EECS 495: Combinatorial Optimization

Submodular Functions

Lecture 11

Reading: Schrijver, Chapter 44

Announcements

e Homeworks: only required to do 10 total
(so 5 more). They are due by March 9
(last day of quarter).

e Lectures: there is no lecture next Wed.
Instead, schedule a two-hour meeting
with me to present your reading project
on Wed. or Thu. (time slots 10-12, 12-2,
2-4 on Wed., 10-12, 3-5 on Thu.)

— Presentations are 1.5 hours long.

— Be prepared to explain how you will
divide the work.

— Bring notes indicating exactly what
you plan to write on the board.

— Present your project to me. This
presentation will factor into your fi-
nal presentation grade.

e Reading Projects:

— schedule a presentation on Feb. 28,
March 2, or March 7.

— prepare a handout at least one day
before your presentation with sec-
tions: introduction (informal prob-
lem statement, motivation), model
(formal problem statement), solu-
tion (list techniques you're using;
if we haven’t discussed them yet,

define them), followup questions
(at least two, these can be “exer-
cises” to help us understand things,
or “open questions”; at least one
should be an exercise)

Submodularity

Def: f:2% — R is submodular if
VA, B C S, f(A)+[(B) = f(ANB)+f(AUB)
or equivalently,
VAC B,e ¢ B,
f(A+e) = f(A) = f(B+e)— f(D).

Properties

e non-negative if f(A) >0

o symmetric if f(A) = f(S\ A)

e monotone (non-decreasing) if f(A) <
f(B)WAC B

o integer-valued if f(A) € Z

Example: Matroids:

Rank function, sum of rank functions r;(U)+
TQ(S \ U)

Example: Cuts:

Given G = (V,FE) and capacity ¢ : £ —
R*, cut function f : 2V — Rt is f(U) =

Eeeé(U) c(e).



Example:

Let {T1,...,T,} be subsets of T" and S =
{1,...,n}. The coverage function f : 2% —
R*is f(A) = | Uiea T}

HMU'I'@ generally, f(A) = g(UieaT;) _f()/rﬂ

monotone submod func g.

Coverage:

Example: Flows:

Le tD = (V, A) be directed graph with arc-
capacity ¢: A — RT and ¢t € V the sink. For
U CV\{t}, f(U) = max flow from U to ¢ in

D from sources U.

Minimization

Question: Find U C S that minimizes

f(U).
Note: Assume wlog f()) = 0 (add constant
if necessary).

[[f may be negative. 1]

Example: Matroid intersection is submodu-
lar function minimization.

Idea: (obvious): evaluation f on all possible
subsets.

e cxponential time
e no better way for general set functions

e for submodular ones, use structure to get
better alg

Goal: Alg that minimizes submod f in poly-
time given oracle access to function.

Polymatroids

Question: certificate of optimality

For set function f on ground set S with

f(?) = 0, define polyedron:

Py ={x €R%|) . < f(UWVU C 5}.

ecU

Example: Draw Py for S = {1,2}, f(0) =
f{1,2}) =0, f({1H) =1, F({2}) = 1.
Def: A polyhedron P is a polymatroid if
there’s a submod f such that P = Pj.

Def: Vector x € Py is a base vector of Py or
fif z(S) = f(5). The base polytope By = {
base vectors of f} and is a face of P;:

By = {z € R*[x(U) < f(U),x(S) = f(5)}.

Example: Show base polytope of previous
example.

Note: B; bounded since f({s}) > z, =
2(S) —2(S\ {s}) > f(S) = f(S\ {s}).
Idea: Min-max theorem that certifies opti-
mality in terms of base polytope:

Claim: Let f : 2° — Z be a submodular
function such that f(@) = 0. Then

min f(U) = max{z"(3)|z € By}

where 27 (U) = .., min(0, z;).

Note: max < min: z=(5) < z(U) < f(U)
for any subset U C S and base x € By.

Proof of hard direction follows.

Claim: Moreover, given maximizer x, U =
{i € S:x; <0} is minimizer.

Idea: To minimize submod func, max con-
cave func over base polydron.

e want max sum of neg elts

e sum of all elts const



e thus want min sum pos elts

e intuitively means minimize norm

Claim: For z* minimizer of
min ||z|[3 s.t. © € By
X

a minimizer U* for f is
Ur={ieS:z; <0}
Problem: To run ellipsoid, must test x €

By.

Note: optimization implies separation (po-
lar polytopes).

Proof of Min-Max

Claim: For x € Py, define F, = {U C
Slx(U) = f(U)} (tight constraints). Then
F. is closed under taking unions and inter-
sections.

Proof: For any U,V € F,, have

fUUV)>2(UUYV)

z(U)+z(V)—2z(UNV)

> fU)+ f(V) = f(UNv)
> f(UUV).

Proof: (of min-max relation): Let x be
maximizer. Note for any i,j € S with and
T < O,ZL‘j > 0, HU” s.t.

1. 7€ Uij,j € Ul‘j
2. x<Uij) = f(Ui‘>
since

e Suppose not, i.e. z(U) < f(U) for all
such U

Let ¢ = min{f(U)—z(U)|i € U,j ¢ U}.

Let € = min{¢, |z;|, |z;|}.

Define ; = z; +¢€,%;

for all other k € S.

=T — €Ty = Ty

Then & € By and 27(S) =27 (5) + € >
x~(5) contradicting = is maximizer.

Define V' to contain neg elts of S:
V' = Ujz;<0 Njiz; >0 Uy

Then

e lemma implies (V) = f(V)
e since V' contains all neg elts, x7(5) =
z(V)
e thus z=(5) = f(V).
So min-max relation satisfied by set claimed

in lemma.

Note: For norm claim, note ||z||3 < [|z||3.

Optimize over Polymatroid

Idea: Extend greedy alg for matroids.

Problem:

T

maxw  x s.t. x € By

for w with wy, > ... > w, > 0.
Idea: Greedy

1. set xy as high as possible to get large w;
value: x1 = f({v1})

2. subject to this, set x5 as high as possible:

e 15 < f({va})
o 11+ 1o < f({vlvv2})



e by submod, f({vi,v2})— f({v1}) <
f({v2})

set 9 = f({v1,v2}) — f({n}).

Algorithm: Given total ordering < of S, let

o U <...=<"7y

(] VI; :{’Z}l’...,Uk}

Set by — f({v1})
For k=2...n,set bf — f(V.°) — f(V.2))

Note: need only ordering, actual weights ir-

relevant.

Claim: Gready outputs optimal feasible vec-
tor.

feasibility by induction, optimality by du-
ality as for matroid greedy alg, exercise.

Note: outputs extreme points of base poly-
tope, but want

matzep, v (V)

which may not be extreme point.
Hammer: optimization implies separa-
tion, use ellipsoid. More intuition:

Idea: Search over convex combinations of ex-
treme points:

e maintain z = ), \b™F where A\, >
0,> =1

e iteratively modify bases in sum by swap-
ping elts in <, and update weights



