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Abstract

Reconstructing the 3D surface from a set of provided
range images – acquired by active or passive sensors – is
an important step to generate faithful virtual models of real
objects or environments. Since several approaches for high
quality fusion of range images are already known, the run-
time efficiency of the respective methods are of increased
interest. In this paper we propose a highly efficient method
for range image fusion resulting in very accurate 3D mod-
els. We employ a variational formulation for the surface
reconstruction task. The global optimal solution can be
found by gradient descent due to the convexity of the under-
lying energy functional. Further, the gradient descent pro-
cedure can be parallelized, and consequently accelerated
by graphics processing units. The quality and runtime per-
formance of the proposed method is demonstrated on well-
known multi-view stereo benchmark datasets.

1. Introduction

The generation of high-quality, dense geometric mod-
els from passive or active sensors is still an active research
topic. There is a large amount of research devoted to the
task of surface reconstruction from a sparse or semi-dense
set of given 3D points. In order to handle meshes with
arbitrary genus, a volumetric representation is often uti-
lized as the underlying data structure. Voronoi cells are the
basis for some geometric methods for surface reconstruc-
tion [2, 1]. Regular volumetric grids are far more common
for this purpose. Level set approaches [30, 29] fall into this
category, although they are conceptually different than the
approaches discussed next. To our knowledge none of these
yet mentioned methods was employed on larger scale real-
world data sets potentially containing a substantial amount
of noise and outliers.

With the increased availabilty of laser scanning devices
enabling dense measurements of real-world surfaces, sev-
eral methods were developed to create full 3D models from
such 2.5D range data. An explicit polygonal approach to
merge several range images is described in [22].

Early range image fusion methods incorporating a reg-
ular voxel space include Curless and Levoy [8], Hilton et
al. [10] and Wheeler et al. [24]. These methods initially
compute a signed distance function for the final surface by
averaging the distance fields induced by the given range
images. The boundary representation of the resulting sur-
face is obtained by an isosurface polygonization method.
The merged distance field is computed separately on vox-
els, which allows those methods to be efficient, but spatial
coherence and smoothness of the resulting mesh cannot be
enforced. Volumetric graph cuts for computer vision [23]
allow the incorporation of surface regularization into the
volumetric fusion framework. Hornung and Kobbelt [12]
present a general surface reconstruction method for sparse
and dense input point clouds. Since their approach is based
on a geodesic problem formulation, a constrained optimiza-
tion scheme using conservative interior/exterior estimates is
required to avoid degenerate solutions. Other recent work
on volumetric surface reconstruction [13, 14] directly esti-
mates the corresponding characteristic function from (ori-
ented) point samples. Lempitsky and Boykov [15] present
a global shape fitting method, that shares several elements
with our approach (see the TV-Flux method described in
Section 2), but involves a sophisticated graph cut procedure
for discrete optimization.

Finally, several methods attempt to reconstruct an object
surface directly from captured image data, thereby avoid-
ing the use of active sensors. Such multi-view stereo ap-
proaches enable a convenient procedure for 3D reconstruc-
tion, and allow the creation of virtual representations on a
larger scale. An important group of methods estimates the
object surface directly from a consistency score for voxels
(most notably, a photo-consistency measure [19, 26, 23, 21,
11, 3, 4]). Other approaches compute intermediate depth
maps from small-baseline stereo in the first instance and
use multiple depth images to perform a final surface in-
tegration step. Strecha et al. [20] and Merrell et al. [16]
clean the initially obtained depth maps by fusing informa-
tion from neighboring views. The latter work is targeted on
real-time large scale reconstruction, hence runtime perfor-
mance was considered more important than the final mesh
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quality. Up to now [16] was the only reported approach
to generate dense 3D geometry in less than one minute for
benchmark datasets [18].

The method proposed in this work is an approach for
general range image integration based on total variation
shape denoising. It can be easily extended to a surface
reconstruction procedure for sparse oriented point clouds.
Since the main application of our work is object reconstruc-
tion from multiple views, we focus on captured images aug-
mented with calibration and orientation information as the
primary input data. Depth maps can be obtained by small-
baseline stereo methods from image data. Depending on
the image content and on the utilized dense stereo method,
the resulting depth maps may contain a substantial amount
of outliers and (usually non-Gaussian) noise. Thus, high-
quality generation of full 3D models from depth maps is
only possible with a robust approach.

