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Abstract

Robust integration of range images is an important task
for building high-quality 3D models. Since range images,
and in particular range maps from stereo vision, may have
a substantial amount of outliers, any integration approach
aiming at high-quality models needs an increased level of
robustness. Additionally, a certain level of regularization
is required to obtain smooth surfaces. Computational effi-
ciency and global convergence are further preferable prop-
erties. The contribution of this paper is a unified framework
to solve all these issues. Our method is based on minimizing
an energy functional consisting of a total variation (TV) reg-
ularization force and an L1 data fidelity term. We present a
novel and efficient numerical scheme, which combines the
duality principle for the TV term with a point-wise opti-
mization step. We demonstrate the superior performance
of our algorithm on the well-known Middlebury multi-view
database and additionally on real-world multi-view images.

1. Introduction
Volumetric range image integration methods have their

origin in the fusion of range images acquired by active sen-
sors [12, 14]. These approaches are specifically targeted to
combine several 2.5D range images into one resulting 3D
model. Using an intermediate volumetric representations
allows the generation of models with arbitrary genus and
avoids the numerical difficulties encountered with polygo-
nal techniques (e.g. [30]).

Combining several range images can be performed us-
ing general surface-from-point-clouds reconstruction algo-
rithms (e.g. [15, 3, 1, 6]). However, using these very generic
methods for range image integration is somewhat futile be-
cause of the special structure of the input data and the pres-
ence of a substantial amount of outliers.

Early work on volumetric range image integration [12,
14, 32] employs an averaging scheme of 3D distance fields
to combine several 2.5D range images. Hence, the ob-
tained surface is basically the minimizer of an underlying

energy function with quadratic fidelity terms. As pointed
out in [17], simple averaging without further regularization
causes inconsistent surfaces due to frequent sign changes
of the mean distance field. Therefore, an additional regu-
larization force is required to favor smooth geometry. A
commonly used approach is to penalize the surface area of
the resulting 3D model, which has been successfully ap-
plied in other domains in conjunction with graph-cut al-
gorithms [31, 16, 5] and variational techniques (e.g. [34,
22, 24, 21]). Other recent work on volumetric surface re-
construction [19, 20] directly estimates the corresponding
characteristic function from (oriented) point samples. The
smoothness of the obtained surface is enforced only implic-
itly, mainly due to the structure of the underlying numerical
problem. The performance of this method in the presence
of gross outliers is not demonstrated.

In this work we focus on building high-quality 3D mod-
els from a set of range images respectively depth maps. Our
main application is the modeling of objects and large out-
door scenery from multiple views. Especially in the lat-
ter case, active sensors are of limited use. Therefore, we
employ depth maps obtained from small baseline stereo al-
gorithms. There exist several approaches for model recon-
struction directly from multiple views based on a photo-
consistency criterion [27, 34, 31, 29, 28, 16]. Nevertheless,
we utilize intermediate small-baseline stereo results for sev-
eral reasons: First of all, there is a number of stereo al-
gorithms available, including real-time methods and high-
quality approaches. The appropriate computational stereo
method can be selected as a black box depending on the par-
ticular application. Next, we bypass explicit visibility and
delicate robust photo-consistency estimation for voxels re-
quired in direct approaches. Finally, the quality of the final
model can be approximately evaluated right after the first
depth maps are available, which adds an interactive compo-
nent to the work-flow.

Since stereo is a highly ill-posed problem, one has to
deal with several problems. Primarily, the integration pro-
cedure must be robust against gross outliers occurring in the
range images. This does not only address isolated outliers
e.g. at depth discontinuities or occlusions, but also includes



large, but incorrectly matched background regions as well.
Furthermore, the resulting 3D mesh should be smooth and
preferably watertight without loosing too many sharp fea-
tures present in the range images. Finally, the correspond-
ing numerical procedure for range image integration should
be efficient and yield a globally optimal result.

