in T(k) < T(ky) + T(ky) + O(M(k)) < 2T(Lk/2]) + O(M(k))
operations in F; that is, T(k) = O(M(k) log k) operations in F

Key content for Lecture 4 (recalled)

» Extended Euclidean algorithm for polynomials recalled and expanded
> The quotient sequence, the Bézout coefficients, and the halting threshold

» Fast extended Euclidean algorithm for polynomials by divide and conquer

> The two polynomial operands truncated to a prefix of the highest-degree monomials
determine the prefix of the quotient sequence (exercise)

» Coping with errors in data using error-correcting codes

v

A family of error-correcting codes (Reed-Solomon codes) based on
evaluation—interpolation duality for univariate polynomials

> Key observation: low-degree polynomials have few roots (exercise)

» Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Number of roots

» Let F be a field
» A root of a polynomial f € F[x] is an element & € F with f(£) =0

Theorem 10 (Number of roots)
A nonzero polynomial f € F|x] of degree at most d has at most d distinct roots.

Proof.

Exercise

Two distinct polynomials mostly disagree

» Let F be a field
» Let E = (&1,8, ..., &) € F€ be a vector of e distinct elements of F

» Associate with f € F[x] the vector of evaluations

FE) =(f(&).f(&).....f(&)) € F°

Lemma 11 (Bounded agreement of low-degree polynomials)

Let fy, f1 € F[x] be distinct polynomials of degree at most d.
Then, f,(E) and f1(Z) agree in at most d coordinates.

Proof.
The difference fy — f1 # 0 is a polynomial of degree at most d and thus has at most d
distinct roots

Reconstructibility from partly erroneous data

» Let f € F[x] be a polynomial of degree at most d

» Lete>d+Tandlet E = (&,&,...,&) € F¢ consist of distinct elements

Lemma 12 (Unique reconstructibility)

Suppose that the vectors T € F¢ and f (E) disagree in at most (e — d — 1)/2 coordinates.
Then, T’ uniquely identifies f

Proof.

Let fo, f1 € F[x] be two polynomials of degree at most d such that f,(Z) and f;(Z) each
disagree with T in at most (e — d — 1)/2 coordinates. In total there are e coordinates, so
fo(E) and f1(Z) and T’ must thus all agree in at least e — 2(e —d — 1)/2 = d + 1 coordinates.
By Lemma 11 thus f; = f7. O

(Furthermore, we can, very inefficiently, recover f from I by considering in turn each vector I' € F¢ that disagrees with T

in at most (e — d — 1)/2 coordinates: for each such T, interpolate f from f(Z) = T, and stop when f has degree at most d.)

Reed-Solomon codes

v

Suppose we want to protect a sequence ® = (g, @1, . . ., ¢q) € FI*' of elements of a
field F against errors

We may represent ® as a polynomial f = @o + @1x + ... + pgx? € F[x] of degree at
most d

Lete>d+Tandlet E = (&,&,...,¢&) € F€ consist of distinct elements
Let us use ¥ = f(E) € F° as the encoded representation of ®

Suppose that ¥ disagrees with ¥ in at most (e — d — 1)/2 coordinates. Then,
Lemma 12 implies that we can recover ® from ¥

That is, ¥ may have up to | (e — d — 1)/2] errors and we can still recover ®
Encoding can be done in near-linear-time by fast batch evaluation ...

... but how efficiently can we decode in the presence of errors?

Example: Encoding

v

Let us work with e = 8, d = 3, F = Z;, and the evaluation points
E= (&0 E) =(0,1,2,3,4,5,6,7) € Z¢,

» Suppose we want to protect the data vector ® = (5,3,1,9) € Zﬂ”

v

We view @ as the degree-at-most-d polynomial f = 5 + 3x + x? + 9x> € Z11[x]

v

The encoded representation of @ is

¥ =f(5) = (f(&). f(&),....f(&)) = (5,7,10,2,4,4,1,5) € Z7,

Gao’s (2003) decoder for Reed-Solomon codes

v

Let f € F[x] be a polynomial of degree at most d

v

Lete>d+Tandlet E = (&,&,...,¢&) € F€ consist of distinct elements

v

Suppose that the vectors T € F¢ and f(E) disagree in at most (e — d — 1)/2
coordinates. Then, ' uniquely identifies f (Lemma 12)

» Moreover, given =, T, d as input, f can be computed in O(M(e) log e) operations in F
(Gao [5])

Gao’s decoding algorithm

» Let = = (&,&, ..., &) € F° consisting of distinct elements, I' = (y1,¥2,...,7e) € F¢,
and d € Zso with d + 1 < e be given as input

» Gao’s algorithm [5] proceeds as follows:

1. Using a subproduct tree, construct the polynomial gy = [7_,(x — &)

2. Interpolate the unique polynomial g; € F[x] of degree at most e — 1 that satisfies
gi(&)=vyiforalli=1,2,...,e

3. Apply the extended Euclidean algorithm to gy and g; to produce the consecutive
remainders gy, gh+1 with deg g > D, and deg ghi1 < Dfor D= (e+ d + 1)/2. Let
Sh+1, the1 € F[x] be the associated Bézout coefficients with gy 1 = spi180 + the11

4. Divide gps1 by thy1 to obtain the quotient f; € F[x] and the remainder r € F[x] with
8hi1 = theifi + rand deg r < deg thyq

