EECS 495: Combinatorial Optimization
Matching: TDI, Cunningham-Marsh

Lecture 5

Reading: Schrijver, Chapter 25

Recap

Primal P:

max clx s.t. Az <b

Dual D:

min b7y s.t. ATy =candy >0

Def: A linear system {Ax < b} is totally dual
integral (TDI) if for any integral cost vector
for the primal such that max ¢z, Az < b is
finite, there exists an integral optimal dual
solution.

Theorem 0.1 (Edmonds-Giles, 1979): If a
system {Ax < b} is TDI and b is integral,
then {Ax < b} is integral (i.e., the extreme
points are integral).

Theorem 0.2 (Giles-Pullyblank, 1979):
For a rational polyhedron P, there ex-
ist A and b with A integral such that
P ={x: Az < b} and the system is TDI.

Def: A set of vectors {a; : a; € Z"} is a
Hilbert basis if for any integral ¢ € cone(a;) =
{>°; Nia; + A; > 0}, there exist non-negative
integers y; such that ¢ = ). p;a;.

Theorem 0.3 The rational system Ax < b
is TDI iff for each face (actually sufficient
to check for each extreme point), tight con-
straints form a Hilbert basis.

Theorem 0.4 Any rational polyhedral cone
C ={>Nai : A > 0.\ € R} with {a;}

integral has a finite integral Hilbert basis.

Note: In fact don’t need to assume {a;} in-
tegral, follows from rationality of cone.

Integrality of Polytopes

Theorem 0.5 (Edmonds-Giles, 1979): If a
system {Azx < b} is TDI and b is integral,
then {Ax < b} is integral (i.e., the extreme
points are integral).

Proof: By contradiction.

e Consider extreme point z* of P s.t. 7 &
Z for some j.

e Let ¢ be integral vector s.t. z* unique opt
by picking rational vector in cone at x*
and scaling.

e Consider ¢ = c+%e]~ (inside cone for large
enough q).

e Since ¢’z — qc'z* =z} ¢ Z, either
qgéTz* or qcfx* not integral.

e By duality and fact that b is integral, one
of corresponding dual soln 3 or y not in-
tegral.

e Contradicts TDI since both ¢¢ and gc in-
tegral.



Matching Polytope

Def: The matching polytope Py is the con-
vex hull of incidence vectors x(M) € {0, 1}IZ
of matchings M where x(M), =1ife € M
and 0 otherwise.

Def: P (P, from last lecture) is:
oz, >0,eckE
o 2(0(v))

o 2(E(U)) =
V,|U| odd

= Zeeé(v) Te < 17,0 eV

|U]-1
ZeeE(U)xe < —5U ¢

we use Cunningham-Marsh, arque that
Ps is TDI.
Primal:

max ¢’z s.t.

2665(11) Te S 1,\V/U eV
D een) Te < |U|2717VU C V,|U| odd
r, > 0,Vee FE

Dual (variables y, for v € V, zy for U C V
odd):

Edmonds gave algorithmic proof of thz’s;”

: |U|-1
min gy, Yo + Dy oda g 2U St

Yu + Yo + Z|U| odd,cc B(U) U = Ce, Ve EF
Yy, 220

[[TDI says... 1]

Theorem 0.6 (Cunningham-Marsh, 1978)
For all ¢ € Z! there exists an integral dual
solution y, z with value D(y, z) < v(c) (where
v(v) is max cost matching).

Why’s this prove TDI, i.e., why are we
not implicitly assuming primal value is
v(c) and hence primal is the matching
polytope? I think because duality says pri-
mal can’t be more than dual...
Proof: By induction on |[V|+ |E|+ )", c.
(recall ¢ integral).

e Assume ¢, > 1 (else delete e) and G con-

nected (else prove for components).

e Base case (|V| = 2,|E| = 1,¢c. > 1): set

Yu = Ce and 1, 2y = 0.

e Case 1: dv € V s.t. every max cost

matching for ¢ covers v.

— Modify costs ¢, = ¢, for e & 6(v)
and ¢, = ¢, — 1 for e € §(v).

— Note v(¢) =v(c) — 1.

— By induction, exist integral i/, 2’

feasible for dual with ¢ s.t.

D(y,z") <v(d).

— Let y, = v, + 1 and y, = y, for
u# v, and z = 2.

— Note y, z feasible since only con-
straints for e € §(v) changed, and

for those both ¢, and y, increased
by 1 from ¢, and y,,.

— Note further that D(y,z) =
D(y'z)+1<v(d)+1=v(c).