This paper aims at solving all these issues in a well-
founded mathematical framework. Our method is based on
minimizing an energy functional incorporating a total vari-
ation (TV) regularization term and a L1 data fidelity term.
It is well known that TV minimization leads to minimal
surfaces and thus regularizes the resulting 3D model in a
proper way [9]. Moreover, we utilize the L1 norm to mea-
sure data fidelity, which is known to be robust against out-
liers while still being convex. For minimization we develop
a novel globally convergent numerical scheme by combin-
ing the dual formulation of the TV energy with a point-wise
optimization scheme. Since this scheme is embedded in a
multiscale approach, high quality 3D models can be com-
puted in the order of a few minutes on a standard desktop
computer. The final 3D geometry can be extracted by any
implicit surface polygonization technique.

2. Robust Range Image Integration

In this section we present the mathematical framework
for robust and globally optimal integration of range images
(respectively, depth maps) using a TV-L1 functional. We
presume, that a set of 2D range images, {ri : Di → R} is
provided, where Di ⊆ R2 is the image domain (usually Di

is simply a rectangle). Moreover the associated alignment
information (i.e. the projection matrices) for the images are
given. The actual input for our method consists of truncated
distance fields fi : Ω → [−1, 1] over a voxel space Ω ⊆ R3,
which are calculated from the provided range images. We
use the convention, that fi(~x) has positive sign for carved
voxels, i.e. points lying in front of the hypothetical surface.

2.1. Generation of Distance Fields

Fig. 1 illustrates the generation of the distance fields
fi. The range images ri are converted into truncated 3D
signed distance fields by computing the directional signed
distances along the line-of-sight (similar to [12]). The
signed distance from the voxel center to the surface point
is weighted by a factor 1/δ and truncated to fit into the in-
terval [−1, 1]. Thus, the parameter δ controls the width of
the relevant near-surface region. The choice of δ reflects the
expected uncertainty of the depth values in z-direction. Us-
ing truncated distance fields has the additional advantage,
that the memory consumption can be substantially reduced
(see Section 3).

We note that the assignment of fi has varying confidence
along the employed lines-of-sight. Voxels in front of the

surface induced by the range image have a relatively high
confidence, even for a (signed) distance d(~x) � δ. On
the contrary, values of fi have almost no certainty, when
d(~x) � −δ, since the corresponding voxels are hidden in
the respective view. Therefore, we provide an additional
weight volume for each range image, wi : Ω → R+

0 , which
serves several purposes. First of all, it supplies confidences
for fi by assigning low values, if d � −δ. Moreover, miss-
ing values in the range images (e.g. due to view frustum
culling or missing depth values) can be handled by assign-
ing zero confidence to voxels along the corresponding line-
of-sight.

We employ a simple binary weighting, wi(~x) ∈ {0, 1},
using wi(~x) = 1{d(~x)>−η} for η > δ. η controls the width
of the occluded region behind the surface, which is assumed
to be solid, i.e. not carved. Hence, the parameter η indi-
rectly controls the gap size of depth discontinuities, which
are still closed (hole-filled). Finally, for all voxels ~x the set
of relevant indices I(~x) = {i : wi(~x) > 0} is defined.
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Figure 1. Generation of 3D distance fields from range images.

2.2. A TV-L1 energy for range image integration

In this section we discuss range image integration us-
ing a TV-L1 energy functional. The goal is to compute a
regularized field u : Ω → [−1, 1], which simultaneously
approximates all input fields fi. Basically, this is achieved
by computing the minimizer of a suitable energy functional.
The corresponding surface geometry is obtained as the zero
level set of u.