5. Output f; as the result of interpolation if both deg fi < d and r = 0;
otherwise assert decoding failure

» It is immediate that the algorithm runs in O(M(e) log e) operations in F

Example: Decoding |

v

Let us work with e = 8, d = 3, F = Zq;, and the evaluation points
E = (51’52" ° "ge) = (0’ 192a3’475a6,7) € Z?T

e

> Suppose we have the vector I' = (y1,y2,...,Ye) = (5,7,1,2,9,4,1,5) € ZS,

» First, we construct the polynomial

e
& = I_I(X_gi) = 9x + 2x° + 4x* + 9x° + 3x® + 5x7 + x®
i=1
» Then, we interpolate the polynomial

g1 =5+ 7x+5x% +2x° + 10x* + 9x° + 6x° + 7x’
that satisfies g;(&) = yiforalli=1,2,...,e

Example: Decoding Il

» Next we apply the extended Euclidean algorithm to g, and g; to produce the
consecutive remainders gp, gp1 with deg gy > D, and deg g1 < D for
D=(e+d+1)/2=6..

» For convenience, we display the entire output of the extended Euclidean algorithm
(but omitting the first Bézout coefficient sequence):

i qi & ti
0 9x + 2x3 + 4xT + 9x% +3x% + 5x7 + X8 0
1 8+8x | 5+ 7x+5x% +2x3 + 10x* +9x° + 6x° + 7x7 1
2 | 7+10x 44 x+3x% + x5+ 7xY +ax® 343x
3| 3+3x 10 + 4x + 7x% +9x% + 6x* + 5x° 2+ 4x + 3x7
4 | 6+10x 7+ 3x +3x2 + 8x3 + 6x* 8+ 7x+x% +2x3
5 | 10+9x 1+ 4x +3x% + 8x° 9+ 3x + 4x% + 2x*
6 | 4+10x 8 + 9x + 3x? 6+ 6x + 10x> + 2x* + 4x°
7| 5+4x 2+ 9x 74 7x + 10x2 + 4x3 + 4x* + 8x5 + 4x°
8 10+ x 9 | 44 9x+10x% +5x3 + 10x* +3x% + 3x° + 6x7
9 0 x +10x3 + 9x* + x° +4x% + 3x7 +5x8

» (In a fast implementation we would of course use the divide-and-conquer extended
Euclidean algoritm and would not produce the entire sequence of remainders g;)

Example: Decoding Il

v

From the extended Euclidean algorithm we obtain that h = 2 with

ghi1 = 10 +4x + 7x* + 9x° + 6x* + 5x°
the1 = 2+ 4x + 3x°

v

Dividing gp+1 by th+1 we obtain the quotient

fi=54+3x+x*+9x°

and the remainder r = 0

v

In particular, the decoding is successful, and the reconstructed data vector is
(5,3,1,9) € Z4H

» Re-encoding the reconstructed vector as appropriate, we can also observe that the
vector I" has two errors, namely f(&) =10 £ y3 =2and f(&) =4 #y5 =9

Correctness |

» First, suppose that the algorithm does not assert failure
» Then, fi = gh+1/th+1 has degree at most d

» Since thi1fi = ghi1 = Sh+180 + the181, we have sp180 = the1(fi — g1) and hence for all
i =]7 29 ..., E6We have th+1(§l) - O orfl(gl) g1 (gl) - YI

» Since gpy1 is the first remainder with deg g1 < D and deg &o = e, by the structure of
the Bézout coefficients we have degtp,1 <e—-D=(e—d—1)/2

» Indeed, from the definition of Bézout coefficients we have
deg spi1,deg thi < Zlf-':] deg q; = deg gy — deg gn < e — D since
deggi + deg q; = deg gi_1 and deg gn > D

» Since ty1 has at most deg tp,q roots, we have f;(&;) # y; for at most (e —d —1)/2
coordinates i =1,2,...,¢e

» Thus, f; is a valid output for input E,T, d

Correctness Il

» Next, let f € F[x]| be a polynomial of degree at most d, let = = (&1, &, ..., &) € F¢
consist of distinct elements, and let T = (y1,¥2,. .., Ye) € F¢ be a vector that disagrees
with f(Z) in at most (e — d — 1)/2 coordinates ford + 1 < e

» By Lemma 12, we know that I' uniquely determines f

» We show that Gao’s algorithm outputs fi = f on input E,T, d

» Let B={i€{1,2,...,¢}: f(&) # yi} be the set of “bad” coordinates
» That is, B is the set of coordinates where T and f(E) disagree

» By assumption we have |B| < (e—d —1)/2

» To understand the operation of the algorithm, let us split the polynomials gy and g;
into parts based on Band G ={1,2,...,¢e} \ B (the “bad” and “good” coordinates)

Correctness 111

» Toward this end, let
g=[|x-&eFlx. =]]x-& eFlx
i€G i€B
» It is immediate that gy = grp
» Let r; € F[x] be the unique polynomial of degree at most (e — d — 1)/2 — 1 with
n(&) = q(&) ' (vi—f(&)) # 0forall i € B
» Thus, we have g; = gr + f

» We have that gcd(ry, r1) = 1 since no root of ry is a root of r; and ry factors into a
product of degree 1 polynomials

» The following lemma will imply that the algorithm outputs f; = f; we postpone the
proof and give it as Lemma 13

