Введение в модальную логику, Лекция 5

Даня Рогозин МГУ, Serokell

Computer Science Club

На прошлой лекции мы

- Определили, что такое фининтная аппроксимируемость
- Доказали разрешимость логик T, K4, D, S4, S5, S4.2 и GL

В этот раз мы

- Рассмотрим пример задачи поиска модальной логики конкретной шкалы
- Далее мы поговорим более общими словами о следующих аспектах модальной логики:
- Связь модальной логики с топологией
- Модальная логика применительно к доказуемости в арифметических теориях
- Общими словами поговорим об актуальном положении дел в модальной логике

Задача

Наша текущая задача найти модальную логику действительных чисел с отношением \leqslant . То есть как выглядит $\mathcal{L} = \mathsf{Log}(\mathbb{R}, \leqslant)$? Рассмотрим формулу следующего вида:

$$\mathsf{ALin} = \Diamond p \land \Diamond q \to \Diamond (p \land \Diamond q) \lor \Diamond (q \land \Diamond p)$$

Определение

 $S4.3 = S4 \oplus ALin$

Лемма

- ALin является канонической формулой.
- $oldsymbol{3}$ $oldsymbol{\mathsf{S4.3}} = \mathsf{Log}(\mathbb{F})$, где \mathbb{F} это класс всех линейных предпорядков

Финитная аппроксимируемость **S**4.3

Лемма

S4.3 финитно аппроксимируема

Proof.

Доказывается аналогично финитной аппроксимируемости логики **S**4.2. Заметим, что в если $\mathcal{F} \models \mathbf{S}4.3$, то отношение в $\mathcal{F}\langle w \rangle$, где $w \in \mathcal{F}$, будет обладать свойством $\forall x,y \in R(x) \ (xRy \lor yRx)$.

Сгустки и остовы

Определение

Пусть $\mathcal{F} = \langle W, R \rangle$ — это предпорядок. Введем отношение (эквивалентности):

$$w \sim_R v \Leftrightarrow wRv \& vRw$$

Введем отношение на классах $[x]_{\sim_R} \leqslant_R [y]_{\sim_R} \Leftrightarrow xRy$. Классы эквивалентности $[x]_{\sim_R}$ называются сгустками, а шкала $\langle W/\sim_R,\leqslant_R \rangle$ остовом шкалы R.

Нетрудно проверяется следующий факт:

Предложение

$$\langle W/\sim_R,\leqslant_R
angle$$
 — частичный порядок.

Заметим также, что если исходный предпорядок был линеен, то его остов будет линейным предпорядком.

Следствием из финитной аппроксимируемости **S**4.3 и предыдущего предложения является следующий факт:

Предложение

 $\mathbf{S}4.3 = \mathsf{Log}(\mathbb{F})$, где \mathbb{F} — это класс таких конечных предпорядков \mathcal{F} , остов которых является линейным порядком.

Дальнейшие действия:

- Показать, что для каждого такого конечного предпорядка \mathcal{F} , остов которого линеен, можно построить p-морфизм $f:\langle\mathbb{R},\leqslant\rangle widtharpoonup \mathcal{F}.$
- Тогда $\mathsf{Log}(\langle \mathbb{R}, \leqslant \rangle) \subseteq \mathsf{Log}(\mathcal{F})$. То есть, если $\phi \in \mathsf{Log}(\langle \mathbb{R}, \leqslant \rangle)$, тогда $\phi \in \mathsf{Log}(\mathcal{F})$. Тогда $\mathsf{S4.3} \vdash \phi$ по предложению выше.

Лемма

Пусть \mathcal{F} — это конечный предпорядок, остов которого линеен. Тогда существует p-морфизм $f:\langle\mathbb{R},\leqslant\rangle widtharpoonup\mathcal{F}$

Proof.

Пусть \mathcal{F}_{\sim_R} — линейный остов конечного предпорядка \mathcal{F} . Рассмотрим три случая:

- $\bullet |\mathcal{F}_{\sim_R}| = 1$
- $|\mathcal{F}_{\sim_R}| = 2$
- $|\mathcal{F}_{\sim_R}| \geqslant 2$

Соответственно, нам нужно построить три р-морфизма

Лемма

Пусть \mathcal{F} — это конечный предпорядок, остов которого линеен. Тогда существует p-морфизм $f:\langle\mathbb{R},\leqslant\rangle widtharpoonup\mathcal{F}$

Пусть $|\mathcal{F}_{\sim_R}|=1$. Заметим, что если $|\mathcal{F}_{\sim_R}|=1$, что R совпадает с W imes W.

Proof.

