Generalised Reed-Solomon codes. Decoding methods

PDF created on November 22, 2018

Decoding GRS codes with Euclid's algorithm + Forney's method

Reminder:

• Parity-check matrix of GRS code (d-2 = n - k - 1):

$$H = \begin{pmatrix} v_1 & v_2 & \dots & v_n \\ v_1 \alpha_1 & v_2 \alpha_2 & \dots & v_n \alpha_n \\ \vdots & \vdots & \vdots & \vdots \\ v_1 \alpha_1^{d-2} & v_2 \alpha_2^{d-2} & \dots & v_n \alpha_n^{d-2} \end{pmatrix}.$$

• We can calculate:

The syndrome of the received word $\mathbf{y} \in \mathbb{F}^n$:

$$\mathbf{s}^{\mathsf{T}} = (s_0, s_1, \dots, s_{d-2})^{\mathsf{T}} = H \mathbf{y}^{\mathsf{T}}$$

and the syndrome polynomial:

$$S(x) = \sum_{l=0}^{d-2} s_l x^l.$$

• Unknown values:

Error vector:

 $\mathbf{e} = \mathbf{y} - \mathbf{c}$, $J = \{j \mid e_j \neq 0\}$ - positions of errors.

Error locator:

$$\Lambda(x) = \prod_{j \in J} (1 - \alpha_j x)$$

Error evaluator:

$$\Gamma(x) = \sum_{j \in J} e_j v_j \prod_{m \in J \setminus \{j\}} (1 - \alpha_m x).$$

- Key equation of decoding of GRS codes:
 - 1. $gcd(\Lambda, \Gamma) = 1$.
 - 2. deg $\Gamma = |J|-1,$ deg $\Lambda = |J| \leq \tau = \left\lfloor \frac{d-1}{2} \right\rfloor$
 - 3. $S(x)\Lambda(x) \equiv \Gamma(x) \pmod{x^{d-1}}$. Additionally: check that $\Lambda(0) = 1$.

Summary. Methods of decoding of GRS codes.

Step 1. Calculate syndrome polynomial of received word $\mathbf{y} \in \mathbb{F}^n$:

$$\mathbf{s}^{\mathsf{T}} = (s_0, s_1, \dots, s_{d-2})^{\mathsf{T}} = H \mathbf{y}^{\mathsf{T}}$$
$$S(x) = \sum_{l=0}^{d-2} s_l x^l \,.$$

Step 2. Solve the key equation.

Peterson-Gorenstein-Zierler

- Solve the third equation of the key equation by assuming $\Lambda(x) = \lambda_0 + \lambda_1 x + \dots + \lambda_\tau x^\tau$ and $\Gamma(x) = \gamma_0 + \gamma_1 x + \dots + \gamma_{\tau-1} x^{\tau-1}$ and equating coefficients of equal powers of x.¹
- Calculate d(x) = gcd(Λ(x), Γ(x)) and if deg d > 0 (i.e. if d(x) is not constant), divide both Λ(x) and Γ(x) by d(x):

$$\Lambda(x) \leftarrow \frac{\Lambda(x)}{d(x)}, \quad \Gamma(x) \leftarrow \frac{\Gamma(x)}{d(x)}$$

This will ensure the first equation in the key equation.

• If $c = \Lambda(0) \neq 1$, divide:

$$\Lambda(x) \leftarrow c^{-1} \cdot \Lambda(x), \quad \Gamma(x) \leftarrow c^{-1} \cdot \Gamma(x).$$

Step 3. <u>Calculate error values</u>.

Peterson-Gorenstein-Zierler

Find roots of $\Lambda(x)$. They are exactly $\{\alpha_j^{-1} \mid \text{there is error in position } j\}$. Calculate straightforward from definition of $\Gamma(x)$ the values of errors.

