## Decoding GRS codes with Euclid's algorithm + Forney's method

Reminder:

- Parity-check matrix of GRS code $(d-2=n-k-1)$ :

$$
H=\left(\begin{array}{cccc}
v_{1} & v_{2} & \ldots & v_{n} \\
v_{1} \alpha_{1} & v_{2} \alpha_{2} & \ldots & v_{n} \alpha_{n} \\
\vdots & \vdots & \vdots & \vdots \\
v_{1} \alpha_{1}^{d-2} & v_{2} \alpha_{2}^{d-2} & \ldots & v_{n} \alpha_{n}^{d-2}
\end{array}\right) .
$$

- We can calculate:

The syndrome of the received word $\mathbf{y} \in \mathbb{F}^{n}$ :

$$
\mathbf{s}^{\top}=\left(s_{0}, s_{1}, \ldots, s_{d-2}\right)^{\top}=H \mathbf{y}^{\top}
$$

and the syndrome polynomial:

$$
S(x)=\sum_{l=0}^{d-2} s_{l} x^{l}
$$

- Unknown values:

Error vector:

$$
\mathbf{e}=\mathbf{y}-\mathbf{c}, \quad J=\left\{j \mid e_{j} \neq 0\right\}-\text { positions of errors. }
$$

Error locator:

$$
\Lambda(x)=\prod_{j \in J}\left(1-\alpha_{j} x\right)
$$

Error evaluator:

$$
\Gamma(x)=\sum_{j \in J} e_{j} v_{j} \prod_{m \in J \backslash\{j\}}\left(1-\alpha_{m} x\right) .
$$

- Key equation of decoding of GRS codes:

1. $\operatorname{gcd}(\Lambda, \Gamma)=1$.
2. $\operatorname{deg} \Gamma=|J|-1, \operatorname{deg} \Lambda=|J| \leq \tau=\left\lfloor\frac{d-1}{2}\right\rfloor$
3. $S(x) \Lambda(x) \equiv \Gamma(x)\left(\bmod x^{d-1}\right)$.

Additionally: check that $\Lambda(0)=1$.

## Summary. Methods of decoding of GRS codes.

Step 1. Calculate syndrome polynomial of received word $\mathbf{y} \in \mathbb{F}^{n}$ :

$$
\begin{gathered}
\mathbf{s}^{\top}=\left(s_{0}, s_{1}, \ldots, s_{d-2}\right)^{\top}=H \mathbf{y}^{\top}, \\
S(x)=\sum_{l=0}^{d-2} s_{l} x^{l}
\end{gathered}
$$

Step 2. Solve the key equation.

## Peterson-Gorenstein-Zierler

- Solve the third equation of the key equation by assuming $\Lambda(x)=\lambda_{0}+\lambda_{1} x+\cdots+\lambda_{\tau} x^{\tau}$ and $\Gamma(x)=\gamma_{0}+\gamma_{1} x+\cdots+\gamma_{\tau-1} x^{\tau-1}$ and equating coefficients of equal powers of $x .^{1}$
- Calculate $d(x)=\operatorname{gcd}(\Lambda(x), \Gamma(x))$ and if $\operatorname{deg} d>0$ (i.e. if $d(x)$ is not constant), divide both $\Lambda(x)$ and $\Gamma(x)$ by $d(x)$ :

$$
\Lambda(x) \leftarrow \frac{\Lambda(x)}{d(x)}, \quad \Gamma(x) \leftarrow \frac{\Gamma(x)}{d(x)} .
$$

This will ensure the first equation in the key equation.

- If $c=\Lambda(0) \neq 1$, divide:

$$
\Lambda(x) \leftarrow c^{-1} \cdot \Lambda(x), \quad \Gamma(x) \leftarrow c^{-1} \cdot \Gamma(x) .
$$

Step 3. Calculate error values.

## Peterson-Gorenstein-Zierler

Find roots of $\Lambda(x)$. They are exactly $\left\{\alpha_{j}^{-1} \mid\right.$ there is error in position $\left.j\right\}$. Calculate straightforward from definition of $\Gamma(x)$ the values of errors.

## Euclid's algorithm

- Apply (extended) Euclid's algorithm (see the algorithm below) to

$$
a(x) \leftarrow x^{d-1} \text { and } b(x) \leftarrow S(x),
$$

to produce

$$
\Lambda(x) \leftarrow t_{h}(x) \text { and } \Gamma(x) \leftarrow r_{h}(x)
$$

where $h$ is the smallest index $i$ for which $\operatorname{deg} r_{i}<\frac{d-1}{2}$.