This work extends the approach presented in [27] is sev-
eral aspects: first, the distance based data fidelity term pro-
posed in [27] is replaced by an histogram based one, al-
lowing the whole procedure to be accelerated by modern
graphics processing units. Further, a visual comparison of
the proposed approach with a continuous formulation of the
global shape fitting energy [15] is provided. Finally, results
and runtimes for the large evaluation datasets [18] are pre-
sented.

2. Accelerated Range Image Fusion

The input of the main method is a set of potentially
noisy range images. For best runtime performance, we em-
ploy a GPU-based implementation of a plane-sweep stereo
method [25, 7, 28] to obtain these initial depth maps. Since
this method is a purely local approach to dense stereo, one
can expect a substantial amount of noise and mismatches
in the resulting depth images. This set of depth maps pro-
vides 2.5D geometry for each view, which are subsequently
converted to truncated signed distance fields (denoted by
fi : Ω → R for a voxel space Ω). We use a simple z-
comparison to obtain a fast and suitable approximation of
the true distances.

In [27] the implicit representation of the final surface is
obtained as the spatially regularized median of the provided
3D distance transforms, i.e. a TV-L1 energy consisting of a
total variation part,

∫
|∇u|d~x =

∫
‖∇u‖2d~x, and an L1 (i.e.

absolute differences) term,

ETV−L1
(u) =

∫
Ω

{
|∇u|+ λ

∑
i

|u− fi|

}
d~x, (1)

is minimized with respect to u for the given set of distance
transforms fi. The resulting function u : Ω → R is the
signed distance to the fused model, and the corresponding

surface representation can be extracted by any isosurface
polygonization method. The optimization procedure pre-
sented in [27] is efficient and globally optimal, but not par-
ticularly suited to be accelerated by a GPU. Specifically,
the generalized thresholding procedure described in Propo-
sition 2 in [27] requires a varying amount of computation
for each voxel, which typically yields to a suboptimal per-
formance on GPUs.

In this work we modify the TV-L1 approach in two as-
pects: first, the data fidelity

∑
i |u−fi| is replaced by a more

GPU-friendly approximation using weighted distances to
evenly spaced representative values cj ; and second, the ex-
pensive generalized thresholding step performing an opti-
mal line search is replaced by a simpler and faster descent
step.

We assume that the provided distance fields fi are
bounded to the interval [−1, 1]. Hence we sample this in-
terval by evenly spaced bin centers cj , and approximate the
original data fidelity term

∑
i |u − fi| by

∑
j nj |u − cj |,

where and nj are the respective frequencies. Thus, fi is re-
placed by its closest bin center cj in the data fidelity term.
Note that the data term is integrated over the voxel space,
hence a histogram is maintained for each voxel.

In contrast to the original TV-L1 formulation those fre-
quencies can be weighted arbitrarily. Particularly, this al-
lows us to reduce the influence of depth values errorneously
reported behind the true surface. Section 4 illustrates the
impact of this modification. The overall energy to be mini-
mized is then

ETV−Hist(u) =
∫

Ω

{
|∇u|+ λ

∑
j

nj |u− cj |
}

d~x. (2)

Analogous to the procedure derived in [27], EHist is re-
placed by the strictly convex relaxation

ETV−Hist
θ (u, v) =

∫
Ω

{
|∇u|+ 1

2θ
(u− v)2

+ λ
∑

j

nj |v − cj |
}

d~x, (3)

for a small value of θ. Since this energy functional is
(strictly) convex in u and v, a global minimizer can be de-
termined by alternating optimization with respect to u and
v. Reducing the energy with respect to u and fixed v can
be performed e.g. by Chambolles method [5]. We briefly
review this method, which provides a global minimizer for
the Rudin-Osher-Fatemi energy [17],

EROF
θ (u; v) =

∫
Ω

{
|∇u|+ 1

2θ
(u− v)2

}
d~x. (4)

