Efficient Parallel Algorithms

Alexander Tiskin
Department of Computer Science
University of Warwick
http://warwick.ac.uk/alextiskin

(1) Computation by circuits
(2) Parallel computation models
(3) Basic parallel algorithms
(4) Further parallel algorithms
(5) Parallel matrix algorithms
(6) Parallel graph algorithms
(1) Computation by circuits

(2) Parallel computation models

(3) Basic parallel algorithms
(4) Further parallel algorithms
(5) Parallel matrix algorithms
(6) Parallel graph algorithms

Computation by circuits

Computation models and algorithms

Model: abstraction of reality allowing qualitative and quantitative reasoning

Examples:

- atom
- biological cell
- galaxy
- Kepler's universe
- Newton's universe
- Einstein's universe
- . . .

Computation by circuits

Computation models and algorithms

Computation model: abstract computing device to reason about computations and algorithms

Examples:

- scales+weights (for "counterfeit coin" problems)
- Turing machine
- von Neumann machine ("ordinary computer")
- JVM
- quantum computer
- ...

Computation by circuits

Computation models and algorithms

Computation: input \rightarrow (computation steps) \rightarrow output
Algorithm: a finite description of a (usually infinite) set of computations on different inputs

Assumes a specific computation model and input/output encoding

Computation by circuits

Computation models and algorithms

Computation: input \rightarrow (computation steps) \rightarrow output
Algorithm: a finite description of a (usually infinite) set of computations on different inputs

Assumes a specific computation model and input/output encoding Algorithm's running time (worst-case) $T: \mathbb{N} \rightarrow \mathbb{N}$
$T(n)=\underset{\text { input size }=n}{\max }$ computation steps

Computation by circuits

Computation models and algorithms

Computation: input \rightarrow (computation steps) \rightarrow output
Algorithm: a finite description of a (usually infinite) set of computations on different inputs

Assumes a specific computation model and input/output encoding Algorithm's running time (worst-case) $T: \mathbb{N} \rightarrow \mathbb{N}$
$T(n)=\underset{\text { input size }=n}{\max }$ computation steps
Similarly for other resources (e.g. memory, communication)

Computation by circuits

Computation models and algorithms

$T(n)$ is usually analysed asymptotically:

Computation by circuits

Computation models and algorithms

$T(n)$ is usually analysed asymptotically:

- up to a constant factor
- for sufficiently large n

Computation by circuits

Computation models and algorithms

$T(n)$ is usually analysed asymptotically:

- up to a constant factor
- for sufficiently large n
$f(n) \geq 0 \quad n \rightarrow \infty$
Asymptotic growth classes relative to $f: O(f), o(f), \Omega(f), \omega(f), \Theta(f)$

Computation by circuits

Computation models and algorithms

$f(n), g(n) \geq 0 \quad n \rightarrow \infty$
$g=O(f):$ " g grows at the same rate or slower than f "...

Computation by circuits

Computation models and algorithms

$f(n), g(n) \geq 0 \quad n \rightarrow \infty$
$g=O(f):$ " g grows at the same rate or slower than f "...
$g=O(f) \Longleftrightarrow \exists C: \exists n_{0}: \forall n \geq n_{0}: g(n) \leq C \cdot f(n)$
In words: we can scale f up by a specific (possibly large) constant, so that f will eventually overtake and stay above g

Computation by circuits

Computation models and algorithms

$f(n), g(n) \geq 0 \quad n \rightarrow \infty$
$g=O(f):$ " g grows at the same rate or slower than f "...
$g=O(f) \Longleftrightarrow \exists C: \exists n_{0}: \forall n \geq n_{0}: g(n) \leq C \cdot f(n)$
In words: we can scale f up by a specific (possibly large) constant, so that f will eventually overtake and stay above g
$g=o(f): " g$ grows (strictly) slower than $f "$

Computation by circuits

Computation models and algorithms

$f(n), g(n) \geq 0 \quad n \rightarrow \infty$
$g=O(f):$ " g grows at the same rate or slower than f "...
$g=O(f) \Longleftrightarrow \exists C: \exists n_{0}: \forall n \geq n_{0}: g(n) \leq C \cdot f(n)$
In words: we can scale f up by a specific (possibly large) constant, so that f will eventually overtake and stay above g
$g=o(f): " g$ grows (strictly) slower than $f "$
$g=o(f) \Longleftrightarrow \forall c: \exists n_{0}: \forall n \geq n_{0}: g(n) \leq c \cdot f(n)$
In words: even if we scale f down by any (however small) constant, f will still eventually overtake and stay above g

Computation by circuits

Computation models and algorithms

$f(n), g(n) \geq 0 \quad n \rightarrow \infty$
$g=O(f):$ " g grows at the same rate or slower than $f^{\prime \prime} \ldots$
$g=O(f) \Longleftrightarrow \exists C: \exists n_{0}: \forall n \geq n_{0}: g(n) \leq C \cdot f(n)$
In words: we can scale f up by a specific (possibly large) constant, so that f will eventually overtake and stay above g
$g=o(f):$ " g grows (strictly) slower than f "
$g=o(f) \Longleftrightarrow \forall c: \exists n_{0}: \forall n \geq n_{0}: g(n) \leq c \cdot f(n)$
In words: even if we scale f down by any (however small) constant, f will still eventually overtake and stay above g

Overtaking point depends on the constant!
Exercise: $\exists n_{0}: \forall c: \forall n \geq n_{0}: g(n) \leq c \cdot f(n)$ — what does this say?

Computation by circuits

Computation models and algorithms

$g=\Omega(f):$ " g grows at the same rate or faster than f "
$g=\omega(f):$ " g grows (strictly) faster than f "
$g=\Omega(f)$ iff $f=O(g) \quad g=\omega(f)$ iff $f=o(g)$

Computation by circuits

Computation models and algorithms

$g=\Omega(f):$ " g grows at the same rate or faster than f "
$g=\omega(f):$ " g grows (strictly) faster than f "
$g=\Omega(f)$ iff $f=O(g) \quad g=\omega(f)$ iff $f=o(g)$
$g=\Theta(f):$ " g grows at the same rate as f "
$g=\Theta(f)$ iff $g=O(f)$ and $g=\Omega(f)$

Computation by circuits

Computation models and algorithms

$g=\Omega(f):$ " g grows at the same rate or faster than f "
$g=\omega(f):$ " g grows (strictly) faster than f "
$g=\Omega(f)$ iff $f=O(g) \quad g=\omega(f)$ iff $f=o(g)$
$g=\Theta(f):$ " g grows at the same rate as f "
$g=\Theta(f)$ iff $g=O(f)$ and $g=\Omega(f)$
Note: an algorithm is faster, when its complexity grows slower
Note: the "equality" in $g=O(f)$ is actually set membership. Sometimes written $g \in O(f)$, similarly for Ω, etc.

Computation by circuits

Computation models and algorithms

$f(n), g(n) \geq 0 \quad n \rightarrow \infty$
The maximum rule: $f+g=\Theta(\max (f, g))$

Computation by circuits

Computation models and algorithms

$f(n), g(n) \geq 0 \quad n \rightarrow \infty$
The maximum rule: $f+g=\Theta(\max (f, g))$
Proof:

Computation by circuits

Computation models and algorithms

$f(n), g(n) \geq 0 \quad n \rightarrow \infty$
The maximum rule: $f+g=\Theta(\max (f, g))$
Proof: for all n, we have
$\max (f(n)+g(n)) \leq f(n)+g(n) \leq 2 \max (f(n)+g(n))$

Computation by circuits

Computation models and algorithms

Example usage: sorting an array of size n
All good comparison-based sorting algorithms run in time $O(n \log n)$
If only pairwise comparisons between elements are allowed, no algorithm can run faster than $\Omega(n \log n)$
Hence, comparison-based sorting has complexity $\Theta(n \log n)$
If we are not restricted to just making comparisons, we can often sort in time $o(n \log n)$, or even $O(n)$

Computation by circuits

Computation models and algorithms

Example usage: multiplying $n \times n$ matrices
All good algorithms run in time $O\left(n^{3}\right)$, where n is matrix size
If only addition and multiplication between elements are allowed, no algorithm can run faster than $\Omega\left(n^{3}\right)$
Hence, $(+, \times)$ matrix multiplication has complexity $\Theta\left(n^{3}\right)$

Computation by circuits

Computation models and algorithms

Example usage: multiplying $n \times n$ matrices
All good algorithms run in time $O\left(n^{3}\right)$, where n is matrix size
If only addition and multiplication between elements are allowed, no algorithm can run faster than $\Omega\left(n^{3}\right)$
Hence, $(+, \times)$ matrix multiplication has complexity $\Theta\left(n^{3}\right)$
If subtraction is allowed, everything changes! The best known matrix multiplication algorithm (with subtraction) runs in time $O\left(n^{2.373}\right)$ It is conjectured that $O\left(n^{2+\epsilon}\right)$ for any $\epsilon>0$ is possible - open problem!
Matrix multiplication cannot run faster than $\Omega\left(n^{2} \log n\right)$ even with subtraction (under some natural assumptions)

Computation by circuits

Computation models and algorithms

Algorithm complexity depends on the model

Computation by circuits

Computation models and algorithms

Algorithm complexity depends on the model
E.g. sorting n items:

- $\Omega(n \log n)$ in the comparison model
- $O(n)$ in the arithmetic model (by radix sort)

Computation by circuits

Computation models and algorithms

Algorithm complexity depends on the model
E.g. sorting n items:

- $\Omega(n \log n)$ in the comparison model
- $O(n)$ in the arithmetic model (by radix sort)
E.g. factoring large numbers:
- hard in a von Neumann-type (standard) model
- not so hard on a quantum computer

Computation by circuits

Computation models and algorithms

Algorithm complexity depends on the model
E.g. sorting n items:

- $\Omega(n \log n)$ in the comparison model
- $O(n)$ in the arithmetic model (by radix sort)
E.g. factoring large numbers:
- hard in a von Neumann-type (standard) model
- not so hard on a quantum computer
E.g. deciding if a program halts on a given input:
- impossible in a standard (or even quantum) model
- can be added to the standard model as an oracle, to create a more powerful model

Computation by circuits

The circuit model

Basic special-purpose parallel model: a circuit

$$
\begin{aligned}
& a^{2}+2 a b+b^{2} \\
& a^{2}-b^{2}
\end{aligned}
$$

Computation by circuits

The circuit model

Basic special-purpose parallel model: a circuit

$$
\begin{aligned}
& a^{2}+2 a b+b^{2} \\
& a^{2}-b^{2}
\end{aligned}
$$

Directed acyclic graph (dag), fixed number of inputs/outputs
Models oblivious computation: control sequence independent of the input

Computation by circuits

The circuit model

Basic special-purpose parallel model: a circuit
$a^{2}+2 a b+b^{2}$
$a^{2}-b^{2}$

Directed acyclic graph (dag), fixed number of inputs/outputs Models oblivious computation: control sequence independent of the input Computation on varying number of inputs: an (infinite) circuit family May or may not admit a finite description (= algorithm)

Computation by circuits

The circuit model

In a circuit family, node indegree/outdegree may be bounded (by a constant), or unbounded: e.g. two-argument vs n-argument sum Elementary operations:

- arithmetic/Boolean/comparison
- each (usually) constant time

Computation by circuits

The circuit model

In a circuit family, node indegree/outdegree may be bounded (by a constant), or unbounded: e.g. two-argument vs n-argument sum Elementary operations:

- arithmetic/Boolean/comparison
- each (usually) constant time
size $=$ number of nodes
depth $=$ max path length from input to output

Computation by circuits

The circuit model

In a circuit family, node indegree/outdegree may be bounded (by a constant), or unbounded: e.g. two-argument vs n-argument sum Elementary operations:

- arithmetic/Boolean/comparison
- each (usually) constant time
size $=$ number of nodes
depth $=$ max path length from input to output
Other uses of circuits:
- arbitrary (non-oblivious) computation can be thought of as a circuit that is not given in advance, but revealed gradually
- timed circuits with feedback: systolic arrays

Computation by circuits

The comparison network model

A comparison network is a circuit of comparator nodes

Computation by circuits

The comparison network model

A comparison network is a circuit of comparator nodes

Input/output: sequences of equal length, taken from a totally ordered set

Computation by circuits

The comparison network model

A comparison network is a circuit of comparator nodes

Input/output: sequences of equal length, taken from a totally ordered set
Examples:

Computation by circuits

The comparison network model

A comparison network is a circuit of comparator nodes
denotes
$x \sqcap y$
$x \sqcup y$

Input/output: sequences of equal length, taken from a totally ordered set Examples:

Computation by circuits

The comparison network model

A merging network is a comparison network that takes two sorted input sequences of length $n^{\prime}, n^{\prime \prime}$, and produces a sorted output sequence of length $n=n^{\prime}+n^{\prime \prime}$

A sorting network is a comparison network that takes an arbitrary input sequence, and produces a sorted output sequence

Computation by circuits

The comparison network model

A merging network is a comparison network that takes two sorted input sequences of length $n^{\prime}, n^{\prime \prime}$, and produces a sorted output sequence of length $n=n^{\prime}+n^{\prime \prime}$

A sorting network is a comparison network that takes an arbitrary input sequence, and produces a sorted output sequence

A finitely described family of sorting (or merging) networks is equivalent to an oblivious sorting (or merging) algorithm

The network's size/depth determine the algorithm's sequential/parallel complexity

Computation by circuits

The comparison network model

A merging network is a comparison network that takes two sorted input sequences of length $n^{\prime}, n^{\prime \prime}$, and produces a sorted output sequence of length $n=n^{\prime}+n^{\prime \prime}$

A sorting network is a comparison network that takes an arbitrary input sequence, and produces a sorted output sequence

A finitely described family of sorting (or merging) networks is equivalent to an oblivious sorting (or merging) algorithm

The network's size/depth determine the algorithm's sequential/parallel complexity

General merging: $O(n)$ comparisons, non-oblivious
General sorting: $O(n \log n)$ comparisons by mergesort, non-oblivious
What is the complexity of oblivious sorting?