Correctness 1V

» Gao’s Lemma. (Lemma 13 below) Let ¢, d, D € Z>(and let g, ro, r1, fo, f1 € F[x] with
ged(rg,r) =1,degqg> D > c+d+ 1,and degr; < ¢, degf; < d for i = 0, 1. Run the
extended Euclidean algorithm on input gy = gro + fy and g1 = gry + f; to obtain the
remainders g, and gpi1 = Spr180 + the181 for spir, ther € F[x] with deg gy > D and
deg gn+1 < D. Then, spy1 = —ary and thyq = ary for some o € F \ {0}

» Take fo = 0, fi = f, ¢ = |B| in the lemma and recall that we have D = (e + d + 1)/2

» Thus,c < (e—d—-1)/2,degq=1|G| =e—|B| > D > c+ d+ 1, and the lemma applies
to the polynomials gy = grp and gy = gry + f constructed in the algorithm

» Let gh+1, She1s thet be the output of the lemma (also constructed by the algorithm)
» Because fy = 0 and f; = f, we have gy = —arigro + arg(qri + f) = thef

» In particular, the algorithm outputs f; = f = gh41/ther O

Preparation for Gao’s Lemma

» Recall the matrices

_ S0 to _ 1 0 o 0 1 .
RO—[S1 l‘1}_[0]], Q,—[1 _q’_} fori=1,2,...,¢

and R = QiQi—1- -+ QiRy € F[x]*?*fori=0,1,...,¢ from the analysis of the
traditional extended Euclidean algorithm in Problem Set 1

. S; t; I ri
» We recall that forall i=0,1,...,0 we have R; = | ' "land R;| %l =] "
Si+1 Liva ry

» Since det Q; = —1 we have det R; = (—1)i and thus RI._] = (=1) [L1 _l."]

. ro e (=) tepare
» Since rp4q = 0, we have [ﬁ] = RH[O] = [(_])[HS{HFZ

» We conclude that spy1 = (=1)*'ry/rp and troq = (=1)Cr0/re

Gao’s Lemma

Lemma 13 (Gao [5])

Letc,d, D € Z>g and let q, ry, r1, fo, f1 € F[x] with ged(ro,r1) =1, degqg> D > c+d + 1,
anddegr; < ¢, degf; < d fori =0,1. Run the extended Euclidean algorithm on input

&0 = qry + fo and gy = gr1 + f1 to obtain the remainders g, and ghi1 = Sp+180 + thi181 for
Sh+1, the1 € F[x] with deg gn > D and deg gh1 < D. Then, sp11 = —ary and tpy1 = ary for

somea € F\ {0}

Proof of Gao’s Lemmall

» Letrg,ry,..., e, rer1 and gy, o, - - ., ge be the sequences of remainders and quotients
in the extended Euclidean algorithm on input ry, rq

» Since gcd(rg, r1) = 1, we have rp € F\ {0} and rp41 =0
» Lets;, t; € F[x] fori=0,1,...,¢+ 1 be the associated sequence of Bézout coefficients
» Foralli=1,2,...,¢, we have

fig1 = o1 = Qifi, Sig1 = Sic1— §iSi, tipn = tiog — qit; (29)

» Foralli=2,3,...,+ 1define g; = sigy + tig
» From (29) it follows that g1 = gi—1 — g;gi forall i=1,2,...,¢

» Let us show that deg g; is a monotone decreasing sequence for i = 1,2,...,¢

Proof of Gao’s Lemma Il

» We have r; = sjro + tjr; forall i = 1,2,...,£ + 1. Furthermore, degs; < cand degt; < ¢
foralli=1,2,...,0+1

» Since g = qro + fo, &1 = qri + f1, and g; = sigy + tigy, forall i =0,1,...,{ we have
8i = qri + sifo + tifi

» Since deg(sifo + tifi) < c+danddegqg> D > c+ d+ 1, we have
deggi =degq+degr; > Dforalli=0,1,...,¢

» Since deg r; is monotone decreasing for i = 1,2, ..., ¢, we have that the same holds for
deg gi
» Thus, we have that g, g1,...,8¢ and g1, ¢z, . . ., g¢ form a prefix of the sequence of

remainders and quotients in the extended Euclidean algorithm on input g, g;

» Since degr, = 0, we have deg gy = degg > D

Proof of Gao’s Lemma lll

» Since spi1 = (=1)'r/rp and treq = (=1)Cro/re, we have

8ei1 = se180 + tring = (1) (=for1 + firg) /e

» Thus, deg gr+1 < ¢+ d < D and it follows that gry1 = g = sgy + tg; with a = (=1)¢/ry,

s=—arn,andt=ary O

Recap of Lecture 4

» Extended Euclidean algorithm for polynomials recalled and expanded
> The quotient sequence, the Bézout coefficients, and the halting threshold

» Fast extended Euclidean algorithm by divide and conquer

» The two operands truncated to a prefix of the highest-degree monomials determine the
prefix of the quotient sequence (exercise)

» Coping with errors in data using error-correcting codes

v

A family of error-correcting codes (Reed-Solomon codes) based on
evaluation—interpolation duality for univariate polynomials

> Key observation: low-degree polynomials have few roots (exercise)

» Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Problem Set 4 - |

1. Let F be a field. Show that a nonzero polynomial f € F[x] of degree at most d has at
most d distinct roots.

Hints: To reach a contradiction, assume that you have at least d + 1 distinct roots.
Recall what we know about Vandermonde matrices from our earlier problem sets.