Euclid's algorithm

• Apply (extended) Euclid's algorithm (see the algorithm below) to

$$a(x) \leftarrow x^{d-1} \text{ and } b(x) \leftarrow S(x),$$

to produce

$$\Lambda(x) \leftarrow t_h(x) \text{ and } \Gamma(x) \leftarrow r_h(x),$$

where h is the smallest index i for which $\deg r_i < \frac{d-1}{2}$.

• If $c = \Lambda(0) \neq 1$, divide:

$$\Lambda(x) \leftarrow c^{-1} \cdot \Lambda(x), \quad \Gamma(x) \leftarrow c^{-1} \cdot \Gamma(x).$$

Forney's algorithm

For $j = 1, 2, \ldots, n$ calculate:

$$e_j = \begin{cases} -\frac{\alpha_j}{v_j} \cdot \frac{\Gamma(\alpha_j^{-1})}{\Lambda'(\alpha_j^{-1})} & \text{if } \Lambda(\alpha_j^{-1}) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Note. The methods in Step 2 and 3 can be combined voluntarily. For example, you could solve step 2 by Peterson-Gorenstein-Zierler and then step 3 - by Forney's algorithm; and so on.

¹This is equivalent to solving the following system of linear equations (in matrix form):

$\int s_0$	0	0	•••	0	0)	l l	(γ_0)
s_1	s_0	0	• • •	0	0		γ_1
:	÷	÷	۰.	÷	:	$\begin{pmatrix} \lambda_0 \\ \lambda_1 \end{pmatrix}$	
$s_{\tau-1}$	$s_{\tau-2}$	$s_{\tau-3}$		0	0	λ_2 _	$\gamma_{\tau-1}$
s_{τ}	$s_{\tau-1}$	$s_{\tau-2}$	• • •	s_1	s_0		0
$s_{\tau+1}$	$s_{ au}$	$s_{\tau-1}$	•••	s_2	s_1		0
	÷	÷	۰.	÷	÷	$\langle \lambda_{\tau} \rangle$	
$\langle s_{d-2} \rangle$	s_{d-3}	s_{d-4}		$s_{d-\tau-1}$	$s_{d-\tau-2}$		$\left(0 \right)$

Note that lower equations (below the line) do not involve γ coefficients so they can be solved first. Then, the obtained values can be used in the upper equations to find γ coefficients.

Extended Euclid's algorithm

$$\begin{array}{ll} r_{-1}(x) = a(x); & r_{0}(x) = b(x); \\ s_{-1}(x) = 1; & s_{0}(x) = 0; \\ t_{-1}(x) = 0; & t_{0}(x) = 1; \\ \textbf{for} \ (\ i = 1; \ r_{i-1}(x) \neq 0; \ i++ \) \ \{ & r_{i-2}(x) = \underline{q_{i}(x)} \cdot r_{i-1}(x) + \underline{r_{i}(x)}; \\ & s_{i-2}(x) = \overline{q_{i}(x)} \cdot s_{i-1}(x) + \underline{s_{i}(x)}; \ \leftarrow \ \text{not needed for decoding} \\ & t_{i-2}(x) = q_{i}(x) \cdot t_{i-1}(x) + \underline{t_{i}(x)}; \\ \} \end{array}$$

Note 1. Underlined values are to be found on *i*th iteration. Note that quotient $q_i(x)$ is the same during one iteration and it is defined from polynomial division with remainder of $r_{i-2}(x)$ by $r_{i-1}(x)$. Hence, you first find $q_i(x)$ and $r_i(x)$, and then use the obtained $q_i(x)$ to calculate $t_i(x)$.

Note 2. For decoding of GRS codes with (extended) Euclid's algorithm you don't need polynomials $s_i(x)$, so you can omit the second line inside the loop.

Note 3. It might be helpful to see the symmetry of the iterations – note that all $\{r_i(x)\}, \{s_i(x)\}\$ and $\{t_i(x)\}\$ are obtained recursively by the same rule from two preceding iterations.