Computation by circuits

Naive sorting networks

> BUBBLE-SORT (n)
> size $n(n-1) / 2=O\left(n^{2}\right)$
> depth $2 n-3=O(n)$

Computation by circuits

Naive sorting networks

BUBBLE-SORT (n)
size $n(n-1) / 2=O\left(n^{2}\right)$
depth $2 n-3=O(n)$

BUBBLE-SORT (8)
size 28
depth 13

Computation by circuits

Naive sorting networks

INSERTION-SORT(n)
size $n(n-1) / 2=O\left(n^{2}\right)$
depth $2 n-3=O(n)$

Computation by circuits

Naive sorting networks

INSERTION-SORT(n)
size $n(n-1) / 2=O\left(n^{2}\right)$
depth $2 n-3=O(n)$

INSERTION-SORT(8)
size 28
depth 13
Identical to BUBBLE-SORT!

Computation by circuits

The zero-one principle
Zero-one principle: A comparison network is sorting, if and only if it sorts all input sequences of 0 s and 1 s

Computation by circuits

The zero-one principle

Zero-one principle: A comparison network is sorting, if and only if it sorts all input sequences of 0 s and 1 s

Proof.

Computation by circuits

The zero-one principle

Zero-one principle: A comparison network is sorting, if and only if it sorts all input sequences of 0 s and 1 s

Proof. "Only if" : trivial.

Computation by circuits

The zero-one principle

Zero-one principle: A comparison network is sorting, if and only if it sorts all input sequences of 0 s and 1 s

Proof. "Only if": trivial. "If": by contradiction.
Assume a given network does not sort input $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle$
$\left\langle x_{1}, \ldots, x_{n}\right\rangle \mapsto\left\langle y_{1}, \ldots, y_{n}\right\rangle \quad \exists k, I: k<I: y_{k}>y_{l}$

Computation by circuits

The zero-one principle

Zero-one principle: A comparison network is sorting, if and only if it sorts all input sequences of 0 s and 1 s

Proof. "Only if": trivial. "If": by contradiction.
Assume a given network does not sort input $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle$
$\left\langle x_{1}, \ldots, x_{n}\right\rangle \mapsto\left\langle y_{1}, \ldots, y_{n}\right\rangle \quad \exists k, I: k<l: y_{k}>y_{l}$
Let $X_{i}=\left\{\begin{array}{ll}0 & \text { if } x_{i}<y_{k} \\ 1 & \text { if } x_{i} \geq y_{k}\end{array}\right.$, and run the network on input $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$
For all i, j we have $x_{i} \leq x_{j} \Rightarrow X_{i} \leq X_{j}$, therefore each X_{i} follows the same path through the network as x_{i}

Computation by circuits

The zero-one principle

Zero-one principle: A comparison network is sorting, if and only if it sorts all input sequences of 0 s and 1 s

Proof. "Only if": trivial. "If": by contradiction.
Assume a given network does not sort input $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle$
$\left\langle x_{1}, \ldots, x_{n}\right\rangle \mapsto\left\langle y_{1}, \ldots, y_{n}\right\rangle \quad \exists k, I: k<I: y_{k}>y_{l}$
Let $X_{i}=\left\{\begin{array}{ll}0 & \text { if } x_{i}<y_{k} \\ 1 & \text { if } x_{i} \geq y_{k}\end{array}\right.$, and run the network on input $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$
For all i, j we have $x_{i} \leq x_{j} \Rightarrow X_{i} \leq X_{j}$, therefore each X_{i} follows the same path through the network as x_{i}
$\left\langle X_{1}, \ldots, X_{n}\right\rangle \mapsto\left\langle Y_{1}, \ldots, Y_{n}\right\rangle \quad Y_{k}=1>0=Y_{l}$
We have $k<I$ but $Y_{k}>Y_{l}$, so the network does not sort 0 s and 1 s

Computation by circuits

The zero-one principle
The zero-one principle applies to sorting, merging and other comparison problems (e.g. selection)

Computation by circuits

The zero-one principle

The zero-one principle applies to sorting, merging and other comparison problems (e.g. selection)

It allows one to test:

- a sorting network by checking only 2^{n} input sequences, instead of a much larger number $n!=(1+o(1))(2 \pi n)^{1 / 2} \cdot(n / e)^{n}$
- a merging network by checking only $\left(n^{\prime}+1\right) \cdot\left(n^{\prime \prime}+1\right)$ pairs of input sequences, instead of a (typically) very much larger number

$$
\binom{n}{n^{\prime}}=\binom{n}{n^{\prime \prime}}, \text { e.g. for } n=2 n^{\prime}=2 n^{\prime \prime}:\binom{n}{n^{\prime}}=(1+o(1))(\pi n / 2)^{-1 / 2} \cdot 2^{n}
$$

Computation by circuits

Efficient merging and sorting networks

General merging: $O(n)$ comparisons, non-oblivious
How fast can we merge obliviously?

Computation by circuits

Efficient merging and sorting networks

General merging: $O(n)$ comparisons, non-oblivious
How fast can we merge obliviously?
$\left\langle x_{1} \leq \cdots \leq x_{n^{\prime}}\right\rangle,\left\langle y_{1} \leq \cdots \leq y_{n^{\prime \prime}}\right\rangle \mapsto\left\langle z_{1} \leq \cdots \leq z_{n}\right\rangle$
Odd-even merging
When $n^{\prime}=n^{\prime \prime}=1$ compare $\left(x_{1}, y_{1}\right)$, otherwise by recursion:

- merge $\left\langle x_{1}, x_{3}, \ldots\right\rangle,\left\langle y_{1}, y_{3}, \ldots\right\rangle \mapsto\left\langle u_{1} \leq u_{2} \leq \cdots \leq u_{\left\lceil n^{\prime} / 2\right\rceil+\left\lceil n^{\prime \prime} / 2\right\rceil}\right\rangle$
- merge $\left\langle x_{2}, x_{4}, \ldots\right\rangle,\left\langle y_{2}, y_{4}, \ldots\right\rangle \mapsto\left\langle v_{1} \leq v_{2} \leq \cdots \leq v_{\left\lfloor n^{\prime} / 2\right\rfloor+\left\lfloor n^{\prime \prime} / 2\right\rfloor}\right\rangle$
- compare pairwise: $\left(u_{2}, v_{1}\right),\left(u_{3}, v_{2}\right), \ldots$

Computation by circuits

Efficient merging and sorting networks

General merging: $O(n)$ comparisons, non-oblivious
How fast can we merge obliviously?
$\left\langle x_{1} \leq \cdots \leq x_{n^{\prime}}\right\rangle,\left\langle y_{1} \leq \cdots \leq y_{n^{\prime \prime}}\right\rangle \mapsto\left\langle z_{1} \leq \cdots \leq z_{n}\right\rangle$
Odd-even merging
When $n^{\prime}=n^{\prime \prime}=1$ compare $\left(x_{1}, y_{1}\right)$, otherwise by recursion:

- merge $\left\langle x_{1}, x_{3}, \ldots\right\rangle,\left\langle y_{1}, y_{3}, \ldots\right\rangle \mapsto\left\langle u_{1} \leq u_{2} \leq \cdots \leq u_{\left\lceil n^{\prime} / 2\right\rceil+\left\lceil n^{\prime \prime} / 2\right\rceil}\right\rangle$
- merge $\left\langle x_{2}, x_{4}, \ldots\right\rangle,\left\langle y_{2}, y_{4}, \ldots\right\rangle \mapsto\left\langle v_{1} \leq v_{2} \leq \cdots \leq v_{\left\lfloor n^{\prime} / 2\right\rfloor+\left\lfloor n^{\prime \prime} / 2\right\rfloor}\right\rangle$
- compare pairwise: $\left(u_{2}, v_{1}\right),\left(u_{3}, v_{2}\right), \ldots$
$\operatorname{size}\left(\operatorname{OEM}\left(n^{\prime}, n^{\prime \prime}\right)\right) \leq 2 \cdot \operatorname{size}\left(\operatorname{OEM}\left(n^{\prime} / 2, n^{\prime \prime} / 2\right)\right)+O(n)=O(n \log n)$ $\operatorname{depth}\left(\operatorname{OEM}\left(n^{\prime}, n^{\prime \prime}\right)\right) \leq \operatorname{depth}\left(\operatorname{OEM}\left(n^{\prime} / 2, n^{\prime \prime} / 2\right)\right)+1=O(\log n)$

Computation by circuits

Efficient merging and sorting networks

OEM ($\left.n^{\prime}, n^{\prime \prime}\right)$
size $O(n \log n)$
depth $O(\log n)$

Computation by circuits

Efficient merging and sorting networks

OEM ($\left.n^{\prime}, n^{\prime \prime}\right)$
size $O(n \log n)$ depth $O(\log n)$

$\operatorname{OEM}(4,4)$
size 9
depth 3

Computation by circuits

Efficient merging and sorting networks

Correctness proof of odd-even merging:

Computation by circuits

Efficient merging and sorting networks

Correctness proof of odd-even merging: induction, zero-one principle Induction base: trivial (2 inputs, 1 comparator)

Inductive step. Inductive hypothesis: odd, even merge both work correctly
Let the input consist of 0 s and 1 s . We have for all k, I :
$\left\langle 0^{\lceil k / 2\rceil} 11 \ldots\right\rangle,\left\langle 0^{\lceil I / 2\rceil} 11 \ldots\right\rangle \mapsto\left\langle 0^{\lceil k / 2\rceil+\lceil 1 / 2\rceil} 11 \ldots\right\rangle$ in the odd merge $\left\langle 0^{\lfloor k / 2\rfloor} 11 \ldots\right\rangle,\left\langle 0^{\lfloor/ 2\rfloor} 11 \ldots\right\rangle \mapsto\left\langle 0^{\lfloor k / 2\rfloor+\lfloor I / 2\rfloor} 11 \ldots\right\rangle$ in the even merge

Computation by circuits

Efficient merging and sorting networks

Correctness proof of odd-even merging: induction, zero-one principle Induction base: trivial (2 inputs, 1 comparator)

Inductive step. Inductive hypothesis: odd, even merge both work correctly
Let the input consist of 0 s and 1 s . We have for all k, I :
$\left\langle 0^{\lceil k / 2\rceil} 11 \ldots\right\rangle,\left\langle 0^{\lceil I / 2\rceil} 11 \ldots\right\rangle \mapsto\left\langle 0^{\lceil k / 2\rceil+\lceil 1 / 2\rceil} 11 \ldots\right\rangle$ in the odd merge $\left\langle 0^{\lfloor k / 2\rfloor} 11 \ldots\right\rangle,\left\langle 0^{\lfloor/ 2\rfloor} 11 \ldots\right\rangle \mapsto\left\langle 0^{\lfloor k / 2\rfloor+\lfloor I / 2\rfloor} 11 \ldots\right\rangle$ in the even merge $(\lceil k / 2\rceil+\lceil I / 2\rceil)-(\lfloor k / 2\rfloor+\lfloor I / 2\rfloor)=$
$\left\{0,1\right.$ result sorted: $\left\langle 0^{k+/} 11 \ldots\right\rangle$
2 single pair wrong: $\left\langle 0^{k+l-1} 1011 \ldots\right\rangle$

Computation by circuits

Efficient merging and sorting networks

Correctness proof of odd-even merging: induction, zero-one principle Induction base: trivial (2 inputs, 1 comparator)
Inductive step. Inductive hypothesis: odd, even merge both work correctly
Let the input consist of 0 s and 1 s . We have for all k, I :
$\left\langle 0^{\lceil k / 2\rceil} 11 \ldots\right\rangle,\left\langle 0^{\lceil I / 2\rceil} 11 \ldots\right\rangle \mapsto\left\langle 0^{\lceil k / 2\rceil+\lceil 1 / 2\rceil} 11 \ldots\right\rangle$ in the odd merge $\left\langle 0^{\lfloor k / 2\rfloor} 11 \ldots\right\rangle,\left\langle 0^{\lfloor/ 2\rfloor} 11 \ldots\right\rangle \mapsto\left\langle 0^{\lfloor k / 2\rfloor+\lfloor I / 2\rfloor} 11 \ldots\right\rangle$ in the even merge $(\lceil k / 2\rceil+\lceil I / 2\rceil)-(\lfloor k / 2\rfloor+\lfloor I / 2\rfloor)=$
$\begin{cases}0,1 & \text { result sorted: }\left\langle 0^{k+l} 11 \ldots\right\rangle \\ 2 & \text { single pair wrong: }\left\langle 0^{k+l-1} 1011 \ldots\right\rangle\end{cases}$
The final stage of comparators corrects the wrong pair $\left\langle 0^{k} 11 \ldots\right\rangle,\left\langle 0^{\prime} 11 \ldots\right\rangle \mapsto\left\langle 0^{k+\prime} 11 \ldots\right\rangle$

