
EECS 495: Combinatorial Optimization Lecture 4
Matching: Edmonds-Gallai Decomposition, Matching Polytope,
TDI

Reading: Schrijver, Chapter 25

Recap

Theorem 0.1 (Tutte-Berge Formula): For
any graph G, ν(G) = minU⊆V (|V | + |U | −
o(G− U))/2.

Def: U is a Tutte-Berge witness if ν(G) =
(|V |+ |U | − o(G− U))/2.

Def: The Edmonds-Gallai decomposition
partitions the vertices V of a graph G into
sets

• D(G) – set of vertices v such that v is
exposed by some maximum matching,

• A(G) – set of neighbors of D(G), and

• C(G) – set of all remaining vertices.

Construction: vertices reachable by odd/even
alternating paths from a vertex v ∈ X.

Let M be matching returned by Edmonds’
Algorithm, X be exposed vertices.

• Even := {v : ∃ even alternating path
from X to v} = D(G), odd compoents
in G− U and factor critical

• Odd := {v : ∃ odd alternating path from
X to v and no even one} = A(G)

• Free := {v :6 ∃ alternating path from X
to v} = C(G), even components in G−U

Claim: There is no edge between Even and
Free.

Claim: There is no edge within Even in G0.

Claim: C(G) is even components.

Proof: We proved no edge between Even and
Free, so M matches vertices of C(G) to ver-
tices of C(G) so |M ∩E(C(G))| = |C(G)|/2.

Claim: D(G) is odd components, each of
which is factor-critical.

Proof: For every connected component H of
(G− U) ∩D(G), we show:

1. Either |X ∩H| = 1 and |M ∩ δ(H)| = 0,
or |X ∩ H| = 0 and |M ∩ δ(H)| = 1
(where δ(H) is edges with exactly one
endpoint in H).
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2. H is factor-critical.

Tutte-Berge Witnesses

Theorem 0.2 U = A(G) is a Tutte-Berge
witness.

Proof: Want to show

|M | ≥ 1

2
(|V |+ |A(G)| − o(G \ A(G))

(other direction always holds). Note that

|M | ≥

|M∩E(C(G))|+|M∩E(D(G))|+|M∩δ(A(G))|

and

• we showed |M ∩ E(C(G))| = |C(G)|/2

• previous proof, first subclaim, showed
|M ∩ E(D(G))| = 1

2
(|D(G)| − o(G \

A(G))) (each component leaves one un-
matched or matched to outside)

• |M ∩ δ(A(G))| = |A(G)| since all v ∈
A(G) matched to vertices of D(G) (if not
can grow matching)

so have

1

2
(|C(G)|+ |D(G)|+ 2|A(G)| − o(G \ A(G)))

=
1

2
(|V |+ |A(G)| − o(G \ A(G)))

as claimed.

Matching Polytope

Def: For a matching M ⊆ E, define its inci-
dence vector χ(M) ∈ <|E| to be χ(M)e = 1 if
e ∈ M , 0 otherwise. The matching polytope
P is the convex hull of incidence vectors of
matchings.

Goal: Represent P by set of linear inequali-
ties on variables {xe}.
Question: Come up with some inequalities.

• xe ≥ 0

• x(δ(v)) =
∑

e∈δ(v) xe ≤ 1: each vertex
has at most one adjacent edge

Call this polytope P1.

Note: P ⊆ P1

Example: P1 is not contained in P : triangle

• P = conv{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}

• (0.5, 0.5, 0.5) ∈ P1 but not in P

Question: Additional constraint?

Def: The blossom constraints are

x(E(U)) =
∑

e∈E(U)

xe ≤
|U | − 1

2
, U ⊆ V, |U | odd.

The polytop P2 is P1 together with the blos-
som constraints.

Theorem 0.3 (Edmonds, 1965): P2 equals
the matching polytope P.

[[
Edmonds gave algorithmic proof, we use
TDI.

]]
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Total Dual Integrality

Recall primal/dual LPs:

Primal P :

max cTx s.t. Ax ≤ b

Dual D:

min bTy s.t. ATy = c and y ≥ 0

Def: A linear system {Ax ≤ b} is totally dual
integral (TDI) if for any integral cost vector
for the primal such that max cTx,Ax ≤ b is
finite, there exists an integral optimal dual
solution.

Theorem 0.4 (Edmonds-Giles, 1979): If a
system {Ax ≤ b} is TDI and b is integral,
then {Ax ≤ b} is integral (i.e., the extreme
points are integral).

[[We will prove this later. ]]

Note: We will show P2 is TDI and hence is
convex hull of all integral points contained in
it, proving that P2 = P .