Problem Set 4 - 11

2. Reed-Solomon codes.

(a) Encoding. Suppose we want to encode the data vector ® = (7,6,5,4,3) €]F;’] using the
evaluation points E = (0, 1,2,3,4,5,6) € F/,. Find the encoding ¥ = f(E) € F,.

(b) Decoding in the presence of errors. Suppose that £ = (1,2,3,4,5,6) € FS, and that
Ir=(3,8,6,0,7,1) € F%. Find the unique polynomial f € Fq3[x] of degree at most 1 such
that f(Z) agrees with T in all but at most 2 coordinates, or conclude that no such f exists.

Hints: For part (a), we have f = 7 + 6x + 5x* + 4x> + 3x* € Fy1[x], d = 4, and e = 7. For
part (b), we have d = 1 and e = 6. One possibility to decode is to try out all
polynomials f of degree at most 1 over Fy3. How many such polynomials are there?
Another is to use Gao’s algorithm.

Problem Set 4 - 111

3. Coinciding pairs of polynomials and polynomial quotient. Let us study the two pairs
of polynomials

f=4+5x+3x%+2x> +9x" +8x° + x® +3x" +9x% +5x7 + 7x" € Z1[x],
g=5+7x+5x+5x + x" + 7x° + 4x® + 5x” + 8x® € Z11[x]

and

=x®+3x" +9x® +5x° + 7x"% € Zy;[«],

oo e

= 4x® +5x" + 8x* € Z11[x] .

Observe that (f, g) =4 (f,&). Using the classical algorithm for polynomial division
(recall Lecture 1), divide f by g and divide f by g. Observe that both divisions produce
the same quotient. Using the structure of the classical algorithm, justify why the two
divisions must produce the same quotient.

Problem Set 4 - IV

Hints: Study carefully how the classical division algorithm obtains the coefficients of
the quotient, one coefficient at a time. Which coefficients of the dividend and the
divisor can have an effect on a particular coefficient of the quotient?

Problem Set4 -V

4. Coinciding pairs of ponnomlaIs polynomial quotient, and further coincidence. Let F
be a field and let f, g, f, g € F[x] with deg f > degg > 0 and degf > degg > 0.
Suppose that (f,g) =a (f.g) for k € Z with k > deg f — deg g > 0. Define
g.r, g, F € F[x] by division with quotients and remainders as follows

f=qg+r, degr < degg,

f=q8+F, degr < degg.
Prove that we have g = g and at least one of the following holds:
(8 1) Sa(k-degq) (& F)or r=0o0r k—degq < degg — degr.
Hints: Recall that (f, g) =« (f, g) holds if and only if f T 2k =];[2k and
g1 (2k — (deg f — deg g)) = gI(2k — (deg f — deg g)). Show first that without loss
generality (by multiplying each pair (f, g) and (f, g) with x™ for a nonnegative integer
m as necessary), we can assume that deg f = deg f. Then conclude that

Problem Set 4 — VI

k > deg f — deg g > 0 implies deg g = deg g. To show that g = g holds, study the
identity

f-f=q@g-8+(q-qg+r—F

and seek to control the degrees of the differences f —f, g— g and r — i from above.
For example, f I 2k = f 2k and deg f = deg f imply that we have
deg(f — f) < deg f — 2k. Finally, show that r # 0 and k — deg g > deg g — deg r

together imply (g, r) =y(k-deg q) (& 7)-

5. Identity testing and probabilistically
checkable proofs

Computer Science Club, St Petersburg
17-18 November 2018

Petteri Kaski
Department of Computer Science
Aalto University

Recap of last lecture

» Extended Euclidean algorithm for polynomials recalled and expanded
> The quotient sequence, the Bézout coefficients, and the halting threshold

» Fast extended Euclidean algorithm for polynomials by divide and conquer

> The two polynomial operands truncated to a prefix of the highest-degree monomials
determine the prefix of the quotient sequence (exercise)

» Coping with errors in data using error-correcting codes

v

A family of error-correcting codes (Reed-Solomon codes) based on
evaluation—interpolation duality for univariate polynomials

> Key observation: low-degree polynomials have few roots (exercise)

» Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Have: Near-linear-time toolbox for univariate polynomials

Modern Computer Algebra i cdition

v

Multiplication

v

Division (quotient and remainder)

Batch evaluation

v

v

Interpolation

Chapter 5

A NEW ALGORITHM FOR DECODING
REED-SOLOMON CODES

v

Extended Euclidean algorithm (gcd)

v

Interpolation from partly erroneous data

Motivation for this lecture

v

In the last lecture we encountered uncertainty in computation

v

We saw how to cope with uncertainty in the form of errors in data by using
error-correcting codes

v

In this lecture we look at (fine-grained) proof systems and errors in computation ...

» Our motivation is to be able to delegate computation ...

Delegating computation

Client

modest resources
reliable

¢ How to verify
that the
solution is
correct ?

Problem
instance

e
e

Solution

Service-provider

massively SIMD-parallel resources
error-prone

* How to design an algorithm to tolerate
(a small number of) errors during computation ?

* How to convince the client or a third party
that the solution is correct ?