Note, that we omitted the histogram term, since it does not
depend on u and therefore has a constant value. |∇u| can
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be rewritten as

|∇u| = max
~p:|~p|≤1

〈~p,∇u〉. (5)

Plugging Eq. 5 into the ROF energy (Eq. 4), and after com-
puting the functional derivatives wrt. u and ~p, we obtain the
following conditions for stationary points:

∂EROF
θ

∂u
=

1
θ
(u− v)−∇ · ~p != 0, i.e. (6)

u = v + θ(∇ · ~p), and (7)
∂EROF

θ

∂~p
= ∇u + α~p

!= 0. (8)

We employ a gradient descent/projection approach [6],
hence |~p| ≤ 1 is enforced after the gradient descent step
and we can omit the Lagrange multiplier α.

The minimization of EHist
θ with respect to v is equiva-

lent to (note that we can ignore the constant total variation
term now)

min
v

∫
Ω

{
1
2θ

(u− v)2 + λ
∑

j

nj |v − cj |
}

d~x. (9)

We can carry out this minimization point-wise, since this
energy does not depend on any derivative of v. Without loss
of generality (and omitting the dependence on the current
voxel ~x), if u ∈ (ck, ck+1) and the stationary point

v∗ = u + λθ

∑
j>k

nj −
∑
j≤k

nj

 (10)

is in (ck, ck+1), then v∗ is the minimum argument. If
v∗ ≤ ck, then v̂ = ck − ε lowers the energy in Eq. 9 for
a sufficiently small ε (although it is not a global minimum
in general). We exclude the bin centers cj as feasible values
for v in order to avoid handling of special cases in the GPU
implementation. If v∗ ≥ ck+1, we choose v̂ = ck+1 + ε.
In those (very rare) situations, when cj is exactly the opti-
mum, v̂ will oscillate with the values cj±ε. Altogether, the
generalized thresholding step to determine v for a given u
to reduce the energy in Eq. 9 reads as

v = max{ck − ε, min{ck+1 + ε, v∗}} (11)

with v∗ defined in Eq. 10 and u ∈ (ck, ck+1).
These alternating descent steps to update u and v, re-

spectively, can be efficiently performed on modern GPUs.
We employ 8 bins with bin centers cj = 2j/7 − 1 for
j ∈ {0, . . . , 7}, and the frequencies nj are determined by
simple voting for the closest bin center. We will denote this
procedure as the TV-Hist approach.

Another method that can be accelerated by GPUs
is the global shape fitting approach of Lempitsky and

Boykov [15]. Their energy minimization is based on dis-
crete graph cuts, which is hard to parallelize. The utilized
surface regularization energy is exactly equivalent to total
variation regularization for binary functions. The data fi-
delity term is a flux energy derived from the provided input,
a set of oriented, optionally sparse 3D points. Formulating
these terms in a continuous setting, one arrives at the fol-
lowing resulting energy to be minimized:

EFlux(u) =
∫

Ω

{
|∇u|+ λ(∇ · ~f) · u

}
d~x. (12)

We just remark that (depending on the sign convention) the
input scalar field ∇ · ~f (divergence of the vector field ~f )
has positive values inside the presumed surface and negative
values outside. We refer to [15] for more details. We will
call this approach the TV-Flux method. As for the TV-Hist
approach, a simple and efficient procedure to minimize the
energy in Eq. 12 can be specified. It will be demonstrated in
Section 4 that the resulting surfaces still contain substantial
aliasing artefacts. This is due to the binary characteristics of
the flux-based data term, since regions with non-vanishing
flux strongly “push” to +1 or −1.

3. Implementation

In this section we briefly sketch our implementation of
both approaches, TV-Hist and TV-Flux, on the GPU using
OpenGL and Cg shader programs. Although the CUDA
framework is a new and powerful GPU programming ap-
proach, traditional shader programming using OpenGL has
still some benefits like more mature (and optimized) drivers
and cached writes to render targets.