Computation by circuits

Efficient merging and sorting networks
Sorting an arbitrary input $\left\langle x_{1}, \ldots, x_{n}\right\rangle$
Odd-even merge sorting
[Batcher: 1968]
When $n=1$ we are done, otherwise by recursion:

- sort $\left\langle x_{1}, \ldots, x_{\lceil n / 2\rceil}\right\rangle$
- sort $\left\langle x_{\lceil n / 2\rceil+1}, \ldots, x_{n}\right\rangle$
- merge results by $\operatorname{OEM}(\lceil n / 2\rceil,\lfloor n / 2\rfloor)$

Computation by circuits

Efficient merging and sorting networks

Sorting an arbitrary input $\left\langle x_{1}, \ldots, x_{n}\right\rangle$
Odd-even merge sorting
[Batcher: 1968]
When $n=1$ we are done, otherwise by recursion:

- sort $\left\langle x_{1}, \ldots, x_{\lceil n / 2\rceil}\right\rangle$
- sort $\left\langle x_{\lceil n / 2\rceil+1}, \ldots, x_{n}\right\rangle$
- merge results by $\operatorname{OEM}(\lceil n / 2\rceil,\lfloor n / 2\rfloor)$
$\operatorname{size}(O E M-S O R T)(n) \leq$
$2 \cdot \operatorname{size}(\operatorname{OEM}-\operatorname{SORT}(n / 2))+\operatorname{size}(\operatorname{OEM}(n / 2, n / 2))=$
$2 \cdot \operatorname{size}(O E M-\operatorname{SORT}(n / 2))+O(n \log n)=O\left(n(\log n)^{2}\right)$
$\operatorname{depth}(O E M-S O R T(n)) \leq$
$\operatorname{depth}(\operatorname{OEM}-\operatorname{SORT}(n / 2))+\operatorname{depth}(\operatorname{OEM}(n / 2, n / 2))=$
$\operatorname{depth}(O E M-\operatorname{SORT}(n / 2))+O(\log n)=O\left((\log n)^{2}\right)$

Computation by circuits

Efficient merging and sorting networks

OEM-SORT(n)
size $O\left(n(\log n)^{2}\right)$
depth $O\left((\log n)^{2}\right)$

Computation by circuits

Efficient merging and sorting networks

OEM-SORT(n)
size $O\left(n(\log n)^{2}\right)$
depth $O\left((\log n)^{2}\right)$

OEM-SORT (8)
size 19
depth 6

Computation by circuits

Efficient merging and sorting networks

A bitonic sequence: $\left\langle x_{1} \geq \cdots \geq x_{m} \leq \cdots \leq x_{n}\right\rangle \quad 1 \leq m \leq n$

Computation by circuits

Efficient merging and sorting networks

A bitonic sequence: $\left\langle x_{1} \geq \cdots \geq x_{m} \leq \cdots \leq x_{n}\right\rangle$

$$
1 \leq m \leq n
$$

Bitonic merging: sorting a bitonic sequence
When $n=1$ we are done, otherwise by recursion:

- sort bitonic $\left\langle x_{1}, x_{3}, \ldots\right\rangle \mapsto\left\langle u_{1} \leq u_{2} \leq \cdots \leq u_{\lceil n / 2\rceil}\right\rangle$
- sort bitonic $\left\langle x_{2}, x_{4}, \ldots\right\rangle \mapsto\left\langle v_{1} \leq v_{2} \leq \cdots \leq v_{\lfloor n / 2\rfloor}\right\rangle$
- compare pairwise: $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots$

Exercise: prove correctness (by zero-one principle)
Note: cannot exchange \geq and \leq in definition of bitonic!

Computation by circuits

Efficient merging and sorting networks

A bitonic sequence: $\left\langle x_{1} \geq \cdots \geq x_{m} \leq \cdots \leq x_{n}\right\rangle \quad 1 \leq m \leq n$
Bitonic merging: sorting a bitonic sequence
When $n=1$ we are done, otherwise by recursion:

- sort bitonic $\left\langle x_{1}, x_{3}, \ldots\right\rangle \mapsto\left\langle u_{1} \leq u_{2} \leq \cdots \leq u_{\lceil n / 2\rceil}\right\rangle$
- sort bitonic $\left\langle x_{2}, x_{4}, \ldots\right\rangle \mapsto\left\langle v_{1} \leq v_{2} \leq \cdots \leq v_{\lfloor n / 2\rfloor}\right\rangle$
- compare pairwise: $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots$

Exercise: prove correctness (by zero-one principle)
Note: cannot exchange \geq and \leq in definition of bitonic!
Bitonic merging is more flexible than odd-even merging, since for a fixed n, a single circuit applies to all values of m

Computation by circuits

Efficient merging and sorting networks

A bitonic sequence: $\left\langle x_{1} \geq \cdots \geq x_{m} \leq \cdots \leq x_{n}\right\rangle \quad 1 \leq m \leq n$
Bitonic merging: sorting a bitonic sequence
When $n=1$ we are done, otherwise by recursion:

- sort bitonic $\left\langle x_{1}, x_{3}, \ldots\right\rangle \mapsto\left\langle u_{1} \leq u_{2} \leq \cdots \leq u_{\lceil n / 2\rceil}\right\rangle$
- sort bitonic $\left\langle x_{2}, x_{4}, \ldots\right\rangle \mapsto\left\langle v_{1} \leq v_{2} \leq \cdots \leq v_{\lfloor n / 2\rfloor}\right\rangle$
- compare pairwise: $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots$

Exercise: prove correctness (by zero-one principle)
Note: cannot exchange \geq and \leq in definition of bitonic!
Bitonic merging is more flexible than odd-even merging, since for a fixed n, a single circuit applies to all values of m
$\operatorname{size}(B M(n))=O(n \log n) \quad \operatorname{depth}(B M(n))=O(\log n)$

Computation by circuits

Efficient merging and sorting networks

$B M(n)$
size $O(n \log n)$
depth $O(\log n)$

Computation by circuits

Efficient merging and sorting networks

$B M(n)$
size $O(n \log n)$
depth $O(\log n)$

BM(8)
size 12
depth 3

Computation by circuits

Efficient merging and sorting networks

Bitonic merge sorting

[Batcher: 1968]
When $n=1$ we are done, otherwise by recursion:

- sort $\left\langle x_{1}, \ldots, x_{\lceil n / 2\rceil}\right\rangle \mapsto\left\langle y_{1} \geq \cdots \geq y_{\lceil n / 2\rceil}\right\rangle$ in reverse
- sort $\left\langle x_{\lceil n / 2\rceil+1}, \ldots, x_{n}\right\rangle \mapsto\left\langle y_{\lceil n / 2\rceil+1} \leq \cdots \leq y_{n}\right\rangle$
- sort bitonic $\left\langle y_{1} \geq \cdots \geq y_{m} \leq \cdots \leq y_{n}\right\rangle \quad m=\lceil n / 2\rceil$ or $\lceil n / 2\rceil+1$

Sorting in reverse seems to require "inverted comparators"

Computation by circuits

Efficient merging and sorting networks

Bitonic merge sorting

[Batcher: 1968]
When $n=1$ we are done, otherwise by recursion:

- sort $\left\langle x_{1}, \ldots, x_{\lceil n / 2\rceil}\right\rangle \mapsto\left\langle y_{1} \geq \cdots \geq y_{\lceil n / 2\rceil}\right\rangle$ in reverse
- sort $\left\langle x_{\lceil n / 2\rceil+1}, \ldots, x_{n}\right\rangle \mapsto\left\langle y_{\lceil n / 2\rceil+1} \leq \cdots \leq y_{n}\right\rangle$
- sort bitonic $\left\langle y_{1} \geq \cdots \geq y_{m} \leq \cdots \leq y_{n}\right\rangle \quad m=\lceil n / 2\rceil$ or $\lceil n / 2\rceil+1$

Sorting in reverse seems to require "inverted comparators", however

- comparators are actually nodes in a circuit, which can always be drawn using "standard comparators"
- a network drawn with "inverted comparators" can be converted into one with only "standard comparators" by a top-down rearrangement

Computation by circuits

Efficient merging and sorting networks

Bitonic merge sorting

[Batcher: 1968]
When $n=1$ we are done, otherwise by recursion:

- sort $\left\langle x_{1}, \ldots, x_{\lceil n / 2\rceil}\right\rangle \mapsto\left\langle y_{1} \geq \cdots \geq y_{\lceil n / 2\rceil}\right\rangle$ in reverse
- sort $\left\langle x_{\lceil n / 2\rceil+1}, \ldots, x_{n}\right\rangle \mapsto\left\langle y_{\lceil n / 2\rceil+1} \leq \cdots \leq y_{n}\right\rangle$
- sort bitonic $\left\langle y_{1} \geq \cdots \geq y_{m} \leq \cdots \leq y_{n}\right\rangle \quad m=\lceil n / 2\rceil$ or $\lceil n / 2\rceil+1$

Sorting in reverse seems to require "inverted comparators", however

- comparators are actually nodes in a circuit, which can always be drawn using "standard comparators"
- a network drawn with "inverted comparators" can be converted into one with only "standard comparators" by a top-down rearrangement
$\operatorname{size}(B M-\operatorname{SORT}(n))=O\left(n(\log n)^{2}\right)$
$\operatorname{depth}(B M-\operatorname{SORT}(n))=O\left((\log n)^{2}\right)$

Computation by circuits

Efficient merging and sorting networks

BM-SORT (n)
size $O\left(n(\log n)^{2}\right)$
depth $O\left((\log n)^{2}\right)$

Computation by circuits

Efficient merging and sorting networks

BM-SORT (n)
size $O\left(n(\log n)^{2}\right)$
depth $O\left((\log n)^{2}\right)$

BM-SORT (8)
size 24
depth 6

Computation by circuits

Efficient merging and sorting networks

Both OEM-SORT and BM-SORT have size $\Theta\left(n(\log n)^{2}\right)$
Is it possible to sort obliviously in size $O\left(n(\log n)^{2}\right) ? O(n \log n)$?

Computation by circuits

Efficient merging and sorting networks

Both OEM-SORT and BM-SORT have size $\Theta\left(n(\log n)^{2}\right)$
Is it possible to sort obliviously in size $O\left(n(\log n)^{2}\right) ? O(n \log n)$?
AKS sorting
[Ajtai, Komlós, Szemerédi: 1983]
[Paterson: 1990]; [Seiferas: 2009]
Sorting network: size $O(n \log n)$, depth $O(\log n)$
Uses sophisticated graph theory (expanders)
Asymptotically optimal, but has huge constant factors
(1) Computation by circuits
(2) Parallel computation models
(3) Basic parallel algorithms

44 Further parallel algorithms
(5) Parallel matrix algorithms
(6) Parallel graph algorithms

Parallel computation models

The PRAM model

Parallel Random Access Machine (PRAM)
Simple, idealised general-purpose parallel model
[Fortune, Wyllie: 1978]

Parallel computation models

The PRAM model

Parallel Random Access Machine (PRAM)
[Fortune, Wyllie: 1978]
Simple, idealised general-purpose parallel model

Contains

- unlimited number of processors (1 time unit/op)
- global shared memory (1 time unit/access)

Operates in full synchrony

Parallel computation models

The PRAM model

PRAM computation: sequence of parallel steps
Communication and synchronisation taken for granted
Not scalable in practice!

Parallel computation models

The PRAM model

PRAM computation: sequence of parallel steps
Communication and synchronisation taken for granted
Not scalable in practice!
PRAM variants:

- concurrent/exclusive read
- concurrent/exclusive write

CRCW, CREW, EREW, (ERCW) PRAM

Parallel computation models

The PRAM model

PRAM computation: sequence of parallel steps
Communication and synchronisation taken for granted
Not scalable in practice!
PRAM variants:

- concurrent/exclusive read
- concurrent/exclusive write

CRCW, CREW, EREW, (ERCW) PRAM

E.g. a linear system solver: $O\left((\log n)^{2}\right)$ steps using n^{4} processors

PRAM algorithm design: minimising number of steps, sometimes also number of processors

Parallel computation models

The BSP model

Bulk-Synchronous Parallel (BSP) computer
[Valiant: 1990]
Simple, realistic general-purpose parallel model

Goals: scalability, portability, predictability

Parallel computation models

The BSP model

Bulk-Synchronous Parallel (BSP) computer

[Valiant: 1990]
Simple, realistic general-purpose parallel model

Goals: scalability, portability, predictability

Contains

- p processors, each with local memory (1 time unit/operation)
- communication environment, including a network and an external memory (g time units/data unit communicated)
- barrier synchronisation mechanism (/ time units/synchronisation)

Parallel computation models

The BSP model

Some elements of a BSP computer can be emulated by others, e.g.

- external memory by local memory + network communication
- barrier synchronisation mechanism by network communication

Parallel computation models

The BSP model

Some elements of a BSP computer can be emulated by others, e.g.

- external memory by local memory + network communication
- barrier synchronisation mechanism by network communication

Communication network parameters:

- g is communication gap (inverse bandwidth), worst-case time for a data unit to enter/exit the network
- I is latency, worst-case time for a data unit to get across the network

Parallel computation models

The BSP model

Some elements of a BSP computer can be emulated by others, e.g.