- If $c=\Lambda(0) \neq 1$, divide:

$$
\Lambda(x) \leftarrow c^{-1} \cdot \Lambda(x), \quad \Gamma(x) \leftarrow c^{-1} \cdot \Gamma(x)
$$

## Forney's algorithm

For $j=1,2, \ldots, n$ calculate:

$$
e_{j}= \begin{cases}-\frac{\alpha_{j}}{v_{j}} \cdot \frac{\Gamma\left(\alpha_{j}^{-1}\right)}{\Lambda^{\prime}\left(\alpha_{j}^{-1}\right)} & \text { if } \Lambda\left(\alpha_{j}^{-1}\right)=0 \\ 0 & \text { otherwise }\end{cases}
$$

Note. The methods in Step 2 and 3 can be combined voluntarily. For example, you could solve step 2 by Peterson-Gorenstein-Zierler and then step 3 - by Forney's algorithm; and so on.

[^0]Note that lower equations (below the line) do not involve $\gamma$ coefficients so they can be solved first. Then, the obtained values can be used in the upper equations to find $\gamma$ coefficients.

Extended Euclid's algorithm

$$
\begin{aligned}
& r_{-1}(x)=a(x) ; \quad r_{0}(x)=b(x) ; \\
& s_{-1}(x)=1 ; \quad s_{0}(x)=0 ; \\
& t_{-1}(x)=0 ; \quad t_{0}(x)=1 ; \\
& \text { for }\left(i=1 ; r_{i-1}(x) \neq 0 ; i++\right)\{ \\
& \quad r_{i-2}(x)=\underline{q_{i}(x)} \cdot r_{i-1}(x)+\underline{r_{i}(x) ;} \\
& \quad s_{i-2}(x)=\underline{q_{i}(x) \cdot s_{i-1}(x)+\underline{s_{i}(x)} ; \leftarrow \text { not needed for decoding }} \\
& \quad t_{i-2}(x)=q_{i}(x) \cdot t_{i-1}(x)+\underline{t_{i}(x)} ;
\end{aligned}
$$

Note 1. Underlined values are to be found on $i$ th iteration. Note that quotient $q_{i}(x)$ is the same during one iteration and it is defined from polynomial division with remainder of $r_{i-2}(x)$ by $r_{i-1}(x)$. Hence, you first find $q_{i}(x)$ and $r_{i}(x)$, and then use the obtained $q_{i}(x)$ to calculate $t_{i}(x)$.

Note 2. For decoding of GRS codes with (extended) Euclid's algorithm you don't need polynomials $s_{i}(x)$, so you can omit the second line inside the loop.

Note 3 . It might be helpful to see the symmetry of the iterations - note that all $\left\{r_{i}(x)\right\},\left\{s_{i}(x)\right\}$ and $\left\{t_{i}(x)\right\}$ are obtained recursively by the same rule from two preceding iterations.


[^0]:    ${ }^{1}$ This is equivalent to solving the following system of linear equations (in matrix form):

    $$
    \left(\begin{array}{cccccc}
    s_{0} & 0 & 0 & \cdots & 0 & 0 \\
    s_{1} & s_{0} & 0 & \cdots & 0 & 0 \\
    \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
    s_{\tau-1} & s_{\tau-2} & s_{\tau-3} & \cdots & 0 & 0 \\
    \hline s_{\tau} & s_{\tau-1} & s_{\tau-2} & \cdots & s_{1} & s_{0} \\
    s_{\tau+1} & s_{\tau} & s_{\tau-1} & \cdots & s_{2} & s_{1} \\
    \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
    s_{d-2} & s_{d-3} & s_{d-4} & \cdots & s_{d-\tau-1} & s_{d-\tau-2}
    \end{array}\right) \cdot\left(\begin{array}{c}
    \lambda_{0} \\
    \lambda_{1} \\
    \lambda_{2} \\
    \vdots \\
    \lambda_{\tau}
    \end{array}\right)=\left(\begin{array}{c}
    \gamma_{0} \\
    \gamma_{1} \\
    \vdots \\
    \gamma_{\tau-1} \\
    0 \\
    0 \\
    \vdots \\
    0
    \end{array}\right)
    $$