For this purpose, we propose the following TV-L1 en-
ergy functional:1

E =
∫

Ω

|∇u|+ λ
∑

i∈I(~x)

wi(~x)|u− fi|

 d~x , (1)

where λ is free parameter controlling the data fidelity
weight. The first term is the total variation which was first
proposed by Rudin, Osher and Fatemi (ROF) for nonlin-
ear image denoising [25]. The main property of the TV

1We omit the explicit dependency of function variables on the position
~x from now on.



term is that it penalizes the perimeter of the level sets in u,
which is in our case exactly the surface area. The second
term is the data fidelity and measures the distances of u to
all fi by means of the robust L1 norm. The primary rea-
son for using a L1 norm is the increased robustness. When
ignoring the spatial regularization (TV term), we see that
the minimizer is the point-wise weighted median of the set
{fi : i ∈ I} [18]. Combining the L1 data fidelity with
convex and edge-preserving regularization forces and the
implications on outlier detection is treated in depth in [23].
Using the L1 norm in conjunction with TV regularization
has many other consequences, but we mention only one
important qualitative result from [9]: the regularization in-
duced by the TV-L1 energy is pure geometric, i.e. the ob-
tained minimizer solely depends on the level sets of the
supplied input data. Lowering the data fidelity weight λ
results in disappearance of isolated, small-scale features in-
stead of increased smoothing of u. Hence, it is expected
that isolated clutter is substantially reduced and preferable
low-genus iso-surfaces are generated. Finally, we note that
the TV-L1 energy is not strictly convex, therefore there is
no unique global minimizer (but all local minima are global
minima as well).

By assuming wi(~x) ∈ {0, 1}, we have wi(~x) = 1 iff
i ∈ I(~x) and Eq. 1 reads as:

E =
∫

Ω

|∇u|+ λ
∑

i∈I(~x)

|u− fi|

 d~x. (2)

Although the energy functional in Eq. 2 seems to be sim-
ple, it offers some computational difficulties. The main rea-
son is that both the regularization term and the data term are
not continuously differentiable. To overcome this, we intro-
duce an auxiliary function v (similar to [2, 4]) and propose
to solve the following convex approximation of Eq. 2:

Eθ =
∫

Ω

{
|∇u| +

1
2θ

(u− v)2 +
∑

i∈I(~x)

|v − fi|
}

d~x ,

(3)
where θ is a small constant, such that v is a close approx-
imation of u. Eθ is convex in u and v, therefore an al-
ternating descent approach as described next is universally
convergent and returns a global minimizer:

1. For v being fixed, minimize the first two terms in the
energy above and solve for u:

min
u

∫
Ω

{
|∇u|+ 1

2 θ
(u− v)2

}
d~x. (4)

This is exactly the ROF energy [25, 8].

2. For u being fixed, optimize the last two terms in the

energy and solve for v:

min
v

∫
Ω

 1
2 θ

(u− v)2 + λ
∑

i∈I(~x)

|v − fi|

 d~x. (5)

This minimization problem can be solved point-wise,
since it does not depend on spatial contexts of v.

A solution of the first step was proposed in [8], which uses
a dual formulation of Eq. 4 to derive an efficient and glob-
ally convergent scheme. Since this algorithm is an essential
part of our method, we briefly reproduce the main results
from [8]:

Proposition 1 The solution of Eq. (4) is given by

u = v − θ div ~p , (6)

where ~p = (p1, p2, p3) is a vector-valued field and fulfills
∇(θ div ~p− v) = |∇(θ div ~p− v)| ~p, which can be solved
by the following iterative fixed-point scheme:

~p k+1 =
~p k + τ∇(div ~p k − v/θ)
1 + τ |∇(div ~p k − v/θ)|

, (7)

where ~p 0 = ~0 and the time step τ ≤ 1/6.

The minimization task in Eq. 5 can be solved point-wise,
i.e. on a voxel basis. The minimizer can be obtained by a
generalization of the thresholding scheme presented in [2].
Before stating the respective proposition, we start with a
few preliminaries: Without loss of generality, we can as-
sume that fi ≤ fi+1, since the data fidelity term in Eq. 2
is invariant with respect to permutations of I(~x). Hence
we can postulate a sorted sequence {fi : i ∈ I}. In order
to avoid consideration of special cases, we add f0 = −∞
and f|I|+1 = ∞ to this sequence. Finally, the median of
{fi : i ∈ I} is denoted by m (which is not affected by the
addition of f0 and f|I|+1).