- external memory by local memory + network communication
- barrier synchronisation mechanism by network communication

Communication network parameters:

- g is communication gap (inverse bandwidth), worst-case time for a data unit to enter/exit the network
- I is latency, worst-case time for a data unit to get across the network

Every parallel system can be (approximately) described by p, g, I
Network efficiency grows slower than processor efficiency and costs more energy: $g, I \gg 1$. E.g. for Cray T3E: $p=64, g \approx 78, I \approx 1825$

Parallel computation models

The BSP model

BENCHMARK RESULTS
35

Fic. 1.13. Time of an h-relation on a 64 -processor Cray T3E.

Table 1.2. Benchmarked BSP parameters $7,5, l$ and the time of a 0-relation for a Cray T3E. All times are in flop units ($r=35 \mathrm{Mflop} / \mathrm{s}$)

p	g	1	$T_{\text {comm }}(0)$
1	36	47	38
2	28	486	325
4	31	679	437
8	31	1193	580
16	31	2018	757
32	72	1145	871
64	78	1825	1440

is a mesh, rather than a torus. Increasing the number of processors makes the subpartition look more like a torus, with richer cunnectivity.) The time of a C-relation (i.e the time of is superstep without communication) displays a smoother behaviour than that of l, and it is presented here for comparison This time is a lower bound on l, sines it represents only part of the fixed enst of a superstep.

Parallel computation models

The BSP model

BSP computation: sequence of parallel supersteps

Parallel computation models

The BSP model

BSP computation: sequence of parallel supersteps

Parallel computation models

The BSP model

BSP computation: sequence of parallel supersteps

Parallel computation models

The BSP model

BSP computation: sequence of parallel supersteps

Parallel computation models

The BSP model

BSP computation: sequence of parallel supersteps

Parallel computation models

The BSP model

BSP computation: sequence of parallel supersteps

Asynchronous computation/communication within supersteps (includes data exchange with external memory)
Synchronisation before/after each superstep

Parallel computation models

The BSP model

BSP computation: sequence of parallel supersteps

Asynchronous computation/communication within supersteps (includes data exchange with external memory)

Synchronisation before/after each superstep
Cf. CSP: parallel collection of sequential processes

Parallel computation models

The BSP model

Compositional cost model

For individual processor proc in superstep sstep:

- $\operatorname{comp}($ sstep, proc): the amount of local computation and local memory operations by processor proc in superstep sstep
- comm(sstep, proc): the amount of data sent and received by processor proc in superstep sstep

Parallel computation models

The BSP model

Compositional cost model
For individual processor proc in superstep sstep:

- $\operatorname{comp}($ sstep, proc): the amount of local computation and local memory operations by processor proc in superstep sstep
- comm(sstep, proc): the amount of data sent and received by processor proc in superstep sstep

For the whole BSP computer in one superstep sstep:

- comp(sstep) $=\max _{0 \leq p r o c<p} \operatorname{comp(sstep,~proc)~}$
- comm(sstep) $=\max _{0 \leq p r o c<p} \operatorname{comm}$ (sstep, proc)
- $\operatorname{cost}($ sstep $)=\operatorname{comp}($ sstep $)+\operatorname{comm}($ sstep $) \cdot g+I$

Parallel computation models

The BSP model

For the whole BSP computation with sync supersteps:

- comp $=\sum_{0 \leq \text { sstep }<\text { sync }} \operatorname{comp(sstep)}$
- comm $=\sum_{0 \leq \text { sstep }<\text { sync }}$ comm(sstep)
- cost $=\sum_{0 \leq \text { sstep }<\text { sync }} \operatorname{cost}($ sstep $)=\operatorname{comp}+\operatorname{comm} \cdot g+$ sync \cdot I

Parallel computation models

The BSP model

For the whole BSP computation with sync supersteps:

- comp $=\sum_{0 \leq \text { sstep }<\text { sync }} \operatorname{comp(sstep)}$
- comm $=\sum_{0 \leq \text { sstep }<\text { sync }}$ comm(sstep)
- cost $=\sum_{0 \leq \text { sstep }<\text { sync }} \operatorname{cost}($ sstep $)=\operatorname{comp}+\operatorname{comm} \cdot g+$ sync \cdot I

The input/output data are stored in the external memory; the cost of input/output is included in comm

Parallel computation models

The BSP model

For the whole BSP computation with sync supersteps:

- comp $=\sum_{0 \leq \text { sstep }<\text { sync }} \operatorname{comp(sstep)}$
- comm $=\sum_{0 \leq \text { sstep }<\text { sync }}$ comm(sstep)
- cost $=\sum_{0 \leq \text { sstep }<\text { sync }} \operatorname{cost}($ sstep $)=\operatorname{comp}+\operatorname{comm} \cdot g+$ sync \cdot I

The input/output data are stored in the external memory; the cost of input/output is included in comm
E.g. for a particular linear system solver with an $n \times n$ matrix:
$\operatorname{comp}=O\left(n^{3} / p\right) \quad$ comm $=O\left(n^{2} / p^{1 / 2}\right) \quad$ sync $=O\left(p^{1 / 2}\right)$

Parallel computation models

The BSP model

Conventions:

- problem size $n \gg p$ (slackness)
- input/output in external memory, counts as one-sided communication

Parallel computation models

The BSP model

Conventions:

- problem size $n \gg p$ (slackness)
- input/output in external memory, counts as one-sided communication BSP algorithm design: minimising comp, comm, sync

Parallel computation models

The BSP model

Conventions:

- problem size $n \gg p$ (slackness)
- input/output in external memory, counts as one-sided communication BSP algorithm design: minimising comp, comm, sync Main principles:
- computation load balancing: ideally, comp $=O\left(\frac{\text { seq work }}{p}\right)$
- data locality: ideally comm $=O\left(\frac{\text { input/output }}{p}\right)$
- coarse granularity: ideally, sync function of p not n (or better, $O(1)$)

Parallel computation models

The BSP model

Conventions:

- problem size $n \gg p$ (slackness)
- input/output in external memory, counts as one-sided communication BSP algorithm design: minimising comp, comm, sync Main principles:
- computation load balancing: ideally, comp $=O\left(\frac{\text { seq work }}{p}\right)$
- data locality: ideally comm $=O\left(\frac{\text { input/output }}{p}\right)$
- coarse granularity: ideally, sync function of p not n (or better, $O(1)$)

Data locality exploited, network locality ignored!

Parallel computation models

The BSP model

BSP software: industrial projects

- Google's Pregel
- Apache Hama, Spark, Giraph (apache.org)

BSP software: research projects

- Oxford BSP (www.bsp-worldwide.org/implmnts/oxtool) [1998]
- Paderborn PUB (www2.cs.uni-paderborn.de/~pub) [1998]
- BSML (traclifo.univ-orleans.fr/BSML)
- BSPonMPI (bsponmpi.sourceforge.net) [2006]
- Multicore BSP (www.multicorebsp.com) [2011]
- Epiphany BSP (www. codu.in/ebsp)
- Petuum (petuum.org)

Parallel computation models

Fundamental communication patterns

Broadcasting:

- initially, one designated processor holds a value a
- at the end, every processor must hold a copy of a

Parallel computation models

Fundamental communication patterns

Broadcasting:

- initially, one designated processor holds a value a
- at the end, every processor must hold a copy of a

Combining (complementary to broadcasting):

- initially, every processor r holds a value a_{r}
- at the end, one designated processor must hold $\sum_{r} a_{r}$
- addition can be replaced by any given associative operator \bullet : $a \bullet(b \bullet c)=(a \bullet b) \bullet c$, computable in time $O(1)$

Examples: numerical $+, \cdot, \min , \max$, Boolean \wedge, \vee, \ldots

Parallel computation models

Fundamental communication patterns

Broadcasting:

- initially, one designated processor holds a value a
- at the end, every processor must hold a copy of a

Combining (complementary to broadcasting):

- initially, every processor r holds a value a_{r}
- at the end, one designated processor must hold $\sum_{r} a_{r}$
- addition can be replaced by any given associative operator \bullet : $a \bullet(b \bullet c)=(a \bullet b) \bullet c$, computable in time $O(1)$

Examples: numerical,$+ \cdot$, min, max, Boolean \wedge, \vee, \ldots
By symmetry, we only need to consider broadcasting

Parallel computation models

Fundamental communication patterns

Direct broadcast:

- designated processor makes $p-1$ copies of a and sends them directly to destinations

Parallel computation models

Fundamental communication patterns

Direct broadcast:

- designated processor makes $p-1$ copies of a and sends them directly to destinations

$$
c o m p=O(p)
$$

$$
\operatorname{comm}=O(p)
$$

$$
\text { sync }=O(1)
$$

Parallel computation models

Fundamental communication patterns

Direct broadcast:

- designated processor makes $p-1$ copies of a and sends them directly to destinations

comp $=O(p) \quad$ comm $=O(p)$

$$
\text { sync }=O(1)
$$

Cost components will be shaded when they are optimal, i.e. cannot be improved by another algorithm (under certain explicit assumptions)

Parallel computation models

Fundamental communication patterns

Binary tree broadcast:

- initially, only designated processor is awake
- processors wake up each other in $\log p$ rounds
- in every round, every awake processor makes a copy of a and
 send it to a sleeping processor, waking it up

Parallel computation models

Fundamental communication patterns

Binary tree broadcast:

- initially, only designated processor is awake
- processors wake up each other in $\log p$ rounds
- in every round, every awake processor makes a copy of a and
 send it to a sleeping processor, waking it up
In round $k=0, \ldots, \log p-1$, the number of awake processors is 2^{k}

Parallel computation models

Fundamental communication patterns

Binary tree broadcast:

- initially, only designated processor is awake
- processors wake up each other in $\log p$ rounds
- in every round, every awake processor makes a copy of a and send it to a sleeping processor, waking it up
In round $k=0, \ldots, \log p-1$, the number of awake processors is 2^{k}

$$
\operatorname{comp}=O(\log p)
$$

$$
\text { comm }=O(\log p)
$$

$$
\text { sync }=O(\log p)
$$

Parallel computation models

Fundamental communication patterns

Array broadcasting:

- initially, one designated processor holds array a of size $n \geq p$
- at the end, every processor must hold a copy of the whole array a
- effectively, n independent instances of broadcasting

Parallel computation models

Fundamental communication patterns

Array broadcasting:

- initially, one designated processor holds array a of size $n \geq p$
- at the end, every processor must hold a copy of the whole array a
- effectively, n independent instances of broadcasting

Array combining (complementary to array broadcasting):

- initially, every processor r holds an array a_{r} of size $n \geq p$
- at the end, one designated processor must hold componentwise $\sum_{r} a_{r}$
- addition can be replaced by any given associative operator
- effectively, n independent instances of combining

Parallel computation models

Fundamental communication patterns

Array broadcasting:

- initially, one designated processor holds array a of size $n \geq p$
- at the end, every processor must hold a copy of the whole array a
- effectively, n independent instances of broadcasting

Array combining (complementary to array broadcasting):

- initially, every processor r holds an array a_{r} of size $n \geq p$
- at the end, one designated processor must hold componentwise $\sum_{r} a_{r}$
- addition can be replaced by any given associative operator
- effectively, n independent instances of combining

By symmetry, we only need to consider array broadcasting

Parallel computation models

Fundamental communication patterns

Two-phase array broadcast:

- partition array into p blocks of size n / p
- scatter blocks
- total-exchange blocks

Parallel computation models

Fundamental communication patterns

Two-phase array broadcast:

- partition array into p blocks of size n / p
- scatter blocks
- total-exchange blocks

$$
\operatorname{comp}=O(n)
$$

$$
\operatorname{comm}=O(n)
$$

$$
\text { sync }=O(1)
$$

Parallel computation models

Fundamental communication patterns

Array broadcasting/combining enables concurrent access to external memory in blocks of size $\geq p$

Concurrent reading: a designated processor

- reads block from external memory
- broadcasts block

Concurrent writing, resolved by \bullet : a designated processor

- combines blocks from each processor by
- writes combined block to external memory

Two-phase array broadcast/combine used as subroutine

Parallel computation models

Network routing

BSP network model: complete graph, uniformly accessible (access efficiency described by parameters g, l)

Has to be implemented on concrete networks

Parallel computation models

Network routing

BSP network model: complete graph, uniformly accessible (access efficiency described by parameters g, l)

Has to be implemented on concrete networks
Parameters of a network topology (i.e. the underlying graph):

- degree - number of links per node
- diameter - maximum distance between nodes

Low degree - easier to implement
Low diameter - more efficient

Parallel computation models

Network routing

2D array network
$p=q^{2}$ processors
degree 4
diameter $p^{1 / 2}=q$

Parallel computation models

Network routing

3D array network
$p=q^{3}$ processors
degree 6
diameter $3 / 2 \cdot p^{1 / 3}=3 / 2 \cdot q$

Parallel computation models

Network routing

Butterfly network
$p=q \log q$ processors
degree 4
diameter $\approx \log p \approx \log q$

Parallel computation models

Network routing

Hypercube network
$p=2^{q}$ processors
degree $\log p=q$
diameter $\log p=q$

Parallel computation models

Network routing

Network	Degree	Diameter
1D array	2	$1 / 2 \cdot p$
2D array	4	$p^{1 / 2}$
3D array	6	$3 / 2 \cdot p^{1 / 3}$
Butterfly	4	$\log p$
Hypercube	$\log p$	$\log p$
\ldots	\cdots	\cdots

BSP parameters g, I depend on degree, diameter, routing strategy

Parallel computation models

Network routing

Network	Degree	Diameter
1D array	2	$1 / 2 \cdot p$
2D array	4	$p^{1 / 2}$
3D array	6	$3 / 2 \cdot p^{1 / 3}$
Butterfly	4	$\log p$
Hypercube	$\log p$	$\log p$
\ldots	\cdots	\cdots

