Задание 9 (на 6.11).

СЅ 47. Предъявите функцию, которая существенно зависит от всех своих аргументов, детерминированная запросовая сложность которой не превосходит $\log(n)$.

CS 48. Постройте такую булеву схему, которая перемножает две квадратных булевых матрицы (сложение — xor, а умножением and), что ее глубина: а) $O(n^2)$ б) $O(\log(n))$.

CS 49. а) Сколько существует булевых функций от n переменных? б) Сколько существует булевых схем от n переменных размера s? в) Докажите, что существует булева функция от n переменных, для подсчета которой необходима схема размером не менее $\frac{2^n}{100n}$

CS 50. Семейство булевых функций $f_n : \{0,1\}^n \to \{0,1\}$ имеет схемную сложность не более s(n), если для любого n найдется такая булева схема размера не более s(n), что она вычисляет функцию f_n . Докажите, что существует неразрешимый язык, схемная сложность которого не превосходит n.

CS 39. Докажите, что если $SAT \in PCP(o(\log(n)), 1)$, то P = NP.

CS 41. Докажите, что задача 2SAT лежит в $DSpace[\log^2(n)]$.

СS 42. Определим кванторную пропозициональную формулу: она имеет вид $Q_1x_1Q_2x_2\dots Q_nx_n\phi(x_1,x_2,\dots,x_n)$, где ϕ — пропозициональная формула от переменных x_1,\dots,x_n , а $Q_i\in\{\exists,\forall\}$ — кванторы. Переменные x_i принимают значения $\{0,1\}$, истинность формулы определяется естественным образом. Обозначим TQBF — это множество истинных кванторных пропозициональных формул. Докажите, что TQBF лежит в PSpace.

CS 43. Докажите, что язык графов с циклом лежит в классе DSpace[log(n)].

СЅ 45. Рассмотрим функцию $f = Maj(x_1, x_2, x_3)$, которая возвращает бит, который чаще встречается на входе. Докажите, что $R(f) \leq \frac{8}{3}$

СЅ 46. Рассмотрим функцию $f = \bigvee_{i=1}^{n} x_i$. Докажите, что R(f) = n.