Proposition 2 The minimizer of Eq. 5 lies in the interval
between u and m and can be obtained by the following pro-
cedure: If v1 := u − λθ (2k − |I|) ∈ (fk, fk+1) for some
k ∈ {0, . . . , |I|}, then v = v1. Otherwise,

v = arg min
v2∈{fi}

(
(u− v2)2 + 2 λ θ

∑
i

|v2 − fi|

)
. (8)

Proof: Without loss of generality assume u ≤ m. If v < u
or v > m, then smaller energies can be obtained for v = u
and v = m, respectively (since the distances to v and m are
reduced simultaneously). Hence, v ∈ [u, m].

Next, note that the energy (u−v)2 +2 λ θ
∑

i |v−fi| is
convex and differentiable with respect to v in the interior of



intervals (fk, fk+1). Consequently, if we assume, that the
stationary point v1 given by

v1 − u + λθ
∑

i

sgn(v1 − fi) = 0, (9)

lies in the interval (fk, fk+1), then∑
i

sgn(v1 − fi) = #{i : v1 > fi} −#{i : v1 < fi}

= k − (|I| − k) (10)
= 2 k − |I|.

Hence, if the proposed stationary point v1 stays inside the
interval (fk, fk+1) for some k, then we have found the
minimizer of Eq. 5. Otherwise, the minimizer resides on
the boundary of one of those intervals, i.e. it can be found
among the fis. �

Finding the optimum for Eq. 5 is much more costly than
the simple three-way thresholding scheme sufficient for im-
age denoising ([2], Proposition 4). We provide details for
an efficient implementation: first, it is reasonable to dis-
tinguish between the two cases u ≤ m and u > m. In
both cases, the search for suitable intervals and v1 can be
restricted, e.g. k ∈ {0, . . . , |I|/2}, if u ≤ m. If no k gives
a suitable stationary point v1, then all fj between u and m
are candidates for the minimizer. Evaluating the energies
for candidates fj is costly because of computing the sum∑

i |fj − fi|. If u ≤ m. then we can restrict the candidates
to fj ≤ m and we get:∑

i

|fj+1 − fi| =
∑
i≤j

(|fj − fi|+ |fj+1 − fj |)

+
∑

i≥j+1

(|fj − fi| − |fj+1 − fj |) (11)

=
∑

i

|fj − fi| − (2j − |I|) |fj+1 − fj |.

An analogous identity can be obtained in the case u > m.
Hence,

∑
i |fj − fi| and the resulting energy in Eq. 5 can

be computed efficiently for all candidates fj , if the fjs are
evaluated in ascending (respectively descending) order.

Finally, for voxels ~x with vanishing data fidelity (i.e.
empty I(~x)), Eq. 5 reduces to minv(~x)

1
2 θ (u(~x) − v(~x))2.

Consequently, the update for v(~x) is simply v(~x) = u(~x).

3. Implementation
3.1. Depth Images From Multi-View Stereo

We utilize multi-view stereo methods to obtain the initial
depth maps used for range image integration. We do not em-
ploy high-quality and sophisticated dense depth estimation
methods for two reasons: first of all, even simple and purely

local range image integration methods work well on high-
quality and clean depth maps, hence such input data cannot
demonstrate the capabilities of our proposed approach. Sec-
ondly, high-quality methods for dense depth estimation are
typically time and memory consuming and do not fit well
into our targeted high-performance 3D modeling pipeline.
Hence, the depth maps are generated by simple and effi-
cient methods. We use GPU-accelerated space-sweep and
dynamic programming methods (see [33, 11, 35, 36]) to
obtain the depth maps used as input for our range image
integration approach.

