EECS 495: Combinatorial Optimization
 Lecture 7 Matroid Representation, Matroid Optimization

Reading: Schrijver, Chapters 39 and 40

Matroids

Recap

Def: A matroid $M=(\mathcal{S}, \mathcal{I})$ is a finite ground set \mathcal{S} together with a collection of independent sets $\mathcal{I} \subseteq 2^{\mathcal{S}}$ satisfying:

- downward closed: if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$, and
- exchange property: if $I, J \in \mathcal{I}$ and $|J|>$ $|I|$, then there exists an element $z \in J \backslash I$ s.t. $I \cup\{z\} \in \mathcal{I}$.

Def: A basis is a maximal independent set. The cardinality of a basis is the rank of the matroid.
Def: Uniform matroids U_{n}^{k} are given by $|S|=$ $n, \mathcal{I}=\{I \subseteq S:|I| \leq k\}$.
Def: Linear matroids: Let F be a field, $A \in$ $F^{m \times n}$ an $m \times n$ matrix over $F, S=\{1, \ldots, n\}$ be index set of columns of A. Then $I \subseteq S$ is independent if the corresponding columns are linearly independent.
Note: WLOG any linear matroids can be written as $A=\left[I_{m} \mid B\right]$ where m is rank of matroid and B is an $(n-m) \times m$ matrix over F.

Def: Graphic matroids: Let $G=(V, E)$ be a
graph and $S=E$. A set $F \subseteq E$ is independent if it is acyclic.
Food for thought: can two non-isomorphic graphs give isomorphic matroid structure?

Representation

Def: For a field F, a matroid M is representable over F if it is isomorphic to a linear matroid with matrix A and linear independence taken over F.

Example: Is uniform matroid U_{4}^{2} binary?
Need: matrix A with entries in $\{0,1\}$ s.t. no column is the zero vector, no two rows sum to zero over $\mathrm{GF}(2)$, any three rows sum to GF(2).

- if so, can assume A is 2×4 with columns $1 / 2$ being $(0,1)$ and $(1,0)$ and remaining two vectors with entries in 0,1 neither all zero.
- only three such non-zero vectors, so can't have all pairs indep.

Question: representation of U_{4}^{2} ? $(1,0),(0,1),(1,-1),(1,1)$ in \Re.
Def: A binary matroid is a matroid representable over $G F(2)$.
Def: A regular matroid is representable over any field.

Example: Graphic matroids are regular.

Proof: Take A to be vertex/edge incidence matrix with $+1 /-1$ in each column in any order.

- Minimally dependent sets sum to zero perhaps with multiplying by -1 .
- Works over any field with +1 as multiplicative identity and -1 additive inverse of +1 .

Note: Have graphic \subset binary \subset regular \subset linear.
Note: There are matroids that are not linear (MacLane, 1936; Lazarson, 1958).

Matroid Operations

Def: (from last lecture): The dual M^{*} of matroid $M=(S, \mathcal{I})$ is the matroid with ground set S whose independent sets I are such that $S \backslash I$ contains a basis of M.
Def: The deletion $M \backslash Z$ of matroid $M=$ (S, \mathcal{I}) and subset $Z \subset S$ is the matroid with ground set $S \backslash Z$ and independent sets $\{I \subseteq$ $S \backslash Z: I \in \mathcal{I}\}$.
Example: Take graph, delete edges, take acyclic subsets of remaining edges.

Def: The contraction M / Z of \ldots is $\ldots\left(M^{*} \backslash\right.$ $Z)^{*}$.
$\left[\left[\begin{array}{l}\text { So for } X \subseteq Z \text { maximal independent set } \\ \text { of } M, I \text { independent in } M / Z \text { if } I \cup X \\ \text { independent in } M \text {. }\end{array}\right]\right.$
Def: If a matroid M^{\prime} arises from M by a series of deletions and contractions, then M^{\prime} is a minor of M.

Claim: (Tutte, 1958) A matroid is binary if and only if it has no U_{4}^{2} minor.
$\left.\left[\begin{array}{l}\text { Similar characterization of ternary ma- } \\ \text { troids as those that exclude the so-called } \\ \text { Fano matroid and its dual as a minor. }\end{array}\right]\right]$

Conjecture (Rota, 1971): Matroids representable over a finite field can be characterized by a finite list of excluded minors.
$\left[\left[\begin{array}{l}\text { Much like planar graphs are those with no } \\ K_{3,3} \text { or } K_{5} \text { as a minor. }\end{array}\right]\right]$

Matroid Optimization

Given: Matroid $M=(S, \mathcal{I})$ and weights c : $S \rightarrow \mathbb{R}$
Find: max-weight (or min-weight) basis
$\left[\left[\begin{array}{l}\text { Recall Kruskal's Alg for min spanning } \\ \text { tree: select edges in increasing order of } \\ \text { weight }\end{array}\right]\right]$
Algorithm: Greedy