Key content for Lecture 5

» We look at yet further applications of the evaluation—interpolation duality and
randomization in algorithm design

» Randomized identity testing for polynomials and matrices (exercise)
» Delegating computation and proof systems

» Completeness and soundness of a proof system,
cost of preparing a proof, cost of verifying a proof

» Williams’s (2016) [14] probabilistic proof system for #CNFSAT

» Coping with errors in computation using error-correcting codes with multiplicative
structure (Reed-Solomon codes revisited)

» Proof systems that tolerate errors during proof preparation (Bjérklund & K. 2016) [3]

Proof systems

» Let / be a claim
(an instance of a computational problem with a yes/no (true/false) solution)

» Let us assume that [is decidable, that is, there exists an algorithm D that given [as
input outputs whether / is true

» Deciding whether / is true can often be assisted by supplying a proof II for /

» A proof system consists of a verification algorithm (the verifier) V that takes as
input / together with a putative proof IT and either accepts or rejects IT as a proof for /

Completeness and soundness

» A proof system with verifier V is

» complete if for every true | there exists a proof IT such that V accepts on input [and IT

> sound if for every false / and every putative proof II it holds that V rejects on input /
and II

Probabilistic soundness

» Let us relax the notion of soundness somewhat by allowing the verifier V to make
random choices during its execution

> A proof system with a randomized verifier V is probabilistically sound if for every
false I and every putative proof IT it holds that V rejects with high probability on input
I and 11

» By “high probability” we mean with probability 1 — o(1) as a function of the size of /,
where probability is over the random choices made by V

Efficiency (verifier)

» In addition to completeness and soundness, in general we want a proof system also to
be efficient

» That is, V on input / and II should consume less computational resources than it takes
to decide I (using the best known algorithm for deciding /)

Efficiency (prover)

» Besides verifier efficiency, a yet further aspect to a proof system are the computational
resources to prepare a proof

» Let P be an algorithm (the prover) that given a claim [as input outputs whether [is
true, and if / is true, also outputs a proof II such that V accepts on input / and IT

» We would like P to be efficient in the sense that P should not consume substantially
more computational resources than it takes to decide [(using the best known
algorithm for deciding /)

(Some of) recent work on fine-grained proof systems

v

Goldwasser, Kalai, Rothblum [7]
Walfish and Blumberg [13]

v

» Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, Schneider [4]

v

Williams [14]
Bjorklund, K. [3, 8]

v

v

In what follows we look at Williams’s [14] proof system for #CNFSAT ...

Boolean satisfiability

v

Let x1, x5, . . ., X, be nvariables that take values in {0, 1}

A truth assignment A is a mapping that assigns a value in {0, 1} to each of the
variables xq, x2, . . ., X,

A literal is a variable (x;) or its negation (x;)

A literal x; (respectively, x;) is satisfied by A if A(x;) = 1 (respectively, A(x;) = 0)
A clause C is a set of literals

A clause C is satisfied by A if at least one literal in C is satisfied by A

A collection of clauses Cy, G, . .., Cy, is satisfied by A if A satisfies every clause
C1’C2,--~’Cm

Conjunctive-normal-form satisfiability (CNFSAT)

» The CNFSAT problem asks, given a collection Cy, Cy, . .., Cp, of clauses over variables
X1, X2, - . ., Xp @s input, whether there exists a truth assignment that satisfies all the
clauses Cy, C,, ..., Cppy

» CNFSAT is NP-complete

» The #CNFSAT problem asks, given a collection Cy, Cs, . . ., C, of clauses over
variables x1, x, . . ., X, as input, for the number of truth assignments that satisfy all
the clauses Cy, Cy,...,Chp

» #CNFSAT is #P-complete

» It is not known how to solve CNFSAT in worst-case time O*((2 — €)") for any constant
€ > 0; the best known algorithms run in O*(2") time

» Here the O*() notation suppresses a multiplicative factor polynomial in the size of the
input

CNFSAT and #CNFSAT

» It is easy to convince a verifier that an instance Cy, Cy, . . ., Cp, of CNFSAT is satisfiable
— just give the verifier a truth assignment A that satisfies C;, Gy, ..., Cp

» The verifier can check that A actually satisfies Cy, C,, . . ., Cy, in time O(mn)

» But how to convince a verifier that Cy, Gy, . . ., Cp,, has exactly N satisfying truth
assignments?

» For example, how to convince a verifier that C;, C,, ..., C,,; has no (zero) satisfying
truth assignments?

A probabilistic proof system for #CNFSAT

» Williams (2016) [14]:
There exists a randomized algorithm V (the verifier) such that for all collections 4 of
m clauses over n variables and all integers N it holds that
1. if € has exactly N satisfying truth assignments, then there exists a bit string IT of length
0*(2"'2) such that V accepts the triple %', N, II with probability 1;
2. if € does not have exactly N satisfying truth assignments, then for every bit string IT it
holds that V rejects the triple €, N, II with probability 1 — o(1).

Moreover, V runs in time O*(2"/?)

