EECS 495: Combinatorial Optimization
Matching: Edmonds-Gallai Decomposition, Matching Polytope,

TDI

Lecture 4

Reading: Schrijver, Chapter 25

Recap

Theorem 0.1 (Tutte-Berge Formula): For
any graph G, v(G) = minycy(|V| + |U| —
o(G—-U))/2.

Def: U is a Tutte-Berge witness if v(G) =
(IVI+ U] = o(G = U))/2.

Def: The FEdmonds-Gallai decomposition
partitions the vertices V of a graph G into
sets

e D(G) — set of vertices v such that v is
exposed by some maximum matching,

e A(G) — set of neighbors of D(G), and

e ((G) — set of all remaining vertices.

Construction: vertices reachable by odd/even
alternating paths from a vertex v € X.

Let M be matching returned by Edmonds’
Algorithm, X be exposed vertices.

e Even := {v : 3 even alternating path
from X to v} = D(G), odd compoents
in G — U and factor critical

e Odd := {v : 3 odd alternating path from
X to v and no even one} = A(G)

e Free := {v : A alternating path from X
tov} = C(G), even components in G—U

Claim: There is no edge between Even and
Free.

Claim: There is no edge within Even in Gj.

Claim: C(G) is even components.

Proof: We proved no edge between Even and
Free, so M matches vertices of C'(G) to ver-

tices of C(G) so |[M N E(C(G))| = |C(G)|/2.

Claim: D(G) is odd components, each of
which is factor-critical.

Proof: For every connected component H of
(G —U)N D(G), we show:

1. Either [ XNH|=1and |[MNé(H)| =0,
or [ XNH| =0and [MN§H) =1
(where §(H) is edges with exactly one
endpoint in H).



2. H is factor-critical.

Tutte-Berge Witnesses

Theorem 0.2 U = A(G) is a Tutte-Berge
witness.

Proof: Want to show
1
[M] 2 S(IVI+AG)] = oG\ A(G))
(other direction always holds). Note that
| M| =
|MOE(C(G))[+|MNE(D(G))[+|MNi(A(G))|
and
e we showed |M N E(C(G))| = |C(G)]/2
e previous proof, first subclaim, showed
M 0 ED(G) = 3(D(@)] = oG\
A(G))) (each component leaves one un-
matched or matched to outside)
o |[MNJIAG))| = |A(G)| since all v €

A(G) matched to vertices of D(G) (if not
can grow matching)

so have

(IC(G)] + [D(G)] + 2|A(G)] = oG\ A(G)))

N —

_ % (V] +|A(G)| — o(G\ A(G)))

as claimed.

Matching Polytope

Def: For a matching M C FE| define its inci-
dence vector x(M) € RIF! to be x(M), = 1 if
e € M, 0 otherwise. The matching polytope
P is the convex hull of incidence vectors of
matchings.

Goal: Represent P by set of linear inequali-
ties on variables {z.}.

Question: Come up with some inequalities.

o . >0

o z(0(v)) = D ehw) Te < 1t each vertex
has at most one adjacent edge

Call this polytope P;.
Note: P C P,

Example: P is not contained in P: triangle
e P = conv{(1,0,0),(0,1,0),(0,0,1),(0,0,0)}
e (0.5,0.5,0.5) € P, but not in P

Question: Additional constraint?

Def: The blossom constraints are

Ul-1
<

BU)= )

ecE(U)

U C V,|U| odd.

The polytop P, is P; together with the blos-
som constraints.

Theorem 0.3 (Edmonds, 1965): P, equals
the matching polytope P.

HEdmonds gave algorithmic proof, we usc”
TDI.



Total Dual Integrality

Recall primal/dual LPs:

Primal P:

max ¢’z s.t. Ax <b

Dual D:

min b7y s.t. ATy =cand y >0

Def: A linear system { Az < b} is totally dual
integral (TDI) if for any integral cost vector
for the primal such that max 'z, Az < b is
finite, there exists an integral optimal dual
solution.

Theorem 0.4 (Edmonds-Giles, 1979): If a
system {Ax < b} is TDI and b is integral,
then {Ax < b} is integral (i.e., the extreme
points are integral).

