
EECS 495: Combinatorial Optimization Lecture 5
Matching: TDI, Cunningham-Marsh

Reading: Schrijver, Chapter 25

Recap

Primal P :

max cTx s.t. Ax ≤ b

Dual D:

min bTy s.t. ATy = c and y ≥ 0

Def: A linear system {Ax ≤ b} is totally dual
integral (TDI) if for any integral cost vector
for the primal such that max cTx,Ax ≤ b is
finite, there exists an integral optimal dual
solution.

Theorem 0.1 (Edmonds-Giles, 1979): If a
system {Ax ≤ b} is TDI and b is integral,
then {Ax ≤ b} is integral (i.e., the extreme
points are integral).

Theorem 0.2 (Giles-Pullyblank, 1979):
For a rational polyhedron P, there ex-
ist A and b with A integral such that
P = {x : Ax ≤ b} and the system is TDI.

Def: A set of vectors {ai : ai ∈ Zn} is a
Hilbert basis if for any integral c ∈ cone(ai) =
{
∑

i λiai : λi ≥ 0}, there exist non-negative
integers µi such that c =

∑
i µiai.

Theorem 0.3 The rational system Ax ≤ b
is TDI iff for each face (actually sufficient
to check for each extreme point), tight con-
straints form a Hilbert basis.

Theorem 0.4 Any rational polyhedral cone
C = {

∑
i λiai : λi ≥ 0, λi ∈ R} with {ai}

integral has a finite integral Hilbert basis.

Note: In fact don’t need to assume {ai} in-
tegral, follows from rationality of cone.

Integrality of Polytopes

Theorem 0.5 (Edmonds-Giles, 1979): If a
system {Ax ≤ b} is TDI and b is integral,
then {Ax ≤ b} is integral (i.e., the extreme
points are integral).

Proof: By contradiction.

• Consider extreme point x∗ of P s.t. x∗j 6∈
Z for some j.

• Let c be integral vector s.t. x∗ unique opt
by picking rational vector in cone at x∗

and scaling.

• Consider ĉ = c+ 1
q
ej (inside cone for large

enough q).

• Since qĉTx∗ − qcTx∗ = x∗j 6∈ Z, either
qĉTx∗ or qcTx∗ not integral.

• By duality and fact that b is integral, one
of corresponding dual soln ŷ or y not in-
tegral.

• Contradicts TDI since both qĉ and qc in-
tegral.
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Matching Polytope

Def: The matching polytope PM is the con-
vex hull of incidence vectors χ(M) ∈ {0, 1}|E|
of matchings M where χ(M)e = 1 if e ∈ M
and 0 otherwise.

Def: P (P2 from last lecture) is:

• xe ≥ 0, e ∈ E

• x(δ(v)) =
∑

e∈δ(v) xe ≤ 1, v ∈ V

• x(E(U)) =
∑

e∈E(U) xe ≤
|U |−1

2
, U ⊆

V, |U | odd[[
Edmonds gave algorithmic proof of this;
we use Cunningham-Marsh, argue that
P2 is TDI.

]]
Primal:

max cTx s.t.∑
e∈δ(v) xe ≤ 1,∀v ∈ V∑
e∈E(U) xe ≤

|U |−1
2
,∀U ⊆ V, |U | odd

xe ≥ 0,∀e ∈ E
Dual (variables yv for v ∈ V , zU for U ⊆ V
odd):

min
∑

v yv +
∑
|U | odd

|U |−1
2
zU s.t.

yu + yv +
∑
|U | odd,e∈E(U) zU ≥ ce, ∀e ∈ E

y, z ≥ 0

[[TDI says... ]]

Theorem 0.6 (Cunningham-Marsh, 1978)
For all c ∈ Z |E|, there exists an integral dual
solution y, z with value D(y, z) ≤ ν(c) (where
ν(v) is max cost matching).


Why’s this prove TDI, i.e., why are we
not implicitly assuming primal value is
ν(c) and hence primal is the matching
polytope? I think because duality says pri-
mal can’t be more than dual...




Proof: By induction on |V | + |E| +
∑

e ce
(recall c integral).

• Assume ce ≥ 1 (else delete e) and G con-
nected (else prove for components).

• Base case (|V | = 2, |E| = 1, ce ≥ 1): set
yu = ce and yv, zU = 0.

• Case 1: ∃v ∈ V s.t. every max cost
matching for c covers v.

– Modify costs c′e = ce for e 6∈ δ(v)
and c′e = ce − 1 for e ∈ δ(v).

– Note ν(c′) = ν(c)− 1.

– By induction, exist integral y′, z′

feasible for dual with c′ s.t.
D(y′, z′) ≤ ν(c′).

– Let yv = y′v + 1 and yu = y′u for
u 6= v, and z = z′.

– Note y, z feasible since only con-
straints for e ∈ δ(v) changed, and
for those both ce and yv increased
by 1 from c′e and y′v.

– Note further that D(y, z) =
D(y′z′) + 1 ≤ ν(c′) + 1 = ν(c).

