
EECS 495: Combinatorial Optimization Lecture 6
Matroids

Reading: Schrijver, Chapter 39

Matroids

[[Abstracts linear algebra and graph theory.]]
Key set systems to keep in mind:

• subsets of vectors of Rn

• subsets of edges of G = (V, E)

Def: A matroid M = (S, I) is a finite ground
set S together with a collection of sets I ⊆ 2S

satisfying:

• downward closed: if I ∈ I and J ⊆ I,
then J ∈ I, and

• exchange property: if I, J ∈ I and |J | >
|I|, then there exists an element z ∈ J \I
s.t. I ∪ {z} ∈ I.

Terminology:

• I ∈ I independent, I 6∈ I dependent

• circuit is a minimal dependent set of M

• basis is a maximal independent set

• I is a spanning set if for some basis B,
B ⊆ I

Example: Uniform matroids Uk
n : Given by

|S| = n, I = {I ⊆ S : |I| ≤ k}.

Check two properties and see this is a ma-
troid.

What are the...

• bases: sets of size k

• circuits: sets of size k + 1

• spanning sets: sets of size at least k

Example: Linear matroids: Let F be a field,
A ∈ Fm×n an m × n matrix over F , S =
{1, . . . , n} be index set of columns of A. Then
I ⊆ S is independent if the corresponding
columns are linearly independent.

Check two properties and see this is a ma-
troid.

What are the...

• bases: minimal sets of vectors that span
space spanned by A

• circuits: vectors that span space space
spanned by A with one extra

• spanning sets: vectors that span space
spanned by A

Note: Linear matroids can be representated
as:

A = [Im|B]

since

• If not full row rank, can remove redun-
dant rows, and
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• get above form with row operations and
column swaps.

Example: Graphic Matroids: Let G =
(V, E) be a graph and S = E. A set F ⊆ E
is independent if it is acyclic.

Check two properties and see this is a ma-
troid.

What are the...

• bases: minimum spanning trees

• circuits: subgraphs with one cycle

• spanning sets: connected subgraphs that
contain every vertex

Example: Matching Matroids: The match-
ing matroid M = (V, I) for graph G = (V, E)
has U ⊆ V independent if there’s a matching
in G that covers all of U .

Check two properties and see this is a ma-
troid. For exchange,

• Consider I, J ∈ I with |I| < |J |.

• Let MI , MJ be matchings for I, J and
suppose MI doesn’t cover anything in J\
I.

• Consider matching defined by symmetric
diff of MI and MJ .

• Note each v ∈ J \ I starts an alternating
path.

• Some such paths don’t end in I \J since
|J \ I| > |I \J |. Let P be one such path.

• P doesn’t end in J∩I since those vertices
have degree 0 or 2, so P ends not in I.

• Now MI symmetric diff with P is a
matching that covers all of I and one ex-
tra vertex in J \ I.

What are the...

• bases: minimum spanning trees

• circuits: subgraphs with one cycle

• spanning sets: connected subgraphs that
contain every vertex

Note: All bases of a matroid M must have
same cardinality.

Def: The rank function of M is r : 2S → Z+

given by r(U) = maxI⊆U,I∈I |I|.
Note: Corresponds to rank of matrix in lin-
ear matroids, hence name.

Def: (Alternate defn of matroid): M =
(S, I) is a matroid if there’s a rank function
r : 2S → Z+ such that

• r(U) ⊆ |U | for all U ,

• monotonicity: T ⊆ U → r(T ) ≤ r(U),

• submodularity: ∀A, B ⊆ S, r(A ∩ B) +
r(A ∪ B) ≤ r(A) + r(B) (equivalently,
∀C ⊆ D, ∀j 6∈ D, r(D ∪ {j}) − r(D) ≤
r(C ∪ {j})− r(C)),

in which case we can take I = {U : r(U) =
|U |}.

Duality

Def: Given matroid M = (S, I), the dual
matroid M∗ = (S, I∗) is defined by I∗ =
{I ⊆ S|S \ I is a spanning set of M}.
Note: (M∗)∗ = M .

Claim: M∗ is a matroid.

Proof: Clearly downward closed. For ex-
change, consider I, J ∈ I∗ with |I| < |J |.

• S \ J contains base B of M
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• then B \ I ⊆ B′ ⊆ S \ I for some basis
B′

• and J\I 6⊆ B′ since otherwise (as B∩I ⊆
I \ J and (B \ I) ∩ (J \ I) = ∅):

|B| = |B ∩ I|+ |B \ I|

≤ |I \ J |+ |B \ I|

< |J \ I|+ |B \ I|

≤ |B′|

contradicting all bases have same size.

• thus ∃z ∈ J \ I with z 6∈ B′ so I ∪ {z} ∈
I∗.

Claim: The rank function rM∗ satisfies
rM∗(U) = |U |+ rM(S \ U)− rM(S).

Proof: Let B and B∗ denote collections of
bases of M and M∗. Then:

rM∗(U) = max
A∈B∗
{|U ∩ A|} = max

B∈B
{|U \B|}

= |U | −min
B∈B
{|B ∩ U |}

= |U | − rM(S) + max
B∈B
{|B \ U |}

= |U | − rM(S) + rM(S \ U).

Example: Graphic matroid.

• Dual is: set of edges that when removed
leave graph connected.

• Dual is graphic iff graph is planar,

• in which case dual is graphic matroid of
planar dual.

Representation

Def: For a field F , a matroid M is repre-
sentable over F if it can be expressed as a
linear matroid with matrix A and linear in-
dependence taken over F .

Example: Uniform matroid U2
4 not binary:

• if so, would have matrix with columns
1/2 being (0, 1) and (1, 0) and remaining
two vectors with entries in 0, 1 neither all
zero.

• only three such non-zero vectors, so can’t
have all pairs indep.

Question: representation of U2
4 ?

(1, 0), (0, 1), (1,−1), (1, 1) in <.

Def: A binary matroid is a matroid repre-
sentable over GF (2).

Def: A regular matroid is representable over
any field.

Example: Graphic matroids are regular.

Proof: Take A to be vertex/edge incidence
matrix with +1/ − 1 in each column in any
order.

• Minimally dependent sets sum to zero
perhaps with multiplying by −1.

• Works over any field with +1 as multi-
plicative identity and−1 additive inverse
of +1.

Note: so far have graphic⊂ binary⊂ regular
⊂ linear.
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