At first the input depth maps are converted to a volumet-
ric data structure. For every voxel, an (approximate) signed
distance to the surfaces induced by the depth maps is com-
puted. This value is clamped to a user-supplied threshold
and scaled to the interval [−1, 1]. We refer to [8, 27] for
more details on depth map to volume conversion.

In the TV-Hist approach each voxel holds a histogram
comprised of 10 bins. 8 bins are used to represent the dis-
tribution of values in the interior of the interval (−1, 1), i.e.
voxels close to the supposed surface. Two separate bins
are reserved for values indicating a larger distance to the
surface, one bin counts (scaled) distances smaller or equal
-1 (occluded voxel) and one bin represents values greater
or equal 1 (empty voxel). The total number of histogram
counts is limited by the number of provided depth maps.
In practice, the accumulated count is much smaller, since
a specific voxel is typically only close to a depth surface
for a subset of views. Thus, allocation of one byte for each
histogram bin is sufficient.

We use the commonly employed flat layout of 3D vol-
umes by mapping the z-slices to rectangular sections in a
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2D texture. With a limit of 4096×4096 for the maximum
texture size, voxel spaces slightly smaller than 2563 can be
handled (since we incorporate border pixels for the bound-
ary conditions). Newer graphics hardware has a 8192×8192
limit enabling approximately 4003 voxels. The memory re-
quirements are far more constraining: for each voxel, the
following data needs to be maintained:

1. 10 bytes for the input histogram,

2. 4 bytes for the current value of u (one float packed in
four 8-bit values),

3. 6 bytes are required for the dual variable ~p, since ~p is
3-dimensional. A 16-bit floating point representation
for the elements of ~p is sufficient.

In total, the memory footprint of a voxel is 20 bytes (plus
some additional buffers in the size of one slice). Thus, a
2563 voxel space needs about 320Mb memory on the GPU.
The memory requirement for the TV-Flux approach is 12
bytes per voxel.

Both methods, TV-Hist and TV-Flux, perform the fol-
lowing two alternating steps in the n-th iteration:

1. Update ~p using a gradient descent/projection approach
(recall Eq. 8, ∂E/∂~p = ∇u), i.e.

~q ← ~p(n) +
τ

θ
∇u (13)

~p(n+1) ← ~q/max
{
1, |~q|

}
. (14)

τ < 1/6 is the timestep of the gradient descent step.

2. Update u via intermediate computation of v. Here
we provide a straightforward procedure to compute v∗

(Eq. 10) suited for stream computing. For the TV-Hist
approach, it consists of the following steps:

(a) Compute a boolean (0/1) vector l by component-
wise comparison,

l← u(n) > (cj)j=0,1,...,N ,

where cj is the center of bin j (c0 = −∞). N is
the total number of bins.

(b) Compute a similar boolean vector

r ← u(n) < (cj)j=1,...,N+1,

with cN+1 = +∞. The element-wise prod-
uct (l · r)j is then the indicator function u(n) ∈
(cj , cj+1).

(c) Compute v∗ ← u(n) + λθ 〈r − l, (nj)j〉, where
(nj)j is the histogram frequency vector.

(d) Clamp v∗: Compute the interval borders

ck ← 〈l · r, (cj)j=0,1,...,N 〉

and
ck+1 ← 〈l · r, (cj)j=1,...,N+1〉.

Then v ← max{ck − ε, min{ck+1 + ε, v∗}}.
(e) Finally, u(n+1) ← v + θ(∇ · ~p) (Eq. 7).

Note that this algorithm is already presented in a GPU-
friendly manner, since it is based mainly on dot prod-
uct and element-wise product calculations. The proce-
dure to update u in the TV-Flux approach (Eq. 12) is
simpler:

(a) Compute the intermediate value v from

v ← u(n) − λθ(∇ · f).

(b) The new value for u is given by

u(n+1) ← v + θ(∇ · ~p).

These two steps to update ~p and u, respectively, can be
mapped directly to correponding fragment programs. Since
read/write access to the same texture buffer has undefined
behaviour, the update procedures iterate over the slices of
the voxel space using an additional temporary buffer. Note
that the gradient and divergence computations must be mu-
tually dual, i.e. if forward differences are used to determine
∇u, then∇· ~p needs to be computed from backward differ-
ences [5].