Multivariate polynomial representation

> Let us work over I, a finite field with ¢ > 2 elements, g prime

> Let xq,x2,. .., X, be indeterminates that take values in F,

> Let us work with multivariate polynomials in Fg[xq, x5, . . ., x5

» We will transform a collection € of m clauses over xi, xa, . . ., X, into a multivariate
polynomial px(x1, x2,. .., x,) such that for all oy, a2, . . ., @, € {0, 1} C Fy we have

pz(ar, aa, ..., ay) = 1if and only if the truth assignment A with
Alx1) = a1, A(x2) = @a, . . ., A(Xy) = @, satisfies €, and pg(ar, oz, ...,) =0
otherwise

A literal as a multivariate polynomial

» For a literal € over the variables xq, x2, . . ., x;,, define the multivariate polynomial

() 1-x; iff=x;

(X1, X0y o o5 Xp) =

peixt %2 " Xj if { = x;

> p¢ has degree 1

» Forall a1, ay, ..., a, € {0, 1} we have pe(ay, ay, . . ., a,) = 0 if and only if the truth
assignment A with A(xy) = a1, A(x2) = ay, . . ., A(xs) = @, satisfies €, and
pe(ar, ag, ..., ay) = 1otherwise

A clause as a multivariate polynomial

v

Let C be a clause over the variables x1, x3, . . ., X,

v

For a clause C, define the multivariate polynomial

pC(X15X29' . -’Xn) = 1 - l—lpf(XhXZ’- . '9Xn)
teC

Since C has at most 2n literals, pc has degree at most 2n

v

For all a1, a0y, . ..,y € {0, 1} we have pc(ay, ay, . . ., a,) = 1if and only if the truth
assignment A with A(xy) = a1, A(x2) = aa, ..., A(x,) = a, satisfies C, and
pc(ar, aa, . ..,) = 0 otherwise

\{

A collection of clauses as a multivariate polynomial

v

Let € be a collection Cq, C,, ..., Cy, of clauses over the variables xq, xo, . . ., x;,

v

Define the multivariate polynomial

m
Pz (X1, X2, o 23 Xp) = l—[pcj(x1,x2, vy Xn)
j=1

» ps has degree at most 2mn
» Forall ay,a,,...,a, € {0,1} we have pg (a1, @2, . . ., @y) = 1if and only if the truth
assignment A with A(xy) = a1, A(x) = ay, - .., A(xy) = @, satisfies €, and

pel(ar, aa, . .., an) = 0 otherwise

#CNFSAT as a multivariate polynomial

> Let us work over F, a finite field with ¢ > 2 elements, g a prime

> Let xq,x2,. .., X, be indeterminates that take values in F,

» Let € be a collection of m clauses over x1, x, . . ., X,

» We now have a multivariate polynomial p¢(x1, x, . . ., x,) of degree at most 2mn such
that for all oy, a, . . ., @, € {0, 1} we have py(ay, ay, ..., a,) = 1if and only if the
truth assignment A with A(x7) = a1, A(x) = @2, . . ., A(xn) = a, satisfies €, and
pg(aq, oo, ..., an) = 0 otherwise

» That is, the number N of satisfying truth assignments to % satisfies

N= > pelanan....a) (mod q)

ay, ay, ..., an€{0,1}

#CNFSAT as a univariate polynomial (1/2)

» Without loss of generality we may assume that n is even

» With some foresight, let us now assume that 2"/2*2mn < q < 2"2*3mn
(for large enough n we can find the two smallest such primes g1, ¢ in time O*(2"/?),

cf. [2] and [1])

> Let aj, ay, . . ., an2 € Fy[x] be univariate polynomials of degree at most 2"/ — 1 such
that

{0, 1)"2 = ((a1(@), az(@), . . ., ana(@)) - @ € {0, 1,...,2"2 — 1}}

> In particular we can construct such polynomials aj, a, . . ., a,/ in time O*(2"/?) using
fast interpolation (exercise)

» Now define the univariate polynomial Py € Fy[x] in the indeterminate x by

P%’(X) = Z pz'(m (X), az(X), ey an/z(X), An/24+15 Xnf2+425 « + +» an)

Qn/241>Anj2425 - An €10, 1}

#CNFSAT as a univariate polynomial (2/2)

» Recalling from the previous slide, we have

P%(X) = Z P‘J(m(x), aZ(X)a---,an/Z(X)’an/2+1’an/2+2’-'-,an)

Qp/2+15Anj2+2s - An €10, 1}

» We observe that Py has degree at most 2"/2*'mn < q/2

» Using near-linear-time algorithms for univariate polynomials, given a collection ¢ of
clauses and a point ¢ € Fg as input, we can compute the value Py (£) in time 0*(2"?)
(exercise)

» From the definition of the polynomials ay, ay, . . ., an/2 we observe that the number N
of satisfying truth assignments to ¢ satisfies

2"/21

N = Z Py(e) (mod q) (30)
a=0

The proof string

» Recall that for large enough n we can assume that we work modulo a prime g with
2”/2+2mn S q S 2ﬂ/2+3mn

» Given € as input, in time O*(2"/2e) we can produce e evaluations of Py at distinct
points

> If e > 2"/%*"mn + 1, these evaluations enable us to interpolate Py in time O*(2"/?)
using fast interpolation

» We can represent the prime g and the coefficients of Py € Fy[x] (of degree at most
2"2*1mn) as a (prefix-coded) binary string I1, of length 0*(2"?)

> Let g1, g, be the two least primes in the interval [2"/2*2mn, 2"/?*3mn]

> Take as the proof string II the concatenation of I1,, and IIg,

Completeness

> Suppose IT = I1y I1g, is a correct proof string (of length 0*(2"'?))