BSP parameters g, I depend on degree, diameter, routing strategy
Assume store-and-forward routing (alternative - wormhole)
Assume distributed routing: no global control

Parallel computation models

Network routing

Network	Degree	Diameter
1D array	2	$1 / 2 \cdot p$
2D array	4	$p^{1 / 2}$
3D array	6	$3 / 2 \cdot p^{1 / 3}$
Butterfly	4	$\log p$
Hypercube	$\log p$	$\log p$
\ldots	\cdots	\cdots

BSP parameters g, I depend on degree, diameter, routing strategy Assume store-and-forward routing (alternative - wormhole)
Assume distributed routing: no global control
Oblivious routing: path determined only by source and destination
E.g. greedy routing: a packet always takes the shortest path

Parallel computation models

Network routing
h-relation (h-superstep): every processor sends and receives $\leq h$ packets

Parallel computation models

Network routing
h-relation (h-superstep): every processor sends and receives $\leq h$ packets Sufficient to consider permutations (1-relations): once we can route any permutation in k steps, we can route any h-relation in $h k$ steps

Parallel computation models

Network routing
h-relation (h-superstep): every processor sends and receives $\leq h$ packets Sufficient to consider permutations (1-relations): once we can route any permutation in k steps, we can route any h-relation in $h k$ steps Any routing method may be forced to make Ω (diameter) steps

Parallel computation models

Network routing
h-relation (h-superstep): every processor sends and receives $\leq h$ packets Sufficient to consider permutations (1-relations): once we can route any permutation in k steps, we can route any h-relation in $h k$ steps Any routing method may be forced to make Ω (diameter) steps Any oblivious routing method may be forced to make $\Omega\left(p^{1 / 2} /\right.$ degree $)$ steps Many practical patterns force such "hot spots" on traditional networks

Parallel computation models

Network routing

Routing based on sorting networks
Each processor corresponds to a wire
Each link corresponds to (possibly several) comparators
Routing corresponds to sorting by destination address
Each stage of routing corresponds to a stage of sorting

Parallel computation models

Network routing

Routing based on sorting networks
Each processor corresponds to a wire
Each link corresponds to (possibly several) comparators
Routing corresponds to sorting by destination address
Each stage of routing corresponds to a stage of sorting
Such routing is non-oblivious (for individual packets)!

Network	Degree	Diameter
OEM-SORT/BM-SORT	$O\left((\log p)^{2}\right)$	$O\left((\log p)^{2}\right)$
AKS	$O(\log p)$	$O(\log p)$

Parallel computation models

Network routing

Routing based on sorting networks
Each processor corresponds to a wire
Each link corresponds to (possibly several) comparators
Routing corresponds to sorting by destination address
Each stage of routing corresponds to a stage of sorting
Such routing is non-oblivious (for individual packets)!

Network	Degree	Diameter
OEM-SORT/BM-SORT	$O\left((\log p)^{2}\right)$	$O\left((\log p)^{2}\right)$
AKS	$O(\log p)$	$O(\log p)$

No "hot spots": can always route a permutation in O (diameter) steps Requires a specialised network, too messy and impractical

Parallel computation models

Network routing

Two-phase randomised routing:
[Valiant: 1980]

- send every packet to random intermediate destination
- forward every packet to final destination

Both phases oblivious (e.g. greedy), but non-oblivious overall due to randomness

Parallel computation models

Network routing

Two-phase randomised routing:

- send every packet to random intermediate destination
- forward every packet to final destination

Both phases oblivious (e.g. greedy), but non-oblivious overall due to randomness

Hot spots very unlikely: on a 2D array, butterfly, hypercube, can route a permutation in O (diameter) steps with high probability

Parallel computation models

Network routing

Two-phase randomised routing:

- send every packet to random intermediate destination
- forward every packet to final destination

Both phases oblivious (e.g. greedy), but non-oblivious overall due to randomness

Hot spots very unlikely: on a 2D array, butterfly, hypercube, can route a permutation in O (diameter) steps with high probability

On a hypercube, the same holds even for a $\log p$-relation Hence constant g, I in the BSP model

Parallel computation models

Network routing

BSP implementation: processes placed at random, communication delayed until end of superstep

All packets with same source and destination sent together, hence message overhead absorbed in I

Parallel computation models

Network routing

BSP implementation: processes placed at random, communication delayed until end of superstep

All packets with same source and destination sent together, hence message overhead absorbed in I

Network	g	I
1D array	$O(p)$	$O(p)$
2D array	$O\left(p^{1 / 2}\right)$	$O\left(p^{1 / 2}\right)$
3D array	$O\left(p^{1 / 3}\right)$	$O\left(p^{1 / 3}\right)$
Butterfly	$O(\log p)$	$O(\log p)$
Hypercube	$O(1)$	$O(\log p)$
\ldots	\cdots	\cdots

Actual values of g, l obtained by running benchmarks
(1) Computation by circuits

(2) Parallel computation models

(3) Basic parallel algorithms
(4) Further parallel algorithms
(5) Parallel matrix algorithms
(6) Parallel graph algorithms

Basic parallel algorithms

Balanced tree and prefix sums

The balanced binary tree dag:
tree (n)

1 input, n outputs
size $n-1$
depth $\log n$

Basic parallel algorithms

Balanced tree and prefix sums

The balanced binary tree dag:
tree (n)
1 input, n outputs
size $n-1$
depth $\log n$

Every node computes an arbitrary given operation in time $O(1)$
Can be directed

- top-down (one input at root, n outputs at leaves)
- bottom-up (n inputs at leaves, one output at root)

Sequential work $O(n)$

Basic parallel algorithms

Balanced tree and prefix sums

Parallel balanced tree computation, $p=4$
tree (n)

From now on, we always assume that a problem's input/output is stored in the external memory; reading/writing will also refer to the external memory

Basic parallel algorithms

Balanced tree and prefix sums

Parallel balanced tree computation, $p=4$
tree (n)

From now on, we always assume that a problem's input/output is stored in the external memory; reading/writing will also refer to the external memory Partition tree (n) into

- one top block, isomorphic to tree (p)
- a bottom layer of p blocks, each isomorphic to $\operatorname{tree}(n / p)$

Basic parallel algorithms

Balanced tree and prefix sums

Parallel balanced tree computation (contd.)
For top-down computation, a designated processor

- is assigned the top block
- reads block's input, computes block, writes block's p outputs

Then every processor

- is assigned a different bottom block
- reads block's input, computes block, writes block's n / p outputs

For bottom-up computation, reverse the steps

Basic parallel algorithms

Balanced tree and prefix sums

Parallel balanced tree computation (contd.)
For top-down computation, a designated processor

- is assigned the top block
- reads block's input, computes block, writes block's p outputs

Then every processor

- is assigned a different bottom block
- reads block's input, computes block, writes block's n / p outputs

For bottom-up computation, reverse the steps

$$
\operatorname{comp}=O(n / p)
$$

$$
\mathrm{comm}=O(n / p)
$$

$$
\text { sync }=O(1)
$$

Required slackness $n \geq p^{2}$

Basic parallel algorithms

Balanced tree and prefix sums

The described parallel balanced tree algorithm is fully optimal:

- optimal comp $=O(n / p)=O\left(\frac{\text { sequential work }}{p}\right)$
- optimal comm $=O(n / p)=O\left(\frac{\text { input/output size }}{p}\right)$
- optimal sync $=O(1)$

Basic parallel algorithms

Balanced tree and prefix sums

The described parallel balanced tree algorithm is fully optimal:

- optimal comp $=O(n / p)=O\left(\frac{\text { sequential work }}{p}\right)$
- optimal comm $=O(n / p)=O\left(\frac{\text { input/output size }}{p}\right)$
- optimal sync $=O(1)$

For other problems, we may not be so lucky to get a fully-optimal BSP algorithm. However, we are typically interested in algorithms that are optimal in comp (under reasonable assumptions).

Optimality in comm and sync is considered subject to optimality in comp For example, we are not allowed to "cheat" by running the whole computation in a single processor, sacrificing comp and comm to guarantee optimal sync $=O(1)$

Basic parallel algorithms

Balanced tree and prefix sums

The prefix sums problem
Given array $a=\left[a_{0}, \ldots, a_{n-1}\right]$
Compute $b_{-1}=0 \quad b_{i}=a_{i}+b_{i-1} \quad 0 \leq i<n$
Addition can be replaced by any given associative operator • Operator identity ϵ (can be introduced formally if missing)
Compute $b_{-1}=\epsilon \quad b_{i}=a_{i} \bullet b_{i-1} \quad 0 \leq i<n$
$b_{0}=a_{0}$
$b_{1}=a_{0} \bullet a_{1}$
$b_{2}=a_{0} \bullet a_{1} \bullet a_{2}$
$b_{n-1}=a_{0} \bullet a_{1} \bullet \cdots \bullet a_{n-1}$

Basic parallel algorithms

Balanced tree and prefix sums

The prefix sums problem
Given array $a=\left[a_{0}, \ldots, a_{n-1}\right]$
Compute $b_{-1}=0 \quad b_{i}=a_{i}+b_{i-1} \quad 0 \leq i<n$
Addition can be replaced by any given associative operator •
Operator identity ϵ (can be introduced formally if missing)
Compute $b_{-1}=\epsilon \quad b_{i}=a_{i} \bullet b_{i-1} \quad 0 \leq i<n$
$b_{0}=a_{0}$
$b_{1}=a_{0} \bullet a_{1}$
$b_{2}=a_{0} \bullet a_{1} \bullet a_{2}$
$b_{n-1}=a_{0} \bullet a_{1} \bullet \cdots \cdot a_{n-1}$
Sequential work $O(n)$ by trivial circuit of size $n-1$, depth $n-1$

Basic parallel algorithms

Balanced tree and prefix sums

The prefix circuit prefix(n)

where $a_{k: I}=a_{k} \bullet a_{k+1} \bullet \ldots \bullet a_{l}$
The underlying dag is called the prefix dag

Basic parallel algorithms

Balanced tree and prefix sums

The prefix circuit (contd.)
prefix(n)
n inputs
n outputs
size $2 n-2$
depth $2 \log n$

Basic parallel algorithms

Balanced tree and prefix sums

Parallel prefix sums computation
Dag prefix (n) consists of

- a top subtree similar to bottom-up tree(n)
- transfer of values from top subtree to bottom subtree
- a bottom subtree similar to top-down tree(n)

Basic parallel algorithms

Balanced tree and prefix sums

Parallel prefix sums computation
Dag prefix (n) consists of

- a top subtree similar to bottom-up tree(n)
- transfer of values from top subtree to bottom subtree
- a bottom subtree similar to top-down tree(n)

Both trees can be computed by the previous algorithm
Transfer stage: communication cost $O(n / p)$

Basic parallel algorithms

Balanced tree and prefix sums

Parallel prefix sums computation
Dag prefix (n) consists of

- a top subtree similar to bottom-up tree(n)
- transfer of values from top subtree to bottom subtree
- a bottom subtree similar to top-down tree(n)

Both trees can be computed by the previous algorithm
Transfer stage: communication cost $O(n / p)$

$$
\operatorname{comp}=O(n / p)
$$

$$
\mathrm{comm}=O(n / p)
$$

$$
\text { sync }=O(1)
$$

Required slackness $n \geq p^{2}$

Basic parallel algorithms

Balanced tree and prefix sums

Application: generic first-order linear recurrence
Given arrays $a=\left[a_{0}, \ldots, a_{n-1}\right], b=\left[b_{0}, \ldots, b_{n-1}\right]$
Compute $c_{-1}=0 \quad c_{i}=a_{i}+b_{i} \cdot c_{i-1} \quad 0 \leq i<n$
$c_{0}=a_{0}$
$c_{1}=a_{1}+b_{1} \cdot c_{0}$
$c_{2}=a_{2}+b_{2} \cdot c_{1}$
$c_{n-1}=a_{n-1}+b_{n-1} \cdot c_{n-2}$

Basic parallel algorithms

Balanced tree and prefix sums

Application: generic first-order linear recurrence (contd.)
$c_{-1}=0 \quad c_{i}=a_{i}+b_{i} \cdot c_{i-1} \quad 0 \leq i<n$
Let $A_{i}=\left[\begin{array}{cc}1 & 0 \\ a_{i} & b_{i}\end{array}\right] \quad C_{i}=\left[\begin{array}{c}1 \\ c_{i}\end{array}\right] \quad A_{i} C_{i-1}=\left[\begin{array}{cc}1 & 0 \\ a_{i} & b_{i}\end{array}\right]\left[\begin{array}{c}1 \\ c_{i-1}\end{array}\right]=\left[\begin{array}{l}1 \\ c_{i}\end{array}\right]=C_{i}$
$C_{0}=A_{0} \cdot C_{-1}$
$C_{1}=A_{1} A_{0} \cdot C_{-1}$
$C_{2}=A_{2} A_{1} A_{0} \cdot C_{-1}$
$C_{n-1}=A_{n-1} \ldots A_{1} A_{0} \cdot C_{-1}$

Basic parallel algorithms

Balanced tree and prefix sums

Application: generic first-order linear recurrence (contd.)
Computing the generic first-order linear recurrence:

- suffix sums ($=$ prefix sums in reverse) of $\left[A_{n-1}, \ldots, A_{0}\right]$, with operator defined by 2×2-matrix multiplication
- each suffix sum multiplied by C_{-1}
- output obtained as bottom component of resulting 2-vectors