• Case 2: ∀v,∃ max cost matching for c
that does not cover v.

• Let c′e = ce − 1 for all e ∈ E.

• We show all max matchingsM for c′ miss
at least one vertex.

• Let M be max matching for c′ with |M |
as large as possible.

• Suppose M covers all vertices.

• Let N be max matching for c that does
not cover some vertex.

• c′(N) = c(N) − |N | > c(N) − |M | ≥
c(M) − |M | = c′(M) = ν(c′) (first in-
equality because M covers all vertices
and N misses at least one)
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• Case 2a: Suppose ∃ max matching M for
c′ s.t. |M | = |V |−1

2
(i.e., |V | odd and M

misses exactly one vertex).

– By induction, exist integral y′, z′

s.t. D(y′, z′) ≤ ν(c′).

– Let zV = z′V + 1 and zU = z′U for all
other U ⊂ V ; y = y′.

– zV in every constraint and both zV
and ce increased by one, so y, z fea-
sible.

– Also, D(y, z) = D(y′, z′) + |V |−1
2
≤

ν(c′) + |V |−1
2
≤ ν(c) (last inequal-

ity follows because can use match-
ing for c′ as matching for c)

• Case 2b: All max cost matchings for c′

miss at least two vertices.

– Let M be max cost matching for
c′ with unmatched vertices u and v
s.t. |M |maximized and d(u, v) min-
imized.

– Note d(u, v) ≥ 2 and let t be sec-
ond node on shortest path from u
to v. Note t matched in M (other-
wise can add edge (u, t)).

– Let N be max matching for c,
c(N) = ν(c) such that t unmatched
in N .

– Let P be component of t in M∆N
and M ′ = M∆P and N ′ = N∆P

– Note M ′, N ′ are matchings and
|M ′| ≤ |M | (last edge of path con-
necting to t is in M).

– However,
c(M) + c(N) = c(M∆P ) +
c(N∆P )→
c′(M) + |M |+ c(N) =
c′(M∆P ) + |M∆P |+ c(N∆P )→
c′(M) + |M | ≤ c′(M∆P ) + |M∆P |
since c(N) = ν(c) ≥ c(N∆P ).

– Since c′(M) = ν(c′) ≥ c′(M∆P )
and |M | ≥ |M∆P |, must be equal-
ities.

– t unmatched in M ′.

– P can’t cover both u and v since
neither covered by M and only one
can be endpoint of path if covered
by N .

– either u or v unmatched by M ′, say
u

– then d(u, t) < d(u, v), |M | = |M ′|,
and c′(M ′) = c′(M) = ν(c′) contra-
dicting our choice of M,u, v.
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Note: Matching polytope has exponentially
many constraints. Has a separation oracle
based on minimum odd cut in suitable graph
(reading project).

Question: (open): Can one give a com-
pact polyhedral description of the matching
polytope, e.g., by suitable lifting of variables?
(part of reading project to discuss lifting of
variables.)
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Matroids

[[Abstracts linear algebra and graph theory.]]
Key set systems to keep in mind:

• subsets of vectors of Rn

• subsets of edges of G = (V,E)

Def: A matroid M = (S, I) is a finite ground
set S together with a collection of sets I ⊆ 2S

satisfying:

• downward closed: if I ∈ I and J ⊆ I,
then J ∈ I, and

• exchange property: if I, J ∈ I and |J | >
|I|, then there exists an element z ∈ J \I
s.t. I ∪ {z} ∈ I.

Terminology:

• I ∈ I independent, I 6∈ I dependent

• circuit is a minimal dependent set of M

• basis is a maximal independent set

• I is a spanning set if for some basis B,
B ⊆ I

Example: Uniform matroids Uk
n : Given by

|S| = n, I = {I ⊆ S : |I| ≤ k}.
Check two properties and see this is a ma-
troid.

What are the...

• bases: sets of size k

• circuits: sets of size k + 1

• spanning sets: sets of size at least k

Example: Linear matroids: Let F be a field,
A ∈ Fm×n an m × n matrix over F , S =
{1, . . . , n} be index set of columns of A. Then
I ⊆ S is independent if the corresponding
columns are linearly independent.

Check two properties and see this is a ma-
troid.

What are the...

• bases: minimal sets of vectors that span
space spanned by A

• circuits: vectors that span space space
spanned by A with one extra

• spanning sets: vectors that span space
spanned by A

Example: Graphic Matroids: Let G =
(V,E) be a graph and S = E. A set F ⊆ E
is independent if it is acyclic.

Check two properties and see this is a ma-
troid.

What are the...

• bases: minimum spanning trees

• circuits: subgraphs with one cycle

• spanning sets: connected subgraphs that
contain every vertex

Note: All bases of a matroid M must have
same cardinality.

Def: The rank function of M is r : 2S → Z+

given by r(U) = maxI⊆U,I∈I |I|.
Note: Corresponds to rank of matrix in lin-
ear matroids, hence name.
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