EECS 495: Combinatorial Optimization Lecture 4 Matching: Edmonds-Gallai Decomposition, Matching Polytope, TDI

Reading: Schrijver, Chapter 25

Recap

Theorem 0.1 (Tutte-Berge Formula): For any graph $G, \nu(G)=\min _{U \subseteq V}(|V|+|U|-$ $o(G-U)) / 2$.

Def: U is a Tutte-Berge witness if $\nu(G)=$ $(|V|+|U|-o(G-U)) / 2$.

Def: The Edmonds-Gallai decomposition partitions the vertices V of a graph G into sets

- $D(G)$ - set of vertices v such that v is exposed by some maximum matching,
- $A(G)$ - set of neighbors of $D(G)$, and
- $C(G)$ - set of all remaining vertices.

Construction: vertices reachable by odd/even alternating paths from a vertex $v \in X$.

Let M be matching returned by Edmonds' Algorithm, X be exposed vertices.

- Even $:=\{v: \exists$ even alternating path from X to $v\}=D(G)$, odd compoents in $G-U$ and factor critical
- Odd $:=\{v: \exists$ odd alternating path from X to v and no even one $\}=A(G)$

- Free $:=\{v: \nexists$ alternating path from X to $v\}=C(G)$, even components in $G-U$

Claim: There is no edge between Even and Free.

Claim: There is no edge within Even in G_{0}.
Claim: $C(G)$ is even components.
Proof: We proved no edge between Even and Free, so M matches vertices of $C(G)$ to vertices of $C(G)$ so $|M \cap E(C(G))|=|C(G)| / 2$. Claim: $D(G)$ is odd components, each of which is factor-critical.

Proof: For every connected component H of $(G-U) \cap D(G)$, we show:

1. Either $|X \cap H|=1$ and $|M \cap \delta(H)|=0$, or $|X \cap H|=0$ and $|M \cap \delta(H)|=1$ (where $\delta(H)$ is edges with exactly one endpoint in H).
2. H is factor-critical.

Tutte-Berge Witnesses

Theorem 0.2 $U=A(G)$ is a Tutte-Berge witness.

Proof: Want to show
$|M| \geq \frac{1}{2}(|V|+|A(G)|-o(G \backslash A(G))$
(other direction always holds). Note that

$$
|M| \geq
$$

$|M \cap E(C(G))|+|M \cap E(D(G))|+|M \cap \delta(A(G))|$
and

- we showed $|M \cap E(C(G))|=|C(G)| / 2$
- previous proof, first subclaim, showed $|M \cap E(D(G))|=\frac{1}{2}(|D(G)|-o(G \backslash$ $A(G))$) (each component leaves one unmatched or matched to outside)
- $|M \cap \delta(A(G))|=|A(G)|$ since all $v \in$ $A(G)$ matched to vertices of $D(G)$ (if not can grow matching)
so have

$$
\begin{aligned}
& \frac{1}{2}(|C(G)|+|D(G)|+2|A(G)|-o(G \backslash A(G))) \\
& \quad=\frac{1}{2}(|V|+|A(G)|-o(G \backslash A(G)))
\end{aligned}
$$

as claimed.

Matching Polytope

Def: For a matching $M \subseteq E$, define its incidence vector $\chi(M) \in \Re^{|E|}$ to be $\chi(M)_{e}=1$ if $e \in M, 0$ otherwise. The matching polytope \mathcal{P} is the convex hull of incidence vectors of matchings.
Goal: Represent \mathcal{P} by set of linear inequalities on variables $\left\{x_{e}\right\}$.
Question: Come up with some inequalities.

- $x_{e} \geq 0$
- $x(\delta(v))=\sum_{e \in \delta(v)} x_{e} \leq 1$: each vertex has at most one adjacent edge

Call this polytope P_{1}.
Note: $\mathcal{P} \subseteq P_{1}$
Example: P_{1} is not contained in \mathcal{P} : triangle

- $\mathcal{P}=\operatorname{conv}\{(1,0,0),(0,1,0),(0,0,1),(0,0,0)\}$
- $(0.5,0.5,0.5) \in P_{1}$ but not in \mathcal{P}

Question: Additional constraint?
Def: The blossom constraints are
$x(E(U))=\sum_{e \in E(U)} x_{e} \leq \frac{|U|-1}{2}, U \subseteq V,|U|$ odd.
The polytop P_{2} is P_{1} together with the blossom constraints.

Theorem 0.3 (Edmonds, 1965): P_{2} equals the matching polytope \mathcal{P}.
$\left[\left[\begin{array}{l}\text { Edmonds gave algorithmic proof, we use } \\ T D I .\end{array}\right]\right.$

Total Dual Integrality

Recall primal/dual LPs:
Primal P :
$\max c^{T} x$ s.t. $A x \leq b$
Dual D :
$\min b^{T} y$ s.t. $A^{T} y=c$ and $y \geq 0$
Def: A linear system $\{A x \leq b\}$ is totally dual integral (TDI) if for any integral cost vector for the primal such that $\max c^{T} x, A x \leq b$ is finite, there exists an integral optimal dual solution.

Theorem 0.4 (Edmonds-Giles, 1979): If a system $\{A x \leq b\}$ is TDI and b is integral, then $\{A x \leq b\}$ is integral (i.e., the extreme points are integral).
[[We will prove this later.
Note: We will show P_{2} is TDI and hence is convex hull of all integral points contained in it, proving that $P_{2}=\mathcal{P}$.

Polyhedral combinatorics:

- define $A x \leq b$ and show integral with vertices corresponding to certain combinatorial objects.
- show system is TDI so dual has integral solution as well.
- find combinatorial interpretation for dual to get min-max theorem, or also helps design primal-dual algs by discretizing space.