Resulting circuit: size $O(n)$, depth $O(\log n)$

Basic parallel algorithms

Balanced tree and prefix sums

Application: generic first-order linear recurrence (contd.)
Operators + , • can be replaced by any given \oplus, \odot, where

- operators \oplus, \odot computable in time $O(1)$
- operator \oplus associative: $a \oplus(b \oplus c)=(a \oplus b) \oplus c$
- operator \odot associative: $a \odot(b \odot c)=(a \odot b) \odot c$
- operator \odot (left-)distributive over $\oplus: a \odot(b \oplus c)=(a \odot b) \oplus(a \odot c)$

Examples of possible \oplus, \odot :

- numerical + ,
- numerical min, + ; numerical max, +
- Boolean \wedge, \vee; Boolean \vee, \wedge

Basic parallel algorithms

Balanced tree and prefix sums

Application: polynomial evaluation
Given $a=\left[a_{0}, \ldots, a_{n-1}\right], x$
Compute $y=a_{0}+a_{1} \cdot x+\ldots+a_{n-2} \cdot x^{n-2}+a_{n-1} \cdot x^{n-1}$

Basic parallel algorithms

Balanced tree and prefix sums

Application: polynomial evaluation
Given $a=\left[a_{0}, \ldots, a_{n-1}\right], x$
Compute $y=a_{0}+a_{1} \cdot x+\ldots+a_{n-2} \cdot x^{n-2}+a_{n-1} \cdot x^{n-1}$
Evaluating the polynomial:

- $1, x, x^{2}, \ldots, x^{n-1}$ by prefix sums with operator .
- sum y by bottom-up balanced binary tree with operator + Resulting circuit: size $O(n)$, depth $O(\log n)$

Basic parallel algorithms

Balanced tree and prefix sums

Application: polynomial evaluation by Horner's rule
Given $a=\left[a_{0}, \ldots, a_{n-1}\right], x$
Compute $y=a_{0}+a_{1} \cdot x+\ldots+a_{n-2} \cdot x^{n-2}+a_{n-1} \cdot x^{n-1}$
$y=a_{0}+x \cdot\left(a_{1}+x \cdot\left(a_{2}+x \cdot\left(\ldots+x \cdot a_{n-1}\right) \ldots\right)\right)$
$y_{0}=a_{n-1}$
$y_{1}=a_{n-2}+x \cdot y_{0}$
$y_{2}=a_{n-3}+x \cdot y_{1}$
$y_{n-1}=a_{0}+x \cdot y_{n-2}$
Generic first-order linear recurrence over $\left[a_{n-1}, \ldots, a_{0}\right],[x, x, \ldots, x]$ Resulting circuit: size $O(n)$, depth $O(\log n)$

Basic parallel algorithms

Balanced tree and prefix sums

Application: binary addition via Boolean logic
$x+y=z \quad x, y, z$ represented as binary arrays
$x=\left[x_{n-1}, \ldots, x_{0}\right] \quad y=\left[y_{n-1}, \ldots, y_{0}\right] \quad z=\left[z_{n}, z_{n-1}, \ldots, z_{0}\right]$
The binary adder problem: given x, y, compute z
Boolean operators as primitives: bitwise \wedge ("and"), $\vee($ "or" $), \oplus($ "xor" $)$
Let $c=\left[c_{n-1}, \ldots, c_{0}\right]$, where c_{i} is the i-th carry bit
We have: $x_{i}+y_{i}+c_{i-1}=z_{i}+2 c_{i} \quad 0 \leq i<n$

Basic parallel algorithms

Balanced tree and prefix sums

Application: binary addition via Boolean logic (contd.)
Define bit arrays $u=\left[u_{n-1}, \ldots, u_{0}\right], v=\left[v_{n-1}, \ldots, v_{0}\right]$
$u_{i}=x_{i} \wedge y_{i} \quad v_{i}=x_{i} \oplus y_{i} \quad 0 \leq i<n$
$z_{0}=v_{0}$
$c_{0}=u_{0}$
$z_{1}=v_{1} \oplus c_{0}$
$c_{1}=u_{1} \vee\left(v_{1} \wedge c_{0}\right)$
$z_{n-1}=v_{n-1} \oplus c_{n-2} \quad c_{n-1}=u_{n-1} \vee\left(v_{n-1} \wedge c_{n-2}\right)$
$z_{n}=c_{n-1}$

Basic parallel algorithms

Balanced tree and prefix sums

Application: binary addition via Boolean logic (contd.)
Define bit arrays $u=\left[u_{n-1}, \ldots, u_{0}\right], v=\left[v_{n-1}, \ldots, v_{0}\right]$
$u_{i}=x_{i} \wedge y_{i} \quad v_{i}=x_{i} \oplus y_{i} \quad 0 \leq i<n$
$z_{0}=v_{0} \quad c_{0}=u_{0}$
$z_{1}=v_{1} \oplus c_{0}$
$c_{1}=u_{1} \vee\left(v_{1} \wedge c_{0}\right)$
...
$z_{n-1}=v_{n-1} \oplus c_{n-2} \quad c_{n-1}=u_{n-1} \vee\left(v_{n-1} \wedge c_{n-2}\right)$
$z_{n}=c_{n-1}$
Resulting circuit has size and depth $O(n)$
Equivalent to a ripple-carry adder. Can we do better?

Basic parallel algorithms

Balanced tree and prefix sums

Application: binary addition via Boolean logic (contd.)
$c_{-1}=0 \quad c_{i}=u_{i} \vee\left(v_{i} \wedge c_{i-1}\right)$
Compute

- c as generic first-order linear recurrence with inputs u, v and operators \vee, \wedge : size $O(n)$, depth $O(\log n)$
- z in extra size $O(n)$, depth $O(1)$

Resulting circuit has size $O(n)$, depth $O(\log n)$
Equivalent to a carry-lookahead adder

Basic parallel algorithms

Integer sorting

The integer sorting problem
Given $a=\left[a_{0}, \ldots, a_{n-1}\right]$, arrange elements of a in increasing order $a_{i} \in\{0,1, \ldots, n-1\} \quad 0 \leq i<n$
Elements of a assumed to be distinguishable keys even if values equal
A bucket: subset of keys with equal values
Stable integer sorting: order of keys preserved within each bucket Sequential work $O(n)$ e.g. by bucket sort or counting sort

Basic parallel algorithms

Integer sorting

Parallel integer sorting
Initially assume $a_{i} \in\left\{0,1, \ldots, \frac{n}{p}-1\right\}$, i.e. $\frac{n}{p}$ buckets
Every processor

- reads subarray of a of size n / p
- counts subarray elements in each bucket

A designated processor

- adds subarray counts for each bucket (array combining)
- determines bucket boundaries, broadcasts them (array broadcasting)

Every processor

- writes each element at appropriate offset from bucket boundary

Basic parallel algorithms

Integer sorting

Parallel integer sorting (contd.)
Now consider $a_{i} \in\{0,1, \ldots, p-1\}$, i.e. p buckets
Consider keys as pairs: $a_{i}=\left(a_{i} \bmod \frac{n}{p}, a_{i} \operatorname{div} \frac{n}{p}\right)$
Perform 2-fold radix sort on pairs:

- left ("least significant") position
- right ("most significant") position

In each position, perform stable sorting over range $\left\{0,1, \ldots, \frac{n}{p}-1\right\}$

$$
\operatorname{comp}=O(n / p) \quad \text { comm }=O(n / p) \quad \text { sync }=O(1)
$$

Required slackness $n \geq p^{2}$

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

A complex number ω is called a primitive root of unity of degree n, if $\omega, \omega^{2}, \ldots, \omega^{n-1} \neq 1$, and $\omega^{n}=1$

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

A complex number ω is called a primitive root of unity of degree n, if $\omega, \omega^{2}, \ldots, \omega^{n-1} \neq 1$, and $\omega^{n}=1$

The Discrete Fourier Transform problem: given complex vector a, compute b, where $F_{n, \omega} \cdot a=b$, and $F_{n, \omega}=\left[\omega^{i j}\right]_{i, j=0}^{n-1}$ is the Fourier matrix

$$
\begin{aligned}
{\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega
\end{array}\right] \cdot\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n-1}
\end{array}\right] } \\
\quad \sum_{j} \omega^{i j} a_{j}=b_{i} \quad i, j=0, \ldots, n-1
\end{aligned}
$$

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

A complex number ω is called a primitive root of unity of degree n, if $\omega, \omega^{2}, \ldots, \omega^{n-1} \neq 1$, and $\omega^{n}=1$

The Discrete Fourier Transform problem: given complex vector a, compute b, where $F_{n, \omega} \cdot a=b$, and $F_{n, \omega}=\left[\omega^{i j}\right]_{i, j=0}^{n-1}$ is the Fourier matrix

$$
\begin{array}{r}
{\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega
\end{array}\right] \cdot\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n-1}
\end{array}\right]} \\
\sum_{j} \omega^{i j} a_{j}=b_{i} \quad i, j=0, \ldots, n-1
\end{array}
$$

Sequential work $O\left(n^{2}\right)$ by matrix-vector multiplication

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

A complex number ω is called a primitive root of unity of degree n, if $\omega, \omega^{2}, \ldots, \omega^{n-1} \neq 1$, and $\omega^{n}=1$

The Discrete Fourier Transform problem: given complex vector a, compute b, where $F_{n, \omega} \cdot a=b$, and $F_{n, \omega}=\left[\omega^{i j}\right]_{i, j=0}^{n-1}$ is the Fourier matrix

$$
\begin{array}{r}
{\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega
\end{array}\right] \cdot\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n-1}
\end{array}\right]} \\
\quad \sum_{j} \omega^{i j} a_{j}=b_{i} \quad i, j=0, \ldots, n-1
\end{array}
$$

Sequential work $O\left(n^{2}\right)$ by matrix-vector multiplication
Applications: digital signal processing (amplitude vs frequency); polynomial multiplication; long integer multiplication

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

The Fast Fourier Transform (FFT) algorithm ("four-step" version)
Assume $n=m^{2}$
Let $A_{u, v}=a_{m u+v} \quad B_{s, t}=b_{m s+t} \quad s, t, u, v=0, \ldots, m-1$
Matrices A, B are vectors a, b written out as $m \times m$ matrices

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag
The Fast Fourier Transform (FFT) algorithm ("four-step" version)
Assume $n=m^{2}$
Let $A_{u, v}=a_{m u+v} \quad B_{s, t}=b_{m s+t} \quad s, t, u, v=0, \ldots, m-1$
Matrices A, B are vectors a, b written out as $m \times m$ matrices
$B_{s, t}=\sum_{u, v} \omega^{(m s+t)(m u+v)} A_{u, v}=\sum_{u, v} \omega^{m s v+t v+m t u} A_{u, v}=$
$\sum_{v}\left(\left(\omega^{m}\right)^{s v} \cdot \omega^{t v} \cdot \sum_{u}\left(\omega^{m}\right)^{t u} A_{u, v}\right)$, thus $B=F_{m, \omega^{m}} \cdot\left(G_{m, \omega} \circ\left(F_{m, \omega^{m}} \cdot A\right)\right)^{T}$
$F_{m, \omega^{m}} \cdot A$ is m independent DFTs of size m on each column of A $G_{m, \omega}=\left[\omega^{t v}\right]_{t, v=0}^{m-1}$ is the twiddle-factor matrix
Operator \circ is the Hadamard product (elementwise matrix multiplication)

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

The Fast Fourier Transform (FFT) algorithm (contd.)
$B=F_{m, \omega^{m}} \cdot\left(G_{m, \omega} \circ\left(F_{m, \omega^{m}} \cdot A\right)\right)^{T}$
Thus, DFT of size n in four steps:

- m independent DFTs of size m
- transposition and twiddle-factor scaling
- m independent DFTs of size m

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

The Fast Fourier Transform (FFT) algorithm (contd.)
We reduced DFT of size $n=m^{2}$ to DFTs of size m
Similarly, we can reduce DFT of size $n=k l$ to DFTs of sizes k and $/$
Assume $n=2^{2^{r}}$, then $m=2^{2^{r-1}}$
By recursion, we have the FFT circuit

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

The Fast Fourier Transform (FFT) algorithm (contd.)
We reduced DFT of size $n=m^{2}$ to DFTs of size m
Similarly, we can reduce DFT of size $n=k l$ to DFTs of sizes k and $/$
Assume $n=2^{2^{r}}$, then $m=2^{2^{r-1}}$
By recursion, we have the FFT circuit $\operatorname{size}_{F F T}(n)=O(n)+2 \cdot n^{1 / 2} \cdot \operatorname{size}_{F F T}\left(n^{1 / 2}\right)=O\left(1 \cdot n \cdot 1+2 \cdot n^{1 / 2} \cdot n^{1 / 2}+4\right.$. $\left.n^{3 / 4} \cdot n^{1 / 4}+\cdots+\log n \cdot n \cdot 1\right)=O(n+2 n+4 n+\cdots+\log n \cdot n)=O(n \log n)$ $\operatorname{depth}_{F F T}(n)=1+2 \cdot \operatorname{depth}_{F F T}\left(n^{1 / 2}\right)=O(1+2+4+\cdots+\log n)=O(\log n)$

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

The FFT circuit bfly (n)

The underlying dag is called butterfly dag

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

The FFT circuit and the butterfly dag (contd.)
bfly (n)
n inputs
n outputs
size $\frac{n \log n}{2}$
depth $\log n$