[[We will prove this later. ]

Note: We will show P, is TDI and hence is
convex hull of all integral points contained in
it, proving that P, = P.

Polyhedral combinatorics:

e define Arx < b and show integral with
vertices corresponding to certain combi-
natorial objects.

e show system is TDI so dual has integral
solution as well.

e find combinatorial interpretation for
dual to get min-max theorem, or also
helps design primal-dual algs by dis-
cretizing space.

HRational polyhedra have TDI repfr'esenta-”
tions.

Theorem 0.5 (Giles-Pullyblank, 1979):
For a rational polyhedron P, there ex-
ist A and b with A integral such that
P ={x: Az < b} and the system is TDI.

Note: b integral iff P integral

Example: P —
conv{(0,3),(2,2),(0,0),(3,0)}

Representation: {z,y:x >0,y > 0,2+2y <
6,2x+y <6}

Draw figure.

Suppose ¢ = (1,1). Primal opt is (2,2) and
tight constraints are (1,2) and (2, 1).

Tight constraints are of A, i.e., normals
of facets at (2,2).

Thus for ATy = ¢ to have integer solution,
must be able to write c as integer combination
of (1,2) and (2,1).

Tight constraints in opt primal soln are
non-zero variables in opt dual soln.

Question: Make TDI with new representa-
tion?

Representation: add inequalities x + y <
4, x,y,< 3, becomes TDI.

Hilbert Basis

Question: When is a system TDI? Consider
problem max{cx : Az < b} with ¢ integral
and opt soln 3 < oo.

e There’s opt soln z* in some face F' de-

fined by {Az < b} and cz = S.

e Suppose F'is an extreme point, let A’z <
b’ be inequalities tight at z* (i.e., A'z* =
b).

e Dualis min{b’y : ATy = c,y > 0} so opt
dual corresponds to ¢ being expressible
as non-neg combination of row vectors,
i.e., the cone of row vectors of A’.

e For y to be integral, must be able to ex-



press points in cone as integer combina-
tions.

Def: A set of vectors {a; : a; € Z"} is a
Hilbert basis if for any integral ¢ € cone(a;) =
{>°; Nia; = A; > 0}, there exist non-negative
integers p; such that ¢ =Y. y,a;.

Example: For vertex (3,0) above, tight con-
straints {(1,2), (—1,0),(0,1)} form a Hilbert
basis.

A — Ay = ¢ and 2\ + A3 = ¢5 so for Ay > 0,
ca/c1 > 2 and we can get all these. For A\ =
0, A2, A3 are non-neg integers if ¢ integral, so
we can get all these too.

Theorem 0.6 The rational system Ax < b
is TDI iff for each face (actually sufficient
to check for each extreme point), tight con-
straints form a Hilbert basis.

Follows by above observations, i.e., LP-
[

duality.
We can always add constraints to make it
TDI:
Theorem 0.7 Any rational polyhedral cone

integral has a finite integral Hilbert basis.

Proof:

Let Q = {>_, \ia; : 0 < \; < 1} and note for
any integral ¢ € C,

C = Z )\iai
=2 = AiDait 3 ila

Call this z + w. Note

e w integral since a; and | \;] are

¢ integral by assumption hence z is too

z2€Q

e a4, €(Q

e thus w integral combination of integral
vectors in @)

® s0 ¢ = z+w is also integral combination
of integral vectors in )

and therefore Q N Z" is a finite integral
Hilbert basis for C'.

Note: In fact don’t need to assume {a;} in-
tegral, follows from rationality of cone.

[[We are now ready to prove main theorem.|]

Claim: (Edmonds-Giles, 1979): If a sys-
tem {Ax < b} is TDI and b is integral, then
{Ax < b} is integral.

Proof: By contradiction.

Consider extreme point * of P s.t. 2} ¢
Z for some j.

e Let ¢ be integral vector s.t. z* unique opt
by picking rational vector in cone at x*
and scaling.

e Consider ¢ = c—i—%ej (inside cone for large
enough q).

e Since q¢'z* — qc’s* = x} € Z, either
qgeTz* or qc’x* not integral.

e By duality and fact that b is integral, one
of corresponding dual soln 3 or y not in-
tegral.

e Contradicts TDI since both ¢¢ and qc in-
tegral.