3.2. Compressed Distance Volumes

The range images are converted to truncated distance
volumes fi ∈ [−1, 1] and wi ∈ {0, 1} as described in Sec-
tion 2.1. This step can be accelerated by graphics hardware.
Since wi ∈ {0, 1}, it is sufficient to store fi and to indi-
cate wi(~x) = 0 by a dedicated value of fi. Using the di-
rect volumetric representation for fi is not feasible, since
even a moderately sized dataset (e.g. the “Temple” dataset,
see Section 4) with 47 range images requires ≈ 1.7 GB at
200×300×160 voxel resolution (using float components).
This data can be easily compressed using run-length cod-
ing for the data volume fi associated with every voxel. It
is sufficient to compress each voxel individually, which al-
lows a simple and fast decompression scheme to be applied
at sufficient compression rates, e.g. the range data for the
above-mentioned dataset reduces to 117 MB. Using better
compression schemes is currently of limited use, since the
memory footprint is dominated by u, v and ~p.

3.3. Multi-Scale Approach

The method converges very rapidly near voxels with def-
inite data, but it is a slow process in regions with missing
data, where the final value of u is assigned by a diffusion
procedure. In order to speed up the convergence in those
regions, we employ a multi-scale (coarse-to-fine) approach
using a volumetric pyramid. The solution u2h found after
a fixed number of iterations is upsampled to uh at the next
level, and the procedure is resumed. The initial vh at the
next level is set to uh, and ~p h can be initialized with ~0,
since the fixed-point scheme in Eq. 7 is very fast. Note, that
the multi-scale approach is only used to accelerate the con-
vergence, but not to avoid local minima, since the proposed
method is globally convergent.

4. Results
We evaluate our approach on several datasets, which are

briefly characterized in Table 1. This table specifies the
dataset names, image and depth resolutions, the resolution
of the voxel space and the run-time of the different steps to
create the dense geometric model from the calibrated and



Dataset Images Image res. Voxels Depth estimation Conv. Integration Total
Temple 47 640×480×400 200×300×160 1m30s (WTA-SAD-3x3) 1m4s 3m37s 6m11s
Dino 48 640×480×400 200×240×200 1m26s (WTA-SAD-3x3) 1m12s 3m50s 6m28s
Statue 40 512×768×400 180×300×180 3m16s (WTA-NCC-5x5) 1m11s 4m20s 8m47s
Facades 40 424×568×800 420×200×360 5m40s (SO-NCC-5x5) 1m58s 6m25s 14m3s

Table 1. The illustrated datasets and their characteristic information.

(a) Depth image (47 total) (b) Level 2, 15532 tri-
angles

(c) Level 1, 67442 tri-
angles

(d) Level 0, 394502
triangles, front view

(e) Level 0, back view

Figure 2. Selected depth image and final meshes at different pyramid levels for the “Temple” dataset.

registered input images. The 5th column, depth estimation,
states the time for (GPU-accelerated) dense depth estima-
tion and the utilized method. WTA is short for winner-
takes-all depth extraction and SO indicates scanline opti-
mization. The correlation score is either a sum of abso-
lute differences (SAD) or a normalized correlation coeffi-
cient (NCC) using the specified aggregation window. The
6th column specifies the time required to convert the depth
maps into compressed distance volumes. The 7th column
indicates the time to optimize the proposed energy func-
tional (Eq. 3). All timings were obtained on a desktop PC
equipped with a 3.4 GHz Pentium4 processor, 2 GB RAM
and a NVidia GeForce 7800 GS graphics card. In all exper-
iments, the number of pyramid levels is three and 100 itera-
tions are performed on each level. λ is set to 0.1 for the first
two datasets and assigned to 0.3 for the other ones. θ is fixed
to 0.02. The width δ to determine the relevant near-surface
region is set to 1% of the diameter of the reconstructed vol-
ume, and η = 3 δ. The resolution of the voxel space is cho-
sen, such that the voxels are approximately cubes in order
to avoid anisotropic axes.