» Using I1,, and II,, together with fast batch evaluation and (30) we can recover
N mod q; and N mod g, in time O*(2"/?), where N is the number of satisfying truth
assignments to ¢

» Since 0 < N < 2"and g1g, > 2" + 1, from N mod g; and N mod g, we can reconstruct
the correct N using the Chinese Remainder Theorem

> Thus the verifier will always accept a correct triple €, N,II with [T = [T and N = N in
time O*(2"/?)

Soundness (probabilistic) |

> Suppose the verifier is given as input a collection ¢ of m clauses over the variables
X1, X2, - . . » Xp, @N integer N and a binary string I

> The verifier first checks that IT = I14, 1y, such that I1,, and I1,, encode the coefficients
of a polynomial P of degree at most 2"/>*'mn modulo the two least primes g; and g,
in the interval [2"/2*2mn, 2"/2*3 mn; if this is not the case, the verifier rejects

» Next, consider each q € {q1, g2} in turn

» To verify that P = Py € [F4[x] the verifier repeats the following test [log, n] + 1 times:
select £ € Fy independently and uniformly at random, and test that P(£) = P (¢)
holds; if this is not the case, the verifier rejects

» The left-hand side P(¢) can be evaluated in time O* (2"/2) using Horner’s rule; the
right-hand side Py (&) can be evaluated in time O*(2"/?) using the dedicated
evaluation algorithm for Py (in the exercises)

Soundness (probabilistic) Il

» Since P — P4 has degree at most 2" 'mn < q/2, if P+Pye Fq[x] then the verifier
rejects with probability at least 1 — 1/n (exercise)

> Thus the verifier rejects with probability 1 — o(1) unless the string IT is in fact the
correct proof string IT; from II the verifier can recover the correct solution N and reject
unless N = N; the verifier runs in time O*(2"/?)

Complexity of preparing and verifying the proof

» Given € as input, in time O*(2"/?e) we can produce e evaluations of Py at distinct
points modulo ¢

> If e > 2"/%*"mn + 1, these evaluations enable us to interpolate Py in time O*(2"/?)
using fast interpolation

» Thus, the total effort to prepare the proof is O*(2"), which essentially matches the best
known algorithms for counting the number of satisfying assignments to ¢ (that is, no
algorithm that runs in worst-case time O*((2 — €)") is known for any constant € > 0)

> The total effort to (probabilistically) verify the proof is O*(2"/?)

Proof preparation with tolerance for errors [3, 8]

» Beyond #CNFSAT, a number of other computational problems admit proof systems in
the following framework ...

» The proof is a polynomial p(x) of degree at most d over F,
(one or more polynomials with Chinese Remaindering)

v

Prepare the proof in evaluation representation with distinct e points

(&1, p(&1)), (&2, p(82))s - - - (Ees p(&e))

Preparation is vector-parallel, tolerates at most (e — d — 1)/2 errors fore > d + 1

v

v

Decode the proof from evaluation representation to coefficient representation

p(x) = m + X + X +...+7rdxd

\{

Verify the proof by selecting a uniform random ¢ € F, and testing whether

p(&) = my + mE + mE% + ..+ mqé?

Delegating computation

Client

modest resources
reliable

¢ How to verify
that the
solution is
correct ?

Problem
instance

e
e

Solution

Service-provider

massively SIMD-parallel resources
error-prone

* How to design an algorithm to tolerate
(a small number of) errors during computation ?

* How to convince the client or a third party
that the solution is correct ?

Recap of Lecture 5

» We look at yet further applications of the evaluation—interpolation duality and
randomization in algorithm design

» Randomized identity testing for polynomials and matrices (exercise)
» Delegating computation and proof systems

» Completeness and soundness of a proof system,
cost of preparing a proof, cost of verifying a proof

» Williams’s (2016) [14] probabilistic proof system for #CNFSAT

» Coping with errors in computation using error-correcting codes with multiplicative
structure (Reed-Solomon codes revisited)

» Proof systems that tolerate errors during proof preparation (Bjérklund & K. 2016) [3]

Problem Set 5 - |

1. Randomized polynomial identity testing. Let F be a field with at least g elements.

1.1 Letf. /e F[x] be polynomials of degree at most d. Show that if f # K then a uniform
random & € F satisfies f (&) # (&) with probability at least 1 —d/q.

1.2 Let a, b, c € F[x] be three polynomials, each of degree at most d and each given as a
sequence of coefficients. Present a randomized test that verifies ¢ = ab and uses O(d)
operations in F. If ¢ = ab the test must accept with probability 1; if ¢ # ab the test must

reject with probability at least 1 - d/q.

Hints: For part (a), recall what we know about low-degree polynomials. For part (b),
reduce to part (a) and carefully justify that your algorithm uses O(d) operations in F.

Problem Set 5 - 11

2. Testing a matrix product. Let A, B, C be three n X n matrices with entries in a field F.
Present a randomized algorithm that tests whether C = AB using O(n*) operations in
F. When C = AB, your algorithm must always assert that C = AB. When C # AB,
your algorithm must assert that C # AB with probability at least 1/2.

Hints: Select a uniform random x € {0, 1}" € F". Study the probability that
Cx # A(Bx) when C # AB.

