Discussion Dec 11

Motivation for SVD is representing A which is $n \times d$ by a low-rank matrix A_{k} which is $n \times d$.

Objective is to minimize:

$$
\sum_{i=1}^{n} A_{i}-a_{i}
$$

where $a_{i}=\operatorname{argmin}_{v \in \operatorname{span}\left(\operatorname{rows}\left(A_{k}\right)\right)}\left\|A_{i}-v\right\|_{2}$

Problem 2 (Part 1)

Show that for any matrix A we have $\sigma_{k} \leq \frac{\|A\|_{F}}{\sqrt{k}}$.

$$
\|A\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{d} a_{i j}^{2}=\sum_{i=1}^{r} \sigma_{i}^{2}
$$

where r is rank of A.
Suffices to show that $\sigma_{k}^{2} \leq \frac{\|A\|_{F}^{2}}{k}$. Suppose this is not the case then we have

$$
\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{k}^{2}>\|A\|_{F}^{2}
$$

- $\|A\|_{F}^{2}=\sum_{i=1}^{r} \sigma_{i}^{2}=\|\sigma\|_{2}^{2}$
- $\|A\|_{2}=\|\sigma\|_{\infty}$
- For square A we have $\operatorname{Tr}(A)=\sum_{i=1}^{n} \lambda_{i}$

Problem 2 (Part 2)

Prove that for every A there exists a matrix B of rank at most k such that:

$$
\|A-B\|_{2}=\sigma_{k+1} \leq \frac{\|A\|_{F}}{\sqrt{k+1}}
$$

Proof: pick $B=A_{k}$, where A_{k} is the best rank- k approximation for A constructed via SVD.

Problem 2 (Part 3)

Is it true that for every matrix A there exists a matrix B of rank at most k such that:

$$
\|A-B\|_{F} \leq \frac{\|A\|_{F}}{\sqrt{k}} ?
$$

Let's take $A=I$. Then $\|A\|_{F}=\sqrt{n}$. We know that among all matrices B of rank at most k it holds that:

$$
\left\|A-A_{k}\right\|_{F} \leq\|A-B\|_{F},
$$

where A_{k} is truncated SVD.

Problem 3

Let's construct a square matrix $A^{T} A$ of size $d \times d$. In lectures we suggest computing $\left(A^{T} A\right)^{n}$ for large enough n. If A is sparse this might not be taking a full advantage of sparsity.

Let's take a vector x and instead compute:

$$
\begin{gathered}
\left(A^{T} A\right)^{n} x \\
A^{T} A A^{T}\left(A \ldots\left(A^{T}(A x)\right)\right)
\end{gathered}
$$

So we have $2 n$ multiplications by a sparse matrix A which can be done in $n n z(A)$ time each, where $n n z(A)$ is the number of non-zero elements in A.