Basic parallel algorithms

```
Fast Fourier Transform and the butterfly dag
```

The FFT circuit and the butterfly dag (contd.)
Dag bfly (n) consists of

- a top layer of $n^{1 / 2}$ blocks, each isomorphic to bfly $\left(n^{1 / 2}\right)$
- a bottom layer of $n^{1 / 2}$ blocks, each isomorphic to $\operatorname{bfly}\left(n^{1 / 2}\right)$

The data exchange pattern between the top and bottom layers corresponds to $n^{1 / 2} \times n^{1 / 2}$ matrix transposition

Basic parallel algorithms

```
Fast Fourier Transform and the butterfly dag
```

Parallel butterfly computation
To compute bfly (n), every processor

- reads inputs for $\frac{n^{1 / 2}}{p}$ blocks from top layer; computes blocks; writes outputs
- reads inputs for $\frac{n^{1 / 2}}{p}$ blocks from bottom layer; computes blocks; writes outputs

In each layer, the processor reads the total of n / p inputs, performs $O(n \log n / p)$ computation, then writes the total of n / p outputs

Basic parallel algorithms

Fast Fourier Transform and the butterfly dag

Parallel butterfly computation
To compute bfly (n), every processor

- reads inputs for $\frac{n^{1 / 2}}{p}$ blocks from top layer; computes blocks; writes outputs
- reads inputs for $\frac{n^{1 / 2}}{p}$ blocks from bottom layer; computes blocks; writes outputs

In each layer, the processor reads the total of n / p inputs, performs $O(n \log n / p)$ computation, then writes the total of n / p outputs

$$
\operatorname{comp}=O\left(\frac{n \log n}{p}\right)
$$

$$
\mathrm{comm}=O(n / p)
$$

$$
\text { sync }=O(1)
$$

Required slackness: $n \geq p^{2}$

Basic parallel algorithms

Ordered grid

The ordered 2D grid dag
$\operatorname{grid}_{2}(n)$
nodes arranged in an $n \times n$ grid edges directed top-to-bottom, left-to-right
$\leq 2 n$ inputs (to left/top borders)
$\leq 2 n$ outputs (from right/bottom borders) size n^{2} depth $2 n-1$

Basic parallel algorithms

Ordered grid

The ordered 2D grid dag $\operatorname{grid}_{2}(n)$ nodes arranged in an $n \times n$ grid edges directed top-to-bottom, left-to-right
$\leq 2 n$ inputs (to left/top borders)
$\leq 2 n$ outputs (from right/bottom borders) size n^{2} depth $2 n-1$

Applications: triangular linear system; discretised PDE via Gauss-Seidel iteration (single step); 1D cellular automata; dynamic programming Sequential work $O\left(n^{2}\right)$

Basic parallel algorithms

Ordered grid

Parallel ordered 2D grid computation
$\operatorname{grid}_{2}(n)$
Partition into a $p \times p$ grid of blocks, each isomorphic to $\operatorname{grid}_{2}(n / p)$
Arrange blocks as $2 p-1$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 2D grid computation
$\operatorname{grid}_{2}(n)$
Partition into a $p \times p$ grid of blocks, each isomorphic to $\operatorname{grid}_{2}(n / p)$
Arrange blocks as $2 p-1$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 2D grid computation
$\operatorname{grid}_{2}(n)$
Partition into a $p \times p$ grid of blocks, each isomorphic to $\operatorname{grid}_{2}(n / p)$
Arrange blocks as $2 p-1$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 2D grid computation
$\operatorname{grid}_{2}(n)$
Partition into a $p \times p$ grid of blocks, each isomorphic to $\operatorname{grid}_{2}(n / p)$
Arrange blocks as $2 p-1$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 2D grid computation
$\operatorname{grid}_{2}(n)$
Partition into a $p \times p$ grid of blocks, each isomorphic to $\operatorname{grid}_{2}(n / p)$
Arrange blocks as $2 p-1$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 2D grid computation
$\operatorname{grid}_{2}(n)$
Partition into a $p \times p$ grid of blocks, each isomorphic to $\operatorname{grid}_{2}(n / p)$
Arrange blocks as $2 p-1$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 2D grid computation
$\operatorname{grid}_{2}(n)$
Partition into a $p \times p$ grid of blocks, each isomorphic to $\operatorname{grid}_{2}(n / p)$
Arrange blocks as $2 p-1$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 2D grid computation (contd.)
The computation proceeds in $2 p-1$ stages, each computing a layer of blocks. In a stage:

- every block assigned to a different processor (some processors idle)
- the processor reads the $2 n / p$ block inputs, computes the block, and writes back the $2 n / p$ block outputs

Basic parallel algorithms

Ordered grid

Parallel ordered 2D grid computation (contd.)

The computation proceeds in $2 p-1$ stages, each computing a layer of blocks. In a stage:

- every block assigned to a different processor (some processors idle)
- the processor reads the $2 n / p$ block inputs, computes the block, and writes back the $2 n / p$ block outputs

$$
\begin{aligned}
& \text { comp: }(2 p-1) \cdot O\left((n / p)^{2}\right)=O\left(p \cdot n^{2} / p^{2}\right)=O\left(n^{2} / p\right) \\
& \text { comm: }(2 p-1) \cdot O(n / p)=O(n)
\end{aligned}
$$

Basic parallel algorithms

Ordered grid

Parallel ordered 2D grid computation (contd.)

The computation proceeds in $2 p-1$ stages, each computing a layer of blocks. In a stage:

- every block assigned to a different processor (some processors idle)
- the processor reads the $2 n / p$ block inputs, computes the block, and writes back the $2 n / p$ block outputs

$$
\begin{aligned}
& \text { comp: }(2 p-1) \cdot O\left((n / p)^{2}\right)=O\left(p \cdot n^{2} / p^{2}\right)=O\left(n^{2} / p\right) \\
& \text { comm: }(2 p-1) \cdot O(n / p)=O(n) \\
& \operatorname{comp}=O\left(n^{2} / p\right) \quad \text { comm }=O(n) \quad \text { sync }=O(p)
\end{aligned}
$$

Required slackness $n \geq p$

Basic parallel algorithms

Ordered grid

Application: string comparison
Let a, b be strings of characters
A subsequence of string a is obtained by deleting some (possibly none, or all) characters from a

The longest common subsequence (LCS) problem: find the longest string that is a subsequence of both a and b

Basic parallel algorithms

Ordered grid

Application: string comparison
Let a, b be strings of characters
A subsequence of string a is obtained by deleting some (possibly none, or all) characters from a

The longest common subsequence (LCS) problem: find the longest string that is a subsequence of both a and b
$a=$ "DEFINE" $\quad b=$ "DESIGN"

Basic parallel algorithms

Ordered grid

Application: string comparison
Let a, b be strings of characters
A subsequence of string a is obtained by deleting some (possibly none, or all) characters from a

The longest common subsequence (LCS) problem: find the longest string that is a subsequence of both a and b
$a=$ "DEFINE" $\quad b=$ "DESIGN" $\operatorname{LCS}(a, b)=$ "dein"

Basic parallel algorithms

Ordered grid

Application: string comparison
Let a, b be strings of characters
A subsequence of string a is obtained by deleting some (possibly none, or all) characters from a

The longest common subsequence (LCS) problem: find the longest string that is a subsequence of both a and b
$a=$ "DEFINE" $\quad b=$ "DESIGN" $\operatorname{LCS}(a, b)=$ "dein"
In computational molecular biology, the LCS problem and its variants are referred to as sequence alignment

Basic parallel algorithms

Ordered grid

LCS computation by dynamic programming

$\operatorname{lcs}\left(a,{ }^{\prime \prime \prime}\right)=0$
$\operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0$

\operatorname{lcs}(a, b)+1 \& if \alpha=\beta\end{cases}\)

Basic parallel algorithms

Ordered grid

LCS computation by dynamic programming

$\operatorname{lcs}\left(a,{ }^{\prime \prime \prime}\right)=0$
$\operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0$

\operatorname{lcs}(a, b)+1 \& if \alpha=\beta\end{cases}\)

	$*$	D	E	F	I	N	E
$*$	0	0	0	0	0	0	0
D	0						
E	0						
S	0						
I	0						
G	0						
N	0						

Basic parallel algorithms

Ordered grid

LCS computation by dynamic programming

$\operatorname{lcs}\left(a,{ }^{\prime \prime \prime}\right)=0$
$\operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0$

\operatorname{lcs}(a, b)+1 \& if \alpha=\beta\end{cases}\)

	$*$	D	E	F	I	N	E
$*$	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1
E	0						
S	0						
I	0						
G	0						
N	0						

Basic parallel algorithms

Ordered grid

LCS computation by dynamic programming
[Wagner, Fischer: 1974] Let $\operatorname{lcs}(a, b)$ denote the LCS length

$\operatorname{lcs}\left(a,{ }^{\prime \prime \prime}\right)=0$
$\operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0$

\operatorname{lcs}(a, b)+1 \& if \alpha=\beta\end{cases}\)

	$*$	D	E	F	I	N	E
$*$	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1
E	0	1	2	2	2	2	2
S	0						
I	0						
G	0						
N	0						

Basic parallel algorithms

Ordered grid

LCS computation by dynamic programming
[Wagner, Fischer: 1974] Let $\operatorname{lcs}(a, b)$ denote the LCS length

$\operatorname{lcs}\left(a,{ }^{\prime \prime \prime}\right)=0$
$\operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0$

\operatorname{lcs}(a, b)+1 \& if \alpha=\beta\end{cases}\)

	$*$	D	E	F	I	N	E
$*$	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1
E	0	1	2	2	2	2	2
S	0	1	2	2	2	2	2
I	0						
G	0						
N	0						

Basic parallel algorithms

Ordered grid

LCS computation by dynamic programming
[Wagner, Fischer: 1974] Let $\operatorname{lcs}(a, b)$ denote the LCS length

$$
\begin{array}{ll}
\operatorname{lcs}\left(a,{ }^{\prime \prime \prime}\right)=0 \\
\operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0
\end{array} \quad \operatorname{lcs}(a \alpha, b \beta)= \begin{cases}\max (\operatorname{lcs}(a \alpha, b), \operatorname{lcs}(a, b \beta)) & \text { if } \alpha \neq \beta \\
\operatorname{lcs}(a, b)+1 & \text { if } \alpha=\beta\end{cases}
$$

	$*$	D	E	F	I	N	E
$*$	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1
E	0	1	2	2	2	2	2
S	0	1	2	2	2	2	2
I	0	1	2	2	3	3	3
G	0						
N	0						

Basic parallel algorithms

Ordered grid

LCS computation by dynamic programming
[Wagner, Fischer: 1974] Let $\operatorname{lcs}(a, b)$ denote the LCS length

$$
\begin{array}{ll}
\operatorname{lcs}\left(a,{ }^{\prime \prime \prime}\right)=0 \\
\operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0
\end{array} \quad \operatorname{lcs}(a \alpha, b \beta)= \begin{cases}\max (\operatorname{lcs}(a \alpha, b), \operatorname{lcs}(a, b \beta)) & \text { if } \alpha \neq \beta \\
\operatorname{lcs}(a, b)+1 & \text { if } \alpha=\beta\end{cases}
$$

	$*$	D	E	F	I	N	E
$*$	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1
E	0	1	2	2	2	2	2
S	0	1	2	2	2	2	2
I	0	1	2	2	3	3	3
G	0	1	2	2	3	3	3
N	0	1	2	2	3	4	4

Basic parallel algorithms

Ordered grid
LCS computation by dynamic programming
[Wagner, Fischer: 1974] Let $\operatorname{lcs}(a, b)$ denote the LCS length

$$
\begin{array}{ll}
\operatorname{lcs}\left(a,{ }^{\prime \prime \prime}\right)=0 \\
\operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0
\end{array} \quad \operatorname{lcs}(a \alpha, b \beta)= \begin{cases}\max (\operatorname{lcs}(a \alpha, b), \operatorname{lcs}(a, b \beta)) & \text { if } \alpha \neq \beta \\
\operatorname{lcs}(a, b)+1 & \text { if } \alpha=\beta\end{cases}
$$

	$*$	D	E	F	I	N	E
$*$	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1
E	0	1	2	2	2	2	2
S	0	1	2	2	2	2	2
I	0	1	2	2	3	3	3
G	0	1	2	2	3	3	3
N	0	1	2	2	3	4	4

Basic parallel algorithms

Ordered grid

LCS computation by dynamic programming
[Wagner, Fischer: 1974] Let $\operatorname{lcs}(a, b)$ denote the LCS length

$$
\begin{array}{ll}
\operatorname{lcs}\left(a,{ }^{\prime \prime \prime}\right)=0 \\
\operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0
\end{array} \quad \operatorname{lcs}(a \alpha, b \beta)= \begin{cases}\max (\operatorname{lcs}(a \alpha, b), \operatorname{lcs}(a, b \beta)) & \text { if } \alpha \neq \beta \\
\operatorname{lcs}(a, b)+1 & \text { if } \alpha=\beta\end{cases}
$$

	$*$	D	E	F	I	N	E
$*$	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1
E	0	1	2	2	2	2	2
S	0	1	2	2	2	2	2
I	0	1	2	2	3	3	3
G	0	1	2	2	3	3	3
N	0	1	2	2	3	4	4

$\operatorname{LCS}(a, b)$ can be "traced back" through the table at no extra asymptotic cost

Basic parallel algorithms

Ordered grid
LCS computation by dynamic programming
[Wagner, Fischer: 1974] Let $\operatorname{lcs}(a, b)$ denote the LCS length

$$
\begin{aligned}
& \operatorname{lcs}\left(a,{ }^{\prime \prime \prime \prime}\right)=0 \\
& \operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0 \\
& \operatorname{lcs}(a \alpha, b \beta)= \begin{cases}\max (\operatorname{lcs}(a \alpha, b), \operatorname{lcs}(a, b \beta)) & \text { if } \alpha \neq \beta \\
\operatorname{lcs}(a, b)+1 & \text { if } \alpha=\beta\end{cases}
\end{aligned}
$$

	$*$	D	E	F	I	N	E
$*$	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1
E	0	1	2	2	2	2	2
S	0	1	2	2	2	2	2
I	0	1	2	2	3	3	3
G	0	1	2	2	3	3	3
N	0	1	2	2	3	4	4

$\operatorname{LCS}(a, b)$ can be "traced back" through the table at no extra asymptotic cost

Data dependence in the table corresponds to the 2D grid dag

Basic parallel algorithms

Ordered grid

Parallel LCS computation

The 2D grid algorithm solves the LCS problem (and many others) by dynamic programming
comp $=O\left(n^{2} / p\right) \quad$ comm $=O(n) \quad$ sync $=O(p)$

Basic parallel algorithms

Ordered grid

Parallel LCS computation
The 2D grid algorithm solves the LCS problem (and many others) by dynamic programming
$\operatorname{comp}=O\left(n^{2} / p\right)$

$$
\text { comm }=O(n)
$$

$$
\text { sync }=O(p)
$$

comm is not scalable (i.e. does not decrease with increasing p)
Can scalable comm be achieved for the LCS problem?