Пусть $W=\{w_0,\ldots,w_{n-1}\}$. Рассмотрим следующее отображение $f:\mathbb{R} \to W$: $f(x)=egin{cases} w_{x \bmod n}, & x\in\mathbb{N} \\ w_0, & x\in\mathbb{R}\backslash\mathbb{N} \end{cases}$.

Монотонность отображения очевидна. Сюръективность тоже проверяется нетрудно. Проверим свойство поднятия. Пусть wRw' и f(x)=w. В качестве y, такого, что $x\leqslant y$ и f(y)=w' при $w'=w_i$ положим k, такое, что k>x и $k\equiv i \mod n$.

Лемма

Пусть \mathcal{F} — это конечный предпорядок, остов которого линеен. Тогда существует p-морфизм $f:\langle\mathbb{R},\leqslant\rangle widtharpoonup \mathcal{F}$

Пусть $|\mathcal{F}_{\sim_R}|=2$. Тогда W разбивается на два сгустка $C_1=\{w_0,\ldots,w_{p-1}\}$ и $C_2=\{u_0,\ldots,w_{q-1}\}.$

Proof.

Рассмотрим две монотонно возрастающие последовательности $\{a_n\}_{n\in\mathbb{N}}$ и $\{b_n\}_{n\in\mathbb{N}}$, что $\lim_{n\to\infty}a_n=0$ и $\lim_{n\to\infty}b_n=\infty$. Определим $f:\mathbb{R}\to W$ (которое p-морфно):

$$f(x) = \begin{cases} w_{n \mod p}, & x < 0 \& \exists n \in \mathbb{N} \ a_n = x \\ w_0, & x < 0 \& \forall n \in \mathbb{N} \ a_n \neq x \\ u_{n \mod q}, & x \ge 0 \& \exists n \in \mathbb{N} \ b_n = x \\ u_0, & x \ge 0 \& \forall n \in \mathbb{N} \ b_n \neq x \end{cases}$$

Лемма

Пусть \mathcal{F} — это конечный предпорядок, остов которого линеен. Тогда существует p-морфизм $f:\langle\mathbb{R},\leqslant\rangle widtharpoonup \mathcal{F}$

Пусть
$$|\mathcal{F}_{\sim_R}|\geqslant 2$$
. Тогда $W/\sim_R=\{C_0,\ldots,C_{k+1}\}$, где $|C_i|=d_i$ и $C_i=\{w_0^i,\ldots,w_{d_i-1}^i\}.$

Proof.

Разобьем \mathbb{R} на подмножества V_0,\dots,V_{k+1} следующим образом. $V_0:=(-\infty,0),$ $V_{m+1}=[m+1,+\infty).$ Если $1\leqslant i\leqslant m$, то $V_i=[i-1,i).$ Для каждого из множеств зададим последовательность $\{a_n\}_{n\in\mathbb{N}}^i$ таким образом, что при $0\leqslant i\leqslant m$ $a_n^i=i-\frac{1}{n},$ и $a_n^{m+1}=m+n.$ Для $x\in V_i$ мы определим p-морфизм $f(x)=\begin{cases} w_{n\,\mathrm{mod}\,d_i},\ \exists\, n\in\mathbb{N}\ a_n^i=x\\ w_0,\ x\notin\{a_n\}_{n\in\mathbb{N}}^i \end{cases}$

Топологическая семантика модальной логики

- Одной из наиболее любопытных ветвей математической логики является пространственная логика, которая изучает логики пространственных структур
- В данном контексте мы рассмотрим топологическую семантику модальной логики
- В рамках этой семантики мы можем применять модальную логику к топологии и изучать топологические пространства, описывая их в модальном языке
- В этом кратком обзоре мы посмотрим на топологические модели модального языка и сформулируем теорему Маккинси-Тарского: логика **S**4 является логикой класса всех топологических пространств

Топологическое пространство

Вспомним определение топологического пространства

Определение

Топологическим пространством называется пара $\mathcal{X} = \langle X, \tau \rangle$, где X — это непустое множество, а τ — это семейство подмножеств со следующим условиями:

- \bigcirc $\emptyset, X \in \tau$
- $m{2}$ Если $A, B \in \tau$, то $A \cap B \in \tau$
- ullet Пусть I это индексное множество, и для каждого $i\in I$, $A_i\in au$. Тогда $\bigcup_{i\in I}A_i\in au$
- ullet Если $A \in au$, то говорят, что A открытое множество.

Часто топологические пространства определяют через базу топологии \mathcal{B} : набор открытых подмножеств \mathcal{B} , таких, что если $A \in \tau$, то найдется такое семейство $\{A_i\}_{i \in I}$ и при каждом $i \in I$ $A_i \in \mathcal{B}$, что $A = \bigcup_{i \in I} A_i$.