Theorem 0.5 (Giles-Pullyblank, 1979): For a rational polyhedron \mathcal{P}, there exist A and b with A integral such that $\mathcal{P}=\{x: A x \leq b\}$ and the system is TDI.

Note: b integral iff \mathcal{P} integral
Example: $\mathcal{P}=$ $\operatorname{conv}\{(0,3),(2,2),(0,0),(3,0)\}$
Representation: $\{x, y: x \geq 0, y \geq 0, x+2 y \leq$ $6,2 x+y \leq 6\}$
Draw figure.
Suppose $c=(1,1)$. Primal opt is $(2,2)$ and tight constraints are $(1,2)$ and $(2,1)$.
$\left[\left[\begin{array}{l}\text { Tight constraints are of } A \text {, i.e., normals } \\ \text { of facets at }(2,2) \text {. }\end{array}\right]\right]$ Thus for $A^{T} y=c$ to have integer solution, must be able to write c as integer combination of $(1,2)$ and $(2,1)$.
$\left[\left[\begin{array}{l}\text { Tight constraints in opt primal soln are } \\ \text { non-zero variables in opt dual soln. }\end{array}\right]\right]$
Question: Make TDI with new representation?

Representation: add inequalities $x+y \leq$ $4, x, y, \leq 3$, becomes TDI.

Hilbert Basis

Question: When is a system TDI? Consider problem $\max \{c x: A x \leq b\}$ with c integral and opt soln $\beta<\infty$.

- There's opt soln x^{*} in some face F defined by $\{A x \leq b\}$ and $c x=\beta$.
- Suppose F is an extreme point, let $A^{\prime} x \leq$ b^{\prime} be inequalities tight at x^{*} (i.e., $A^{\prime} x^{*}=$ $\left.b^{\prime}\right)$.
- Dual is $\min \left\{b^{T} y: A^{T} y=c, y \geq 0\right\}$ so opt dual corresponds to c being expressible as non-neg combination of row vectors, i.e., the cone of row vectors of A^{\prime}.
- For y to be integral, must be able to ex-
press points in cone as integer combinations.

Def: A set of vectors $\left\{a_{i}: a_{i} \in \mathcal{Z}^{n}\right\}$ is a Hilbert basis if for any integral $c \in \operatorname{cone}\left(a_{i}\right)=$ $\left\{\sum_{i} \lambda_{i} a_{i}: \lambda_{i} \geq 0\right\}$, there exist non-negative integers μ_{i} such that $c=\sum_{i} \mu_{i} a_{i}$.
Example: For vertex $(3,0)$ above, tight constraints $\{(1,2),(-1,0),(0,1)\}$ form a Hilbert basis.
$\lambda_{1}-\lambda_{2}=c_{1}$ and $2 \lambda_{1}+\lambda_{3}=c_{2}$ so for $\lambda_{1}>0$, $c_{2} / c_{1} \geq 2$ and we can get all these. For $\lambda_{1}=$ $0, \lambda_{2}, \lambda_{3}$ are non-neg integers if c integral, so we can get all these too.

Theorem 0.6 The rational system $A x \leq b$ is TDI iff for each face (actually sufficient to check for each extreme point), tight constraints form a Hilbert basis.
$\left[\left[\begin{array}{l}\text { Follows by above observations, i.e., } \\ \text { duality. }\end{array}\right]\right]$
We can always add constraints to make it TDI:

Theorem 0.7 Any rational polyhedral cone $C=\left\{\sum_{i} \lambda_{i} a_{i}: \lambda_{i} \geq 0, \lambda_{i} \in \mathcal{R}\right\}$ with $\left\{a_{i}\right\}$ integral has a finite integral Hilbert basis.

Proof:

Let $Q=\left\{\sum_{i} \lambda_{i} a_{i}: 0 \leq \lambda_{i} \leq 1\right\}$ and note for any integral $c \in C$,

$$
\begin{gathered}
c=\sum_{i} \lambda_{i} a_{i} \\
=\sum_{i}\left(\lambda_{i}-\left\lfloor\lambda_{i}\right\rfloor\right) a_{i}+\sum_{i}\left\lfloor\lambda_{i}\right\rfloor a_{i}
\end{gathered}
$$

Call this $z+w$. Note

- w integral since a_{i} and $\left\lfloor\lambda_{i}\right\rfloor$ are
- c integral by assumption hence z is too
- $z \in Q$
- $a_{i} \in Q$
- thus w integral combination of integral vectors in Q
- so $c=z+w$ is also integral combination of integral vectors in Q
and therefore $Q \cap \mathcal{Z}^{n}$ is a finite integral Hilbert basis for C.

Note: In fact don't need to assume $\left\{a_{i}\right\}$ integral, follows from rationality of cone.
[[We are now ready to prove main theorem.]]
Claim: (Edmonds-Giles, 1979): If a system $\{A x \leq b\}$ is TDI and b is integral, then $\{A x \leq b\}$ is integral.
Proof: By contradiction.

- Consider extreme point x^{*} of P s.t. $x_{j}^{*} \notin$ \mathcal{Z} for some j.
- Let c be integral vector s.t. x^{*} unique opt by picking rational vector in cone at x^{*} and scaling.
- Consider $\hat{c}=c+\frac{1}{q} e_{j}$ (inside cone for large enough q).
- Since $q \hat{c}^{T} x^{*}-q c^{T} x^{*}=x_{j}^{*} \notin \mathcal{Z}$, either $q \hat{c}^{T} x^{*}$ or $q c^{T} x^{*}$ not integral.
- By duality and fact that b is integral, one of corresponding dual soln \hat{y} or y not integral.
- Contradicts TDI since both $q \hat{c}$ and $q c$ integral.