Problem Set 5 - 11l

3. Evaluation algorithm for the #CNFSAT proof polynomial P. Let € be a collection of
clauses Cy, C,, ..., Cy, over nvariables xq, xa, . . ., x, taking values in {0, 1}. Present
detailed pseudocode for an algorithm that, given as input &, a prime g with
2"2%2mn < q < 22" mn, and & € F,, computes the value Py () € Fq in time
O(2"?(mn)€) for some constant ¢ > 0. Carefully justify the running time of your
algorithm. You may use the near-linear-time toolbox for univariate polynomials and
algorithms for modular arithmetic in Fy as subroutines without detailed pseudocode,
but make sure that you specify with care the input to each subroutine.

Hints: The polynomial Py € Fo[x] is defined in the lecture slides. Observe that your
algorithm needs to work for an arbitrary & € Fy, not only for & € {0, 1}. Also observe
that the given input is €, g, and &. In particular, the polynomials a;, a, . . ., an/2 need
to be constructed inside your algorithm.

Problem Set 5 - 1V

4. Delegating matrix multiplication. Suppose you have two n X n matrices, X and Y, with
entries in a finite field F with at least four elements. You want to delegate the task of
computing the product matrix XY to your three friends Alice, Bob, and Charlie so that
none of your three friends individually gains any information about the matrices X
and Y other than the size parameter n. Describe a protocol that employs Alice, Bob,
and Charlie to help you so that you obtain the product matrix XY without you
yourself putting in more work than O(n?) operations in F. You can assume you have a
subroutine that returns independent uniform random elements of F.

Hints: Recall Shamir’s secret sharing. Extend each matrix X, Y to a matrix whose
entries are polynomials of degree at most one with coefficients in F, where the
constant of each polynomial is the original matrix entry. Have Alice, Bob, and Charlie
each multiply a pair of n X n matrices XA y@ x® y®) and X© y© with entries
in F. Recover the product matrix XY by interpolation from the products X4 y(®),
XB®y® and X© y(© that Alice, Bob, and Charlie supply to you. Carefully justify

Problem Set5 -V

that each of your friends on his or her own does not gain any information about X and
Y other than the size parameter n.

References |

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004),
781-793.
[doi:10.4007/annals.2004.160.781].

[2] R.C.Baker, G. Harman, and J. Pintz, The difference between consecutive primes. I,
Proc. London Math. Soc. (3) 83 (2001), 532-562.
[doi:10.1112/plms/83.3.532].

[3] A.Bjorklund and P. Kaski, How proofs are prepared at Camelot: extended abstract,
in Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC 2016, Chicago, IL, USA, July 25-28, 2016 (G. Giakkoupis, Ed.). ACM, 2016, pp.
391-400.

[doi:10.1145/2933057.2933101].

https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1112/plms/83.3.532
https://doi.org/10.1145/2933057.2933101

References Il

[4] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider,
Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility, in Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016
(M. Sudan, Ed.). ACM, 2016, pp. 261-270.

[d0i:10.1145/2840728.2840746].

[5] S.Gao, A new algorithm for decoding Reed—Solomon codes, in Communications,
Information, and Network Security (V. K. Bhargava, H. V. Poor, V. Tarokh, and S. Yoon,
Eds.), Springer, 2003, pp. 55-68.

[6] J.von zur Gathen and J. Gerhard, Modern Computer Algebra, third ed., Cambridge
University Press, Cambridge, 2013.
[d0i:10.1017/CB0O9781139856065].

https://doi.org/10.1145/2840728.2840746
https://doi.org/10.1017/CBO9781139856065

References Il

[7] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, Delegating computation: Interactive
proofs for muggles, J. ACM 62 (2015), 27:1-27:64.
[doi:10.1145/2699436].

[8] P. Kaski, Engineering a delegatable and error-tolerant algorithm for counting small
subgraphs, in Proceedings of the Twentieth Workshop on Algorithm Engineering and
Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018. (R. Pagh and
S. Venkatasubramanian, Eds.). SIAM, 2018, pp. 184-198.
[doi:10.1137/1.9781611975055.16].

[9] A.Schénhage, Schnelle Multiplikation von Polynomen tber Kérpern der
Charakteristik 2, Acta Informat. 7 (1976/77), 395-398.
[doi:10.1007/BF00289470].

[10] A.Schoénhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing
(Arch. Elektron. Rechnen) 7 (1971), 281-292.

https://doi.org/10.1145/2699436
https://doi.org/10.1137/1.9781611975055.16
https://doi.org/10.1007/BF00289470

References IV

[11] A. Shamir, How to share a secret, Comm. ACM 22 (1979), 612-613.
[d0i:10.1145/359168.359176].

[12] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, 1992.
[d0i:10.1137/1.9781611970999].

[13] M. Walfish and A.). Blumberg, Verifying computations without reexecuting them,
Commun. ACM 58 (2015), 74-84.
[doi:10.1145/2641562].

[14] R.R. Williams, Strong ETH breaks with Merlin and Arthur: Short non-interactive
proofs of batch evaluation, in 31st Conference on Computational Complexity, CCC
2016, May 29 to June 1, 2016, Tokyo, Japan (R. Raz, Ed.). Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1-2:17.
[doi:10.4230/LIPlcs.CCC.2016.2].

https://doi.org/10.1145/359168.359176
https://doi.org/10.1137/1.9781611970999
https://doi.org/10.1145/2641562
https://doi.org/10.4230/LIPIcs.CCC.2016.2