Polyhedral combinatorics:

• define Ax ≤ b and show integral with
vertices corresponding to certain combi-
natorial objects.

• show system is TDI so dual has integral
solution as well.

• find combinatorial interpretation for
dual to get min-max theorem, or also
helps design primal-dual algs by dis-
cretizing space.[[

Rational polyhedra have TDI representa-
tions.

]]
Theorem 0.5 (Giles-Pullyblank, 1979):
For a rational polyhedron P, there ex-
ist A and b with A integral such that
P = {x : Ax ≤ b} and the system is TDI.

Note: b integral iff P integral

Example: P =
conv{(0, 3), (2, 2), (0, 0), (3, 0)}
Representation: {x, y : x ≥ 0, y ≥ 0, x+2y ≤
6, 2x+ y ≤ 6}
Draw figure.

Suppose c = (1, 1). Primal opt is (2, 2) and
tight constraints are (1, 2) and (2, 1).[[

Tight constraints are of A, i.e., normals
of facets at (2, 2).

]]
Thus for ATy = c to have integer solution,
must be able to write c as integer combination
of (1, 2) and (2, 1).[[

Tight constraints in opt primal soln are
non-zero variables in opt dual soln.

]]
Question: Make TDI with new representa-
tion?

Representation: add inequalities x + y ≤
4, x, y,≤ 3, becomes TDI.

Hilbert Basis

Question: When is a system TDI? Consider
problem max{cx : Ax ≤ b} with c integral
and opt soln β <∞.

• There’s opt soln x∗ in some face F de-
fined by {Ax ≤ b} and cx = β.

• Suppose F is an extreme point, let A′x ≤
b′ be inequalities tight at x∗ (i.e., A′x∗ =
b′).

• Dual is min{bTy : ATy = c, y ≥ 0} so opt
dual corresponds to c being expressible
as non-neg combination of row vectors,
i.e., the cone of row vectors of A′.

• For y to be integral, must be able to ex-
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press points in cone as integer combina-
tions.

Def: A set of vectors {ai : ai ∈ Zn} is a
Hilbert basis if for any integral c ∈ cone(ai) =
{
∑

i λiai : λi ≥ 0}, there exist non-negative
integers µi such that c =

∑
i µiai.

Example: For vertex (3, 0) above, tight con-
straints {(1, 2), (−1, 0), (0, 1)} form a Hilbert
basis.

λ1− λ2 = c1 and 2λ1 + λ3 = c2 so for λ1 > 0,
c2/c1 ≥ 2 and we can get all these. For λ1 =
0, λ2, λ3 are non-neg integers if c integral, so
we can get all these too.

Theorem 0.6 The rational system Ax ≤ b
is TDI iff for each face (actually sufficient
to check for each extreme point), tight con-
straints form a Hilbert basis.[[

Follows by above observations, i.e., LP-
duality.

]]
We can always add constraints to make it
TDI:

Theorem 0.7 Any rational polyhedral cone
C = {

∑
i λiai : λi ≥ 0, λi ∈ R} with {ai}

integral has a finite integral Hilbert basis.

Proof:

Let Q = {
∑

i λiai : 0 ≤ λi ≤ 1} and note for
any integral c ∈ C,

c =
∑
i

λiai

=
∑
i

(λi − bλic)ai +
∑
i

bλicai

Call this z + w. Note

• w integral since ai and bλic are

• c integral by assumption hence z is too

• z ∈ Q

• ai ∈ Q

• thus w integral combination of integral
vectors in Q

• so c = z+w is also integral combination
of integral vectors in Q

and therefore Q ∩ Zn is a finite integral
Hilbert basis for C.

Note: In fact don’t need to assume {ai} in-
tegral, follows from rationality of cone.

[[We are now ready to prove main theorem.]]

Claim: (Edmonds-Giles, 1979): If a sys-
tem {Ax ≤ b} is TDI and b is integral, then
{Ax ≤ b} is integral.

Proof: By contradiction.

• Consider extreme point x∗ of P s.t. x∗j 6∈
Z for some j.

• Let c be integral vector s.t. x∗ unique opt
by picking rational vector in cone at x∗

and scaling.

• Consider ĉ = c+ 1
q
ej (inside cone for large

enough q).

• Since qĉTx∗ − qcTx∗ = x∗j 6∈ Z, either
qĉTx∗ or qcTx∗ not integral.

• By duality and fact that b is integral, one
of corresponding dual soln ŷ or y not in-
tegral.

• Contradicts TDI since both qĉ and qc in-
tegral.
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