Case 2: Vv,d max cost matching for ¢
that does not cover v.

Let ¢, =c.—1foralle € FE.

We show all max matchings M for ¢ miss
at least one vertex.

Let M be max matching for ¢ with | M|
as large as possible.

Suppose M covers all vertices.

Let N be max matching for ¢ that does
not cover some vertex.

(N) = e(N) = IN| > e(N) — [M] >
c(M)—|M| =d(M) = v(d) (first in-
equality because M covers all vertices
and N misses at least one)



e (Case 2a: Suppose 3 max matching M for
¢ st M| =M= (e, [V] odd and M
misses exactly one vertex).

By induction, exist integral 7/, 2z’
s.t. D(y, 2') < v(d).
Let zy = 21, + 1 and zy = z; for all
other U C V;y =1
zy in every constraint and both zy

and ¢, increased by one, so vy, z fea-
sible.

Also, D(y,z) = DV, 7') + W'T_l <
v(d) + ‘V‘T_l < v(c) (last inequal-
ity follows because can use match-
ing for ¢ as matching for ¢)

e Case 2b: All max cost matchings for ¢
miss at least two vertices.

Let M be max cost matching for
¢ with unmatched vertices u and v
s.t. |M| maximized and d(u, v) min-
imized.

Note d(u,v) > 2 and let ¢ be sec-
ond node on shortest path from u
to v. Note ¢ matched in M (other-
wise can add edge (u,t)).

Let N be max matching for c,
¢(N) = v(c) such that t unmatched
in N.

Let P be component of t in MAN
and M' = MAP and N' = NAP

Note M’, N’ are matchings and
|M'| < |M]| (last edge of path con-
necting to t is in M).

However,

c(M) + ¢(N) = <c¢MAP) +
¢(NAP) —

d(M)+|M|+c¢(N) =

d(MAP)+ |MAP|+ ¢(NAP) —
d(M)+|M| <Jd(MAP)+|MAP|
since ¢(N) = v(c) > ¢(NAP).

— Since (M) = v(d) > ¢(MAP)
and |M| > |MAP|, must be equal-
ities.

— t unmatched in M’.

— P can’t cover both u and v since
neither covered by M and only one
can be endpoint of path if covered
by N.

— either u or v unmatched by M’, say
u

— then d(u,t) < d(u,v), |M| = |M|,
and (M) = (M) = v() contra-
dicting our choice of M, u,v.

|

Note: Matching polytope has exponentially
many constraints. Has a separation oracle
based on minimum odd cut in suitable graph
(reading project).

Question: (open): Can one give a com-
pact polyhedral description of the matching
polytope, e.g., by suitable lifting of variables?
(part of reading project to discuss lifting of
variables.)



Matroids

[[Abstracts linear algebra and graph theory.]]
Key set systems to keep in mind:

e subsets of vectors of R"

e subsets of edges of G = (V, E)

Def: A matroid M = (S,7) is a finite ground
set S together with a collection of sets Z C 2°
satisfying:

e downward closed: if I € 7 and J C I,
then J € Z, and

e exchange property: if I,J € Z and |J| >

|7|, then there exists an element z € J\ [
st. TU{z} eT.

Terminology:

o [ € T independent, I & T dependent
e circuit is a minimal dependent set of M
e basis is a maximal independent set

e [ is a spanning set if for some basis B,
BCI

Example: Uniform matroids U*: Given by
|S|=n,T={ICS:|I| <k}

Check two properties and see this is a ma-
troid.

What are the...

e bases: sets of size k
e circuits: sets of size k + 1

e spanning sets: sets of size at least k

Example: Linear matroids: Let F be a field,
A € F™™ an m X n matrix over F, S =
{1,...,n} be index set of columns of A. Then
I C S is independent if the corresponding
columns are linearly independent.

Check two properties and see this is a ma-
troid.

What are the...

e bases: minimal sets of vectors that span
space spanned by A

e circuits: vectors that span space space
spanned by A with one extra

e spanning sets: vectors that span space
spanned by A

Example: Graphic Matroids: Let G =
(V,E) be a graph and S = E. Aset F C FE
is independent if it is acyclic.

Check two properties and see this is a ma-
troid.

What are the...

e bases: minimum spanning trees
e circuits: subgraphs with one cycle

e spanning sets: connected subgraphs that
contain every vertex

Note: All bases of a matroid M must have
same cardinality.

Def: The rank function of M is r:2% — Z
given by T(U) = maX[gU,]eI |[|

Note: Corresponds to rank of matrix in lin-
ear matroids, hence name.