The first two datasets, “Temple” and “Dino”, are
the medium sized datasets provided for benchmark-
ing multi-view reconstruction methods [26] (see also
vision.middlebury.edu/mview/). These images
are acquired in a controlled indoor environment, hence a
simple and efficient SAD matching cost is sufficient. The
dark background pixels of the captured scene are removed
by thresholding the intensity values. Pixel with a brightness
value of at least 10 are considered to be foreground/object
pixels. Figure 2(a) displays one resulting depth map for the

“Temple” dataset. Intermediate results of our multi-scale
approach are depicted in Figure 2(b) and (c), and the front
and back view of the final model can be seen in Figure 2(d)
and (e).

The results for the “Dino” dataset are illustrated in Fig-
ure 3. The depth image in Figure 3(a) appears quite clean,
whereas incorrect values in the “neck” region are clearly
visible in the depth map displayed in Figure 3(b). The
concavity visible in the second view on the mesh (Fig-
ure 3(d)) indicates a challenging region, where many multi-
view stereo methods have difficulties (e.g. [13, 29, 28]).

The quantitative evaluation comparing our results with
the laser-scanned ground truth confirms the convincing vi-
sual impression: according to the main evaluation table2,
the accuracy values for the “Temple” and “Dino” meshes
are 0.58mm and 0.67mm, respectively. More remarkably,
the completeness measures are 99.0% for the “Temple” re-
sult and 98.0% for the “Dino” mesh. These numbers and the
observed timing results place our proposed approach among
the most efficient and high quality methods. Of course,
these figures will vary if a different dense depth estimation
method is employed.

We provide additional results for two own datasets. The
first “Statue” dataset is a sequence of images capturing an
indoor statue. One selected source view is shown in Fig-
ure 4(a). Since the brightness varies between the images,
we employ the normalized correlation coefficient as match-
ing score to compensate for brightness changes. No back-
ground segmentation is performed, hence the depth images
(see Figure 4(b)) contain substantial noise in background

2see [26] for the exact evaluation methodology.



(a) Depth image #1 (b) Depth image #2 (c) Mesh view #1 (d) Mesh view #2

Figure 3. Selected depth images and the final mesh (379958 triangles) for the “Dino” dataset.

regions. Since this noise is largely inconsistent in multiple
views, the final integrated model (Figures 4(c) and (d)) is
very clean. Parts of the pedestal are missing due to depth
outliers induced by specular reflections.

(a) One source view (b) Depth image (c) Front view (d) Back view

Figure 4. The “Statue” dataset (consisting of 40 source views).
The final mesh has 230460 triangles.

The finally presented dataset comprises a sequence of fa-
cade images used for terrestrial city modeling (Figures 5(a)
and (c)). We employ a fast dynamic programming approach
for depth estimation to obtain better results in textureless fa-
cade regions (Figures 5(b) and (d)), which still have incor-
rect matches e.g. at mirroring display windows. Figure 5(e)
displays the mesh generated by our proposed integration
method.

5. Discussion

This section briefly discusses the relationship of our ap-
proach with pure binary image and shape denoising, and
suggests the integration of additional knowledge into our
framework for range image fusion using weighted total vari-
ation.

5.1. Distance Field/Shape Denoising

It is tempting to ask, whether (robust) averaging of dis-
tance fields near the hypothetical surface is strictly neces-
sary, or if pure binary input fields fi ∈ {−1, 1} are suffi-
cient, where fi(~x) = 1 indicates carved voxels according to

the range image ri. Such an approach coincides with select-
ing the width δ → 0. The TV-L1 energy in Eq. 2 simplifies
to

E =
∫

Ω

{
|∇u| + λN+(~x)|u(~x)− 1| (12)

+ λN−(~x)|u(~x) + 1|
}

d~x,

where N+(~x) is the number of range images voting for a
carved voxel, i.e. N+(~x) = |{i : di(~x) ≥ 0}|. N−(~x) is the
number of range images confidently voting for an occluded
voxel, namely N−(~x) = |{i : di(~x) ∈ (0,−η)}|.

