EECS 495: Combinatorial Optimization Lecture 6 Matroids

Reading: Schrijver, Chapter 39

Matroids

[[Abstracts linear algebra and graph theory.]]
Key set systems to keep in mind:

- subsets of vectors of \mathcal{R}^{n}
- subsets of edges of $G=(V, E)$

Def: A matroid $M=(\mathcal{S}, \mathcal{I})$ is a finite ground set \mathcal{S} together with a collection of sets $\mathcal{I} \subseteq 2^{\mathcal{S}}$ satisfying:

- downward closed: if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$, and
- exchange property: if $I, J \in \mathcal{I}$ and $|J|>$ $|I|$, then there exists an element $z \in J \backslash I$ s.t. $I \cup\{z\} \in \mathcal{I}$.

Terminology:

- $I \in \mathcal{I}$ independent, $I \notin \mathcal{I}$ dependent
- circuit is a minimal dependent set of M
- basis is a maximal independent set
- I is a spanning set if for some basis B, $B \subseteq I$

Example: Uniform matroids U_{n}^{k} : Given by $|S|=n, \mathcal{I}=\{I \subseteq S:|I| \leq k\}$.

Check two properties and see this is a matroid.
What are the...

- bases: sets of size k
- circuits: sets of size $k+1$
- spanning sets: sets of size at least k

Example: Linear matroids: Let F be a field, $A \in F^{m \times n}$ an $m \times n$ matrix over $F, S=$ $\{1, \ldots, n\}$ be index set of columns of A. Then $I \subseteq S$ is independent if the corresponding columns are linearly independent.

Check two properties and see this is a matroid.
What are the...

- bases: minimal sets of vectors that span space spanned by A
- circuits: vectors that span space space spanned by A with one extra
- spanning sets: vectors that span space spanned by A

Note: Linear matroids can be representated as:

$$
A=\left[I_{m} \mid B\right]
$$

since

- If not full row rank, can remove redundant rows, and
- get above form with row operations and column swaps.

Example: Graphic Matroids: Let $G=$ (V, E) be a graph and $S=E$. A set $F \subseteq E$ is independent if it is acyclic.
Check two properties and see this is a matroid.

What are the...

- bases: minimum spanning trees
- circuits: subgraphs with one cycle
- spanning sets: connected subgraphs that contain every vertex

Example: Matching Matroids: The matching matroid $M=(V, \mathcal{I})$ for graph $G=(V, E)$ has $U \subseteq V$ independent if there's a matching in G that covers all of U.

Check two properties and see this is a matroid. For exchange,

- Consider $I, J \in \mathcal{I}$ with $|I|<|J|$.
- Let M_{I}, M_{J} be matchings for I, J and suppose M_{I} doesn't cover anything in $J \backslash$ I.
- Consider matching defined by symmetric diff of M_{I} and M_{J}.
- Note each $v \in J \backslash I$ starts an alternating path.
- Some such paths don't end in $I \backslash J$ since $|J \backslash I|>|I \backslash J|$. Let P be one such path.
- P doesn't end in $J \cap I$ since those vertices have degree 0 or 2 , so P ends not in I.
- Now M_{I} symmetric diff with P is a matching that covers all of I and one extra vertex in $J \backslash I$.

What are the...

- bases: minimum spanning trees
- circuits: subgraphs with one cycle
- spanning sets: connected subgraphs that contain every vertex

Note: All bases of a matroid M must have same cardinality.
Def: The rank function of M is $r: 2^{S} \rightarrow \mathcal{Z}_{+}$ given by $r(U)=\max _{I \subseteq U, I \in \mathcal{I}}|I|$.
Note: Corresponds to rank of matrix in linear matroids, hence name.

Def: (Alternate defn of matroid): $M=$ (S, \mathcal{I}) is a matroid if there's a rank function $r: 2^{S} \rightarrow \mathcal{Z}_{+}$such that

- $r(U) \subseteq|U|$ for all U,
- monotonicity: $T \subseteq U \rightarrow r(T) \leq r(U)$,
- submodularity: $\forall A, B \subseteq S, r(A \cap B)+$ $r(A \cup B) \leq r(A)+r(B)$ (equivalently, $\forall C \subseteq D, \forall j \notin D, r(D \cup\{j\})-r(D) \leq$ $r(C \cup\{j\})-r(C))$,
in which case we can take $\mathcal{I}=\{U: r(U)=$ $|U|\}$.

Duality

Def: Given matroid $M=(S, \mathcal{I})$, the dual matroid $M^{*}=\left(S, \mathcal{I}^{*}\right)$ is defined by $\mathcal{I}^{*}=$ $\{I \subseteq S \mid S \backslash I$ is a spanning set of $M\}$.
Note: $\left(M^{*}\right)^{*}=M$.
Claim: M^{*} is a matroid.
Proof: Clearly downward closed. For exchange, consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$.

- $S \backslash J$ contains base B of M
- then $B \backslash I \subseteq B^{\prime} \subseteq S \backslash I$ for some basis B^{\prime}
- and $J \backslash I \nsubseteq B^{\prime}$ since otherwise (as $B \cap I \subseteq$ $I \backslash J$ and $(B \backslash I) \cap(J \backslash I)=\emptyset)$:

$$
\begin{gathered}
|B|=|B \cap I|+|B \backslash I| \\
\leq|I \backslash J|+|B \backslash I| \\
<|J \backslash I|+|B \backslash I| \\
\leq\left|B^{\prime}\right|
\end{gathered}
$$

contradicting all bases have same size.

- thus $\exists z \in J \backslash I$ with $z \notin B^{\prime}$ so $I \cup\{z\} \in$ \mathcal{I}^{*}.

Claim: The rank function $r_{M^{*}}$ satisfies $r_{M^{*}}(U)=|U|+r_{M}(S \backslash U)-r_{M}(S)$.
Proof: Let \mathcal{B} and \mathcal{B}^{*} denote collections of bases of M and M^{*}. Then:

$$
\begin{gathered}
r_{M^{*}}(U)=\max _{A \in \mathcal{B}^{*}}\{|U \cap A|\}=\max _{B \in \mathcal{B}}\{|U \backslash B|\} \\
=|U|-\min _{B \in \mathcal{B}}\{|B \cap U|\} \\
=|U|-r_{M}(S)+\max _{B \in \mathcal{B}}\{|B \backslash U|\} \\
=|U|-r_{M}(S)+r_{M}(S \backslash U) .
\end{gathered}
$$

Example: Graphic matroid.

- Dual is: set of edges that when removed leave graph connected.
- Dual is graphic iff graph is planar,
- in which case dual is graphic matroid of planar dual.

Representation

Def: For a field F, a matroid M is representable over F if it can be expressed as a linear matroid with matrix A and linear independence taken over F.
Example: Uniform matroid U_{4}^{2} not binary:

- if so, would have matrix with columns $1 / 2$ being $(0,1)$ and $(1,0)$ and remaining two vectors with entries in 0,1 neither all zero.
- only three such non-zero vectors, so can't have all pairs indep.

Question: representation of U_{4}^{2} ? $(1,0),(0,1),(1,-1),(1,1)$ in \Re.
Def: A binary matroid is a matroid representable over $G F(2)$.
Def: A regular matroid is representable over any field.
Example: Graphic matroids are regular.
Proof: Take A to be vertex/edge incidence matrix with $+1 /-1$ in each column in any order.

- Minimally dependent sets sum to zero perhaps with multiplying by -1 .
- Works over any field with +1 as multiplicative identity and -1 additive inverse of +1 .

Note: so far have graphic \subset binary \subset regular \subset linear.