Примеры топологических пространств

- Тривиальные примеры
 - Дискретное пространство, в котором любое множество открыто. База дискретной топологии это одноточечные подмножества
 - Антидискретное пространство: открыты только само множество и пустое
- ② Вещественная прямая: база естественной топологии на \mathbb{R} это открытые интервалы $(a,b),\ a,b\in\mathbb{R}$
- Метрическое пространство ⟨X, ρ⟩: база топологии это открытые шары. То есть, подмножества вида U^x_ε = {y ∈ X | ρ(x, y) < ε}, где ε > 0 и x ∈ X.

Внутренность множества

Определение

Пусть $\mathcal{X}=\langle X, \tau \rangle$ — это топологическое пространство. Введем оператор $I:\mathcal{P}(X) \to \mathcal{P}(X)$, что

$$I(A) = \bigcup \{B \in \tau \mid B \subseteq A\}$$

Такие операторы называются операторами взятия внутренности, а множество I(A) внутренностью множества A.

Внутренность множества

Определение

Пусть $\mathcal{X}=\langle X, \tau \rangle$ — это топологическое пространство. Введем оператор $I:\mathcal{P}(X) o \mathcal{P}(X)$, что

$$I(A) = \bigcup \{B \in \tau \mid B \subseteq A\}$$

Такие операторы называются операторами взятия внутренности, а множество I(A) внутренностью множества A.

Легко видеть, что

- $(A) \subseteq A$
- **3** I(A) = I(I(A))
- **5** Множество открыто тогда и только тогда, когда $\mathsf{I}(A) = A$

Топологическая модель

Определение

Пусть $\mathcal{X}=\langle X, \tau \rangle$ — это топологическое пространство. Тогда топологической моделью называется пара $\mathcal{M}=\langle \mathcal{X}, \vartheta \rangle$, где $\vartheta: \mathsf{PV} \to \mathcal{P}(X)$, такая, что

Определения истинности в топологической модели, общезначимости в топологическом пространстве и в классе пространств аналогичны соответствующим определениям для моделей и шкал Крипке.

Корректность в случае топологической семантики

В случае топологической семантики теорема корректности имеет следующую формулировку:

Теорема

Пусть \mathbb{X} — это класс топологических пространств, тогда $\mathsf{S4} \subseteq \mathsf{Log}(\mathbb{X})$

Покажем для примера общезначимость формулы **A**4, то есть, $\mathbb{X} \models \Box p \rightarrow \Box \Box p$

Proof.

Пусть \mathcal{X} — это топологическое пространство, ϑ — это оценка, $x \in X$, такие, что $\mathcal{M}, x \models \Box p$, где $\mathcal{M} = \langle \mathcal{X}, \vartheta \rangle$. Из $\mathcal{M}, x \models \Box p$ следует, что найдется окрестность точки x U_x , что для любого $y \in U_x$, $\mathcal{M}, y \models p$. Тогда $\mathcal{M}, y \models \Box p$. Откуда $\mathcal{M}, x \models \Box \Box p$

Теорема Маккинси-Тарского

В случае топологической семантики модальной логики, основопологающими являются результаты Маккинси и Тарского.

Теорема

- ullet S4 $= \mathsf{Log}(\mathbb{T})$, где \mathbb{T} это класс всех топологических пространств.
- ullet Пусть $oldsymbol{\mathsf{L}}\supseteq oldsymbol{\mathsf{S}}$ 4, тогда найдется класс топологических пространств $\mathbb X$, что $\mathsf{Log}(\mathbb X)=oldsymbol{\mathsf{L}}$
- ullet S4 $= \mathsf{Log}(\mathbb{M})$, где \mathbb{M} это класс всех метрических пространств.

Арифметика Пеано

Определение

Арифметика Пеано (PA) — это теория первого порядка с равенством в сигнатуре $\Omega = \langle 0, S, +, \cdot \rangle$ со следующим списком аксиом:

Нумерация синтаксиса

Определение

Гёделева нумерация — это отображение вида γ : $\mathrm{Term}_\Omega \cup \mathrm{Form}_\Omega \to \mathbb{N}$. Пусть t и A — это арифметические терм и формула, тогда $\gamma(t)$ и $\gamma(A)$ мы будем обозначать как [t] и [A] соответственно.

Определение

Предикат доказательства — это двухместный предикат вида $\Pr(x,y)$, читаемая как "x является гёделевым номером доказательства формулы x. При этом ясно, что:

- **©** Если последовательность формул A_1, \ldots, A_n это доказательство формулы A, то $\mathsf{PA} \vdash \mathsf{Prf}([A_1, \ldots, A_n], [A])$
- **②** Если n не является номером доказательства формулы A, то **РА** \vdash ¬ Prf(\bar{n} , [A])

Предикат доказуемости и его свойства

Определение

Предикат доказуемости — это формула вида $\Pr_{\mathbf{PA}}(y) := \exists x \; \Prf(x,y).$

Следующие свойства предиката доказуемости называются условиями Гильберта-Бернайса-Лёба:

Лемма

Можно заметить, что первое условие напоминает правило усиления, а вторые два — формулы AK и $\mathsf{A4}$.