The minimizer for the energy in Eq. 12 can be again
found by an alternating optimization procedure as described
in the previous section. It is easy to see, that the solution to
the intermediate point-wise minimization step

min
v

{
1
2θ

(u− v)2 + λ
(
N+|v − 1|+ N−|v + 1|

)}
(13)

is now given by

v = max(−1,min(1, u + λθ(N+ −N−))). (14)

Of course, this scheme is more efficient than the procedure
outlined in Proposition 2, and the overall computing time is
reduced to about 60% in our implementation. However, this
approach is very vulnerable to aliasing artefacts in practice,
which are clearly visible in Figure 6(a). An analysis for the
case of pure binary input fields fi in the spirit of [10] still
needs to be done.

5.2. Weighted Total Variation

The homogeneous total variation regularization can be
replaced by a weighted TV-regularization [4], which en-
ables an efficient solution procedure for the geodesic ac-
tive contour model [7]. The isotropic TV-L1 energy func-
tional in Eq. 1 can be extended to incorporate a weighted
TV-norm:

Eg =
∫

Ω

g(~x) |∇u|+ λ
∑

i∈I(~x)

wi(~x)|u− fi|

 d~x,

(15)



(a) View #1 (b) Depth #1 (c) View #2 (d) Depth #2 (e) Mesh view (688280 triangles)

Figure 5. The “Facades” dataset.

(a) fi ∈ {−1, 1}, δ = 0 (b) fi ∈ [−1, 1], δ > 0

Figure 6. Aliasing artefacts occurring in case of purely binary in-
put fields, fi ∈ {−1, 1} (left image). No artefacts occur, if the
width δ of the near-surface region is chosen appropriately (right
image).

where g : Ω → [0, 1] is a weighting function. The re-
placement of the homogeneous TV-norm by a weighted one
requires only minimal modifications of the solution proce-
dure, i.e. the fixed point approach to minimize the ROF-
energy (recall Eq. 7) is now [4]:

~p k+1 =
~p k + τ∇(div ~p k − v/θ)

1 + τ
g(~x) |∇(div ~p k − v/θ)|

, (16)

In the range image integration setting, the geodesic model
can be used to incorporate sparse geometric data, e.g. 3D
points or lines, in addition to the range images. In this
case, g(~x) is the (scaled and truncated) unsigned distance
to the provided geometric features. As a result, the final
iso-surface is more likely to pass through or resides close
to the provided features. Note that using merely 3D fea-
tures without input range images has a degenerated solution
(u ≡ 0). Restricting the solution to stay inside some region
of interest (e.g. crust voxels in [17]) offers a solution in this
case.

Instead of using geometric features, g(~x) can be based on
the photo-consistency of a voxel ~x, thereby adopting voxel-
coloring principles (e.g. [27]) into the range image integra-
tion.

6. Conclusion

We presented a novel and efficient method for robust vol-
umetric integration of 2.5D range images based on a suit-
able TV-L1 energy. Our proposed method is globally con-
vergent and returns a (not necessarily unique) global op-
timum. Visual assessment and the quantitative evaluation
applied on the Middlebury datasets indicate the excellent
performance of our approach, even when very noisy depth
maps are provided as input.

Future work needs in particular to address the scalability
of the proposed method, since our current implementation
uses 6 additional volumetric data structures (u, v, ~p and the
median), hence the maximum resolution of the voxel space
is limited. A smaller memory footprint can be achieved e.g.
by restricting the computation to a “narrow band” close to
the hypothetical surface.
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