Both methods are still mostly bandwidth-limited, since
gradient and divergence computations require sampling of
several neighboring values. Hence the arithmetic intensity
is not very high, and the simpler TV-Flux approach is in
practice only slightly faster than the more complex TV-Hist
method.

We want to point out that these schemata are embedded
into a coarse-to-fine approach to obtain faster fill-in in re-
gions with empty histograms (i.e. voxels distant to any sur-
face induced by the depth maps).

4. Results

We show results on two datasets provided for bench-
marking multi-view reconstruction methods [18] (see also
vision.middlebury.edu/mview/). The advantage
of demonstrating results on these datasets is, that the ground
truth laser-scanned 3D geometry is known and the quality
of obtained dense meshes can be evaluated.

We selected the full and the medium size data sets, called
“Temple” (312 images), “Dino” (363 images), “Temple
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(a) Temple ring depth #1 (b) Temple ring depth #2 (c) Dino ring depth #1 (d) Dino ring depth #2

Figure 1. Selected input depth maps used for later volumetric fusion. The depth maps are not very
clean and contain a certain amount of mismatches.

ring” (47 images) and “Dino ring” (48 images). The re-
spective images with a resolution of 640×480 are acquired
in a controlled indoor environment, hence a simple and effi-
cient SAD matching cost is sufficient to determine the input
depth maps. 400 tentative depth planes are evaluated for
dense stereo computation. The dark background pixels of
the captured scene are removed by thresholding the inten-
sity values. Pixels with a brightness value of at least 10 are
considered to be foreground/object pixels, and background
pixels otherwise. Figure 1(a)–(d) show a few samples of
the depth maps obtained by a simple plane-sweep approach
using a 3×3 SAD correlation window and two neighboring
views as moving (warped) images.

Table 1 summarizes the characteristic numbers of these
datasets, and depicts the runtimes observed to generate the
intermediate depth maps and the fused 3D model, respec-
tively. We further quote the runtimes for the actual (pure
CPU-based) integration step from [27], where available.
All timings are measured on PC hardware equipped with
a NVidia GeForce 8800 Ultra GPU. Additionally, the accu-
racy results according to the main table of the Middlebury
multi-view stereo page are displayed, too.

The surface meshes for both “ring” datasets are obtained
with a value of λ equal to 0.08. The value of λ for the full
datasets is scaled according to the number of images, i.e.
λ = 0.08 47

312 for the full “Temple” dataset. θ is always set
to 0.02, and in practice, the exact value of θ is not criti-
cal. The timestep τ is fixed to 0.16. We use three levels for
the multi-scale pyramid, and 120 iterations are performed
on every level. Although the energy has still not converged
after this number of iterations, the extracted isosurfaces re-
main virtually constant. Figure 2(a)–(d) depict the obtained
meshes for the “Temple” and “Temple ring” dataset.

The visual results for the “Dino” and “Dino ring” dataset,
respectively, are illustrated in Figure 3. The overall geom-
etry is captured very well. The “dent” visible in the back

views (Figure 3(b) and (d)) is due to incorrect matches in
the input depth maps (cf. Figure 1(d)). These mismatches
appearing consistently in several depth maps are caused by
a glossy specular reflection in an otherwise relatively ho-
mogeneous region. We can reduce the influence of those
mismatches to some extent by reweighting the number of
votes counting for empty voxels. In our experiments we
used a weight of 0.25 for empty voxels. The surface step
below the spikes is caused by an shadow edge visible in the
source images. In our opinion, for the “Dino” datasets only
the meshes generated by the time-consuming method pro-
posed by Furukawa and Ponce [9] have a uniformly good
appearance. It can be clearly seen from the resulting “Dino”
meshes, that our simple choice of λ for the full dataset
overestimates the visibility of surface elements, hence the
respective model is slightly smoother than its “Dino ring”
counterpart.