Лемма о неподвижной точке и первая теорема Гёделя о неполноте

Лемма

Для каждой арифметической формулы с одной свободной переменной B(x) найдется такая замкнутная формула A, что

$$PA \vdash A \leftrightarrow B([A])$$

Первая теорема Гёделя доказывается в несколько строк из условий Гильберта-Бернайса-Лёба и леммы о неподвижной точки

Теорема

Пусть A — это арифметическое предложение, такое, что $\mathsf{PA} \vdash A \leftrightarrow \neg(\mathsf{Pr}_{\mathsf{PA}}([A]))$. Если PA непротиворечива, то $\mathsf{PA} \not\vdash A$

Вторая теорема о неполноте

Определение

Формула, выражающая непротиворечивость, имеет следующий вид

 $\mathsf{Con}_{\mathbf{PA}} := \neg\,\mathsf{Pr}_{\mathbf{PA}}([\bot])$. Здесь $\bot -$ это заведомо ложная формула, скажем 0=1.

Теорема

PA ⊬ Con_{PA}

Вторая теорема Гёделя о неполноте может иметь следующее обобщение.

Теорема Лёба

Теорема Лёба устанавливает следующую взаимосвязь между арифметическим утверждением и ее собственной доказуемостью:

Теорема

$$\mathsf{PA} \vdash A \Leftrightarrow \mathsf{PA} \vdash \mathsf{Pr}_{\mathsf{PA}}([A]) \to A$$

Вторая теорема Гёделя о неполноте получается из теоремы Лёба, если в качестве A положить \bot :

$$\begin{array}{l} \textbf{PA} \vdash \bot \Leftrightarrow \textbf{PA} \vdash \textbf{Pf}_{\textbf{PA}}(\lceil \bot \rceil) \to \bot \Leftrightarrow \\ \textbf{PA} \vdash \bot \Leftrightarrow \textbf{PA} \vdash \neg \textbf{Pf}_{\textbf{PA}}(\lceil \bot \rceil) \Leftrightarrow \\ \textbf{PA} \vdash \bot \Leftrightarrow \textbf{PA} \vdash \textbf{Con}_{\textbf{PA}} \end{array}$$

Теорема Лёба

Более того, теорема Лёба может быть сама формализована в РА:

Теорема

Пусть А — это арифметическое предложение, тогда:

$$\mathsf{PA} \vdash \mathsf{Pr}_{\mathsf{PA}}([\mathsf{Pr}_{\mathsf{PA}}([A]) \to A]) \to \mathsf{Pr}_{\mathsf{PA}}([A])$$

Теперь нам совершенно ясно, что теорема Лёба выглядит аналогично формуле Лёба, выражающей транзитивность и нётеровость шкалы. Напомним, что она имеет вид $\square(\square\phi \to \phi) \to \square\phi$. Теперь придадим этой аналогии более точный смысл.

Арифметическая реализация

Определение

Пусть CIFm_Ω — это множество замкнутных арифметических формул и $r: \mathbb{V} \to \mathsf{CIFm}_\Omega$ — это интерпретация переменных. Арифметическая реализация — это функция $\rho: \mathsf{Fm} \to \mathsf{CIFm}_\Omega$, реализованная следующим образом:

Теорема Соловея

Теорема

Для любой арифметической реализации ρ имеет место следующая эквивалентность:

$$\mathsf{GL} \vdash \phi \Leftrightarrow \mathsf{PA} \vdash \rho(\phi)$$

- Корректность довольно проста: модальная часть корректность следует из теоремы Лёба и условий Гильберта-Бернайса-Лёба
- Полнота сложнее, мы ее опустим
- Таким образом, формула принадлежит логике класса всех транзитивных нётеровых шкал тогда и только тогда, когда всякая её арифметическая реализация доказуема в арифметике Пеано

Направления развития

- Модальности в логиках, основанных на неклассических логиках
- Окрестностная и топологическая семантики
- Теория доказательств в модальных логиках
- Соотношения между модальной логикой и теорией моделей
- Алгебраические вопросы модальных логик

Области применения

- Верификация программ
- Теория доказательств и ординальный анализ
- Пространственные логики
- Дескрипционные логики (базы данных, представление знаний)
- Эпистемические логики (искусственный интеллект, вопросы обмена информации, коммуникационные протоколы)
- Соответствие Карри-Говарда для конструктивных модальных логик (функциональное программирование)