Контрольная работа.

Правила. Каждая задача контрольной может быть либо решена, либо не решена. За каждую решенную задачу вы получаете указанное число баллов. Если Вы заработали A баллов за работу в течение семестра и B баллов за контрольную работу, то ваш итоговый балл за практику $\min\{A+B,80\}$.

Вы можете самостоятельно выбирать, какие задачи решать, исходя из того, сколько вам нужно набрать баллов. Задачи следует записать и послать Д.О. Соколову по электронной почте sokolov.dmt@gmail.com не позже среды 4-го декабря. В четверг 5-го декабря на занятии можно будет получить результаты и исправить ошибки.

CS 1. (15) Вещественное число α называется вычислимым, если существует алгоритм, который по рациональному числу ϵ выдает рациональное ϵ -приближение к числу α . Предъявите такое число $x \in \mathbb{R}$, что: x не является вычислимым, но при этом множество рациональных чисел меньших x является перечислимым.

[CS 2.] (10) Некоторое множество S натуральных чисел разрешимо. Разложим все числа из S на простые множители и составим множество D всех простых чисел, встречающихся в этих разложениях. Можно ли утверждать, что множество D разрешимо?

 $[CS \ 3.]$ (10) Существует ли алгоритм, проверяющий, работает ли данная программа полиномиальное от длины входа время?

 $\left| ext{CS 4.} \right| (5)$ Докажите, что если $ext{NP}
eq ext{co-NP}$, то $ext{P}
eq ext{NP}$.

[CS 5.] (5) Докажите NP-полноту языка, который состоит из пар графов G_1, G_2 , что у графа G_2 есть подграф, изоморфный G_1 .

CS 6. (5) Докажите, что $PCP(\log(n), 0) = P$.

[CS 7.] (5) Докажите, что PSPACE \subseteq EXP, где EXP — это множество языков, которые распознаются за время $2^{p(n)}$, где p — некоторый полином.

[CS~8.] (15) Предъявите пример такой несовместной задачи линейного программирования, что двойственная задача также является несовместной.

СЅ 9. Пусть дан граф $G = (V, E), |V| = n, |E| = m, x \in \mathbb{R}^m$. Рассмотрим следующую задачу линейного программирования. $\sum_{e \in E} x_e \to max, \forall e \in E \ x_e \geq 0, \forall v \in V \ \sum_{e,v \in \delta(e)} x_e \leq 1$, где $\delta(e)$ — множество концов ребра e.

а) (10) Докажите, что если граф G двудольный, то оптимум достигается в вершине с целочисленными координатами.

б) (5) Предъявите пример, когда G не является двудольным и максимум не целочисленный.

CS 10. (15) Докажите, что существует такая линейная функция $f: \{0,1\}^n \to \{0,1\}^n$, что ее схемная сложность не менее $\frac{n^2}{100 \log(n)}$.

CS 11. Зафиксируем некоторый граф G на n вершинах. Пусть у Алисы и Боба есть множества вершин X и Y соответственно, при этом множество X является кликой (между любыми двумя вершинами есть ребро), а множество Y является независимым множеством (никакие две вершины не соединены ребром). Они хотят посчитать функцию $CIS_G(X,Y)$, которая возвращает размер пересечения множеств X и Y. Докажите, что для этого им достаточно:

a) O(n); (5)

- б) $O(\log^2(n))$ битов коммуникации. (25)
- **CS 12.** (30) Пусть у Алисы и Боба есть множества $X, Y \subseteq \{1, ..., n\}$. Они хотят посчитать функцию MED(X, Y), которая возвращает медиану мультимножества $X \cup Y$. Докажите, что для этого им достаточно $O(\log(n))$ битов коммуникации.
- [CS 13.] (10) Рассмотрим функцию $f(x_1, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$. Докажите, что D(f) = n (детерминированная запросовая сложность).
- [CS 14.] (20) Докажите, что для достаточно больших n $R(Maj(x_1, x_2, ..., x_n)) \le n \frac{1}{4}$ (вероятностная запросовая сложность).
- [CS 15.] (10) Пусть пара случайных величин X, Y совместно распределена на некотором конечном множестве. Докажите, что $H(X,Y) \leq H(X) + H(Y)$.
- СЅ 16. (15) Коды БЧХ (коды Боуза–Чоудхури–Хоквингема) позволяют исправлять некоторое фиксированное число оппибок в двоичном кодовом слове. Чтобы описать кодовые слова БЧХ, мы рассмотрим поле \mathbb{F}_n из $n=2^m$ элементов и многочлены $P(z)=a_0+a_1z+a_2z^2+\cdots+a_{n-d}z^{n-d}$ над этим полем. Кодовыми словами будут таблицы значений таких многочленов во всех элементах поля (таким образом, длина кодового слова равна n). Мы ограничимся рассмотрением только таких многочленов, которые в каждой точке поля принимают значение 0 или 1. Все такие последовательности битов длины n и образуют код БЧХ. Докажите, что расстояние данного кода не менее d
- СЅ 17. (5) Покажите, что если код Рида-Соломона имеет расстояние d, то он исправляет e ошибок и p пропусков, если 2e+p < d. (Пропуск это отсутствие символа, а ошибка это искажение).