The quantitative evaluation comparing our results with
the laser-scanned ground truth confirms the convincing vi-
sual impression: according to the main evaluation table
(see [18] for the exact evaluation methodology), the ac-
curacy values for the “Temple” and “Dino” meshes are
0.51mm and 0.55mm, respectively. The sparser ring
datasets are accurate within 0.56 and 0.51mm. The com-
pleteness measures for all four meshes are consistently in
the range of 98.7% to 99.1%. In terms of runtime, the
only approach in the same performance category is [16],
which is inferior in the obtained mesh quality. These num-
bers and the observed timing results place our proposed ap-
proach among the most efficient and high quality methods.
Of course, these figures will vary if a different dense depth
estimation method is employed.

Further, we provide a visual comparison between the TV-
Hist approach and the TV-Flux method (Eq. 12), which is
the continuous formulation of the global shape fitting en-
ergy [15]. Figures 4(a) and (b) depict the final mesh ob-
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Dataset Images Voxels Stereo Integration (CPU runtime [27]) Total Accuracy Completeness
Temple ring 47 200×300×160 8.8s 23.7s (3m27s) 32.5s 0.56mm 99.0%
Temple 312 63s 83s — 2m23s 0.51mm 98.8%
Dino ring 48 200×240×200 9.0s 26.4s (3m50s) 35.4s 0.51mm 99.1%
Dino 363 70s 93s — 2m43s 0.55mm 98.7%

Table 1. The illustrated datasets and their characteristic information.

(a) “Temple”, front view (b) Back view (c) “Temple ring”, front view (d) Back view

Figure 2. Final meshes for the “Temple” and “Temple ring” datasets.

tained for the “Temple ring” data, and Figures 4(c) and
(d) show more detailed views of the models generated us-
ing TV-Flux and TV-Hist, respectively. The regularization
weight is set to λ = 0.3 in order to obtain visually simi-
lar results. The overall geometry returned by the TV-Flux
approach is comparable in quality with TV-Hist results, but
closeup views reveal the inherent binary nature of TV-Flux
solutions.

Finally, we provide results for outdoor image sequences.
The first dataset consists of 16 views (see Figure 5(a)). The
depth maps are computed by a local stereo approach using
normalized cross correlation and a 5× 5 support window
(Figure 5(b)). Range image fusion is performed using a
320×120×200 voxel grid. The obtained 3D model aug-
mented with surface texture derived from the input images
can be seen in Figure 5(c). A statue dataset with sample in-
put images, intermediate depth maps and the final 3D model
is displayed in Figure 6(a)–(e). The voxel grid resolution is
144×288×200.

5. Conclusion and Future Work

In this work we present an efficient method for volumet-
ric range image integration yielding high quality surface re-
constructions from a given set of depth maps. The proposed
procedure is very suitable to be performed on highly par-

allel working stream processors. In particular, we report
runtime and accuracy evaluations for our GPU-accelerated
implementation. We demonstrate that the achieved runtime
performance is in the range of the currently fastest dense
multi-view reconstruction method, while our approach re-
turns very accurate 3D models at the same time.

Future work will address direct methods for multi-view
stereo reconstructions. The photoflux shape optimization
approach [3] is a promising starting point for such investi-
gations. Again, a continuous formulation of the surface reg-
ularization energy will presumably lead to a simple and ef-
ficient method for multi-view reconstruction. Additionally,
further research is needed to extend the class of smoothness
terms that give rise to efficient and globally optimal algo-
rithms.
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(a) TV-Flux, front view (b) Back view (c) TV-Flux, closeup view (d) TV-Hist, closeup view

Figure 4. Comparison of TV-Hist and TV-Flux energy formulations.

(a) One source image (of 16) (b) Sample depth map (c) Textured 3D model after fusion

Figure 5. An outdoor dataset consisting of 16 images. (a) depicts one source image. The depth maps
(640×480) are noisy (b), and the finally obtained textured 3D model is displayed in (c).

(a) One source image (of
16)

(b) One source image (of
16)

(c) Sample depth map (d) Sample depth map (e) Textured 3D model af-
ter fusion

Figure 6. A statue dataset consisting of 16 images captured on a half-circle around the object. (a)
and (b) are samples of the acquired images. Two depth maps are shown in (c) and (d). The obtained
textured 3D model is displayed in (e).
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