- Set $J=\emptyset$.
- Order S s.t. $c_{1} \geq \ldots \geq c_{n}$.
- For $i=1$ to n, if $J \cup\{i\}$ is independent, $J:=J \cup\{i\}$
$\left[\left[\begin{array}{l}\text { If weights are non-neg, this is max-weight } \\ \text { indep set; otherwise stop selecting elts } \\ \text { when } c_{i} \text { becomes negative for max-weight } \\ \text { indep set. }\end{array}\right]\right]$
Claim: Greedy finds maximal-weight basis.
[[First rephrase second axiom.
Proof: Clearly a basis. Suppose not maxweight, i.e., for greedy set J and opt J^{\prime}, $c(J)<c\left(J^{\prime}\right)$.
- Let $J=\left\{e_{1}, \ldots, e_{l}\right\}$ be greedy set labeled according to chosen order so $c_{e_{1}} \geq$ $\ldots \geq c_{e_{l}}$.
- Let $J^{\prime}=\left\{q_{1}, \ldots, q_{k}\right\}$ be max-weight basis labeled s.t. $c_{q_{1}} \geq \ldots \geq c_{q_{k}}$.
- Let i be smallest index s.t. $c_{q_{i}}>c_{e_{i}}$ (if no such index, must have $k>l$ so let $i=l+1$).
- Consider independent sets $I=$ Let O_{P}, O_{D} be primal/dual value. To prove
$\left\{e_{1}, \ldots, e_{i-1}\right\}$ and $I^{\prime}=\left\{q_{1}, \ldots, q_{i}\right\}$.
- since $\left|I^{\prime}\right|>|I|$ exchange property says $\exists z \in I^{\prime}$ s.t. $I+z$ independent
- but each elt in I^{\prime} has greater weight than I and z was available to greedy at step i by above, so greedy can't have chosen e_{i} over z.
$\left.\left[\begin{array}{l}\text { In fact, matroids are precisely set systems } \\ \text { on which greedy works, see book. }\end{array}\right]\right]$ [What about running time? Depends on $]$ matroid representation to test if $I+z$ independent. Want poly in $|S|$ given indep set oracle, or sometimes given sucinct representation of M like in graphs (note listing all indep sets is exponential in $|S|)$. Question, is there a matroid with a sucinct rep in which checking indepen-
dence is hard?

Matroid Polytopes

Variables: x_{s} for each $s \in S$ Constraints:

$$
\begin{gathered}
x_{S} \geq 0, \forall s \in S \\
\sum_{s \in U} x_{s} \leq r(U), \forall U \subseteq S
\end{gathered}
$$

Claim: Greedy is optimal.
Claim: Matroid polytope integral.
Proof: Consider primal objective $\max \sum_{s \in S} w(s) x_{S}$. Dual is:

$$
\begin{array}{cc}
& \min \\
\sum_{U \subseteq S} r(U) y_{U} \\
\text { s.t. } & \sum_{U: s \in U} y_{U} \geq w(s), \forall s \in S \\
& y_{U} \geq 0, \forall U \subseteq S
\end{array}
$$

TDI need for any $w \in \mathbb{Z}^{n}$ exists opt dual soln that's integral.
> $[$ Recall TDI means for integral cost vector c s.t. primal soln finite, there exists integral opt dual. Furthermore if polytope is TDI and b is integral, then polytope is integral.

- WLOG w non-negative (else discard neg elts and note dual constraint satisfied since $y \geq 0$.
- Let J be independent set found by greedy.
- Note $w(J) \leq \max _{I \in \mathcal{I}} w(I) \leq O_{P}=O_{D}$.
- Find integral y s.t. dual value equals $w(J)$ hence proving both claims. Label elts in decreasing order of weight and let $U_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$.

$$
\begin{gathered}
y_{U_{i}}=w\left(s_{i}\right)-w\left(s_{i+1}\right) \\
y_{U_{n}}=w\left(s_{n}\right) \\
y_{U}=0, \text { otherwise }
\end{gathered}
$$

- feasible: for any $s_{i} \in S$, $\sum_{U: s_{i} \in U} y_{U}=\quad \sum_{j=i}^{n} y_{U_{j}}$
$=\sum_{i=i}^{n-1}\left(w\left(s_{i}\right)+w\left(s_{i+1}\right)\right)+w\left(s_{n}\right)=$ $=\sum_{j=i}^{n-1}\left(w\left(s_{i}\right)+w\left(s_{i+1}\right)\right)+w\left(s_{n}\right)=$ $w\left(s_{i}\right)$.
- optimal:

$$
\begin{aligned}
\sum_{U \subseteq S} r(U) y_{U}= & \sum_{i=1}^{n-1} r\left(U_{i}\right)\left(w\left(s_{i}\right)-w\left(s_{i+1}\right)\right) \\
= & w\left(s_{n}\right) r\left(U_{1}\right) \\
& +\sum_{i=2}^{n} w\left(s_{i}\right)\left(r\left(U_{i}\right)-r\left(U_{i-1}\right)\right) \\
= & w(J)
\end{aligned}
$$