Basic parallel algorithms

Ordered grid

Parallel LCS computation

Solve the more general semi-local LCS problem:

- each string vs all substrings of the other string
- all prefixes of each string against all suffixes of the other string

Divide-and-conquer on substrings of $a, b: \log p$ recursion levels
Each level assembles substring LCS from smaller ones by parallel seaweed multiplication
Base level: p semi-local LCS subproblems, each of size $n / p^{1 / 2}$
Sequential time still $O\left(n^{2}\right)$

Basic parallel algorithms

Ordered grid

Parallel LCS computation (cont.)

Communication vs synchronisation tradeoff
Parallelising normal $O(n \log n)$ seaweed multiplication: [Krusche, T: 2010] comp $=O\left(n^{2} / p\right)$

$$
\operatorname{comm}=O\left(\frac{n}{p^{1 / 2}}\right)
$$

$$
\text { sync }=O\left(\log ^{2} p\right)
$$

Basic parallel algorithms

Ordered grid

Parallel LCS computation (cont.)

Communication vs synchronisation tradeoff
Parallelising normal $O(n \log n)$ seaweed multiplication: [Krusche, T: 2010]
$\operatorname{comp}=O\left(n^{2} / p\right)$

$$
\operatorname{comm}=O\left(\frac{n}{p^{1 / 2}}\right)
$$

Special seaweed multiplication
Sacrifices some comp, comm for sync $\operatorname{comp}=O\left(n^{2} / p\right)$

$$
\operatorname{comm}=O\left(\frac{n \log p}{p^{1 / 2}}\right)
$$

$$
\text { sync }=O(\log p)
$$

Basic parallel algorithms

Ordered grid

Parallel LCS computation (cont.)

Communication vs synchronisation tradeoff
Parallelising normal $O(n \log n)$ seaweed multiplication: [Krusche, T: 2010]

$$
\operatorname{comp}=O\left(n^{2} / p\right) \quad \operatorname{comm}=O\left(\frac{n}{p^{1 / 2}}\right)
$$

Special seaweed multiplication

$$
\text { sync }=O\left(\log ^{2} p\right)
$$

[Krusche, T: 2007]
Sacrifices some comp, comm for sync
$\operatorname{comp}=O\left(n^{2} / p\right)$

$$
\operatorname{comm}=O\left(\frac{n \log p}{p^{1 / 2}}\right)
$$

$$
\text { sync }=O(\log p)
$$

Open problem: can we achieve comm $=O\left(\frac{n}{p^{1 / 2}}\right)$, sync $=O(\log p)$?

Basic parallel algorithms

Ordered grid

The ordered 3D grid dag $\operatorname{grid}_{3}(n)$ nodes arranged in an $n \times n \times n$ grid edges directed top-to-bottom, left-to-right, front-to-back
$\leq 3 n^{2}$ inputs (to front/left/top)
$\leq 3 n^{2}$ outputs (from back/right/bottom) size n^{3} depth $3 n-2$

Basic parallel algorithms

Ordered grid

The ordered 3D grid dag $\operatorname{grid}_{3}(n)$ nodes arranged in an $n \times n \times n$ grid edges directed top-to-bottom, left-to-right, front-to-back
$\leq 3 n^{2}$ inputs (to front/left/top)
$\leq 3 n^{2}$ outputs (from back/right/bottom) size n^{3} depth $3 n-2$

Applications: Gaussian elimination; discretised PDE via Gauss-Seidel iteration; 2D cellular automata; dynamic programming

Sequential work $O\left(n^{3}\right)$

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation

 $\operatorname{grid}_{3}(n)$Partition into $p^{1 / 2} \times p^{1 / 2} \times p^{1 / 2}$ grid of blocks, each isomorphic to $\operatorname{grid}_{3}\left(n / p^{1 / 2}\right)$
Arrange blocks as $3 p^{1 / 2}-2$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation

 $\operatorname{grid}_{3}(n)$Partition into $p^{1 / 2} \times p^{1 / 2} \times p^{1 / 2}$ grid of blocks, each isomorphic to $\operatorname{grid}_{3}\left(n / p^{1 / 2}\right)$
Arrange blocks as $3 p^{1 / 2}-2$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation

$\operatorname{grid}_{3}(n)$
Partition into $p^{1 / 2} \times p^{1 / 2} \times p^{1 / 2}$ grid of blocks, each isomorphic to $\operatorname{grid}_{3}\left(n / p^{1 / 2}\right)$
Arrange blocks as $3 p^{1 / 2}-2$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation

$\operatorname{grid}_{3}(n)$
Partition into $p^{1 / 2} \times p^{1 / 2} \times p^{1 / 2}$ grid of blocks, each isomorphic to $\operatorname{grid}_{3}\left(n / p^{1 / 2}\right)$
Arrange blocks as $3 p^{1 / 2}-2$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation

$\operatorname{grid}_{3}(n)$
Partition into $p^{1 / 2} \times p^{1 / 2} \times p^{1 / 2}$ grid of blocks, each isomorphic to $\operatorname{grid}_{3}\left(n / p^{1 / 2}\right)$
Arrange blocks as $3 p^{1 / 2}-2$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation

$\operatorname{grid}_{3}(n)$
Partition into $p^{1 / 2} \times p^{1 / 2} \times p^{1 / 2}$ grid of blocks, each isomorphic to $\operatorname{grid}_{3}\left(n / p^{1 / 2}\right)$
Arrange blocks as $3 p^{1 / 2}-2$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation

$\operatorname{grid}_{3}(n)$
Partition into $p^{1 / 2} \times p^{1 / 2} \times p^{1 / 2}$ grid of blocks, each isomorphic to $\operatorname{grid}_{3}\left(n / p^{1 / 2}\right)$
Arrange blocks as $3 p^{1 / 2}-2$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation

$\operatorname{grid}_{3}(n)$
Partition into $p^{1 / 2} \times p^{1 / 2} \times p^{1 / 2}$ grid of blocks, each isomorphic to $\operatorname{grid}_{3}\left(n / p^{1 / 2}\right)$
Arrange blocks as $3 p^{1 / 2}-2$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation

 $\operatorname{grid}_{3}(n)$Partition into $p^{1 / 2} \times p^{1 / 2} \times p^{1 / 2}$ grid of blocks, each isomorphic to $\operatorname{grid}_{3}\left(n / p^{1 / 2}\right)$
Arrange blocks as $3 p^{1 / 2}-2$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation

 $\operatorname{grid}_{3}(n)$Partition into $p^{1 / 2} \times p^{1 / 2} \times p^{1 / 2}$ grid of blocks, each isomorphic to $\operatorname{grid}_{3}\left(n / p^{1 / 2}\right)$
Arrange blocks as $3 p^{1 / 2}-2$ anti-diagonal layers: $\leq p$ independent blocks in each layer

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation (contd.)
The computation proceeds in $3 p^{1 / 2}-2$ stages, each computing a layer of blocks. In a stage:

- every processor is either assigned a block or is idle
- a non-idle processor reads the $3 n^{2} / p$ block inputs, computes the block, and writes back the $3 n^{2} / p$ block outputs

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation (contd.)

The computation proceeds in $3 p^{1 / 2}-2$ stages, each computing a layer of blocks. In a stage:

- every processor is either assigned a block or is idle
- a non-idle processor reads the $3 n^{2} / p$ block inputs, computes the block, and writes back the $3 n^{2} / p$ block outputs
comp: $\left(3 p^{1 / 2}-2\right) \cdot O\left(\left(n / p^{1 / 2}\right)^{3}\right)=O\left(p^{1 / 2} \cdot n^{3} / p^{3 / 2}\right)=O\left(n^{3} / p\right)$
comm: $\left(3 p^{1 / 2}-2\right) \cdot O\left(\left(n / p^{1 / 2}\right)^{2}\right)=O\left(p^{1 / 2} \cdot n^{2} / p\right)=O\left(n^{2} / p^{1 / 2}\right)$

Basic parallel algorithms

Ordered grid

Parallel ordered 3D grid computation (contd.)

The computation proceeds in $3 p^{1 / 2}-2$ stages, each computing a layer of blocks. In a stage:

- every processor is either assigned a block or is idle
- a non-idle processor reads the $3 n^{2} / p$ block inputs, computes the block, and writes back the $3 n^{2} / p$ block outputs
comp: $\left(3 p^{1 / 2}-2\right) \cdot O\left(\left(n / p^{1 / 2}\right)^{3}\right)=O\left(p^{1 / 2} \cdot n^{3} / p^{3 / 2}\right)=O\left(n^{3} / p\right)$ comm: $\left(3 p^{1 / 2}-2\right) \cdot O\left(\left(n / p^{1 / 2}\right)^{2}\right)=O\left(p^{1 / 2} \cdot n^{2} / p\right)=O\left(n^{2} / p^{1 / 2}\right)$

$$
\begin{aligned}
& \operatorname{comp}=O\left(n^{3} / p\right) \quad \text { com } \\
& \text { Required slackness } n \geq p^{1 / 2}
\end{aligned}
$$

Basic parallel algorithms

Discussion

Costs comp, comm, sync: functions of n, p
Typically, realistic slackness requirements: $n \gg p$
The goals:

- comp $=\operatorname{comp}_{\text {opt }}=\operatorname{comp}_{\text {seq }} / p$
- comm scales down with increasing p
- sync is a function of p, independent of n

Basic parallel algorithms

Discussion

Costs comp, comm, sync: functions of n, p
Typically, realistic slackness requirements: $n \gg p$
The goals:

- comp $=\operatorname{comp}_{\text {opt }}=\operatorname{comp}_{\text {seq }} / p$
- comm scales down with increasing p
- sync is a function of p, independent of n

The challenges:

- efficient (optimal) algorithms
- good (sharp) lower bounds
(1) Computation by circuits

(2) Parallel computation models

(3) Basic parallel algorithms
(4) Further parallel algorithms
(5) Parallel matrix algorithms

6 Parallel graph algorithms

Further parallel algorithms

List contraction and colouring

Linked list: array of n nodes
Each node contains data and a pointer to (= index of) successor node Nodes may be placed in array in an arbitrary order

Further parallel algorithms

List contraction and colouring

Linked list: array of n nodes
Each node contains data and a pointer to (= index of) successor node Nodes may be placed in array in an arbitrary order

Logical structure linear: head, $\operatorname{succ}($ head $), \operatorname{succ}(\operatorname{succ}($ head $)), \ldots$

- a pointer can be followed in time $O(1)$
- no global ranks/indexing/comparison

Further parallel algorithms

List contraction and colouring

Linked list: array of n nodes
Each node contains data and a pointer to (= index of) successor node Nodes may be placed in array in an arbitrary order

Logical structure linear: head, $\operatorname{succ}($ head $), \operatorname{succ}(\operatorname{succ}($ head $)), \ldots$

- a pointer can be followed in time $O(1)$
- no global ranks/indexing/comparison

Further parallel algorithms

List contraction and colouring

Pointer jumping at node u
Let - be an associative operator, computable in time $O(1)$
$v \leftarrow \operatorname{succ}(u) \quad \operatorname{succ}(u) \leftarrow \operatorname{succ}(v)$
$a \leftarrow \operatorname{data}(u) \quad b \leftarrow \operatorname{data}(v) \quad \operatorname{data}(u) \leftarrow a \bullet b$

Pointer v and data a, b are kept, so that pointer jumping can be reversed: $\operatorname{succ}(u) \leftarrow v \quad \operatorname{data}(u) \leftarrow a \quad \operatorname{data}(v) \leftarrow b$

Further parallel algorithms

List contraction and colouring

Abstract view: node merging, allows e.g. for bidirectional links

Data a, b are kept, so that node merging can be reversed

Further parallel algorithms

List contraction and colouring

Abstract view: node merging, allows e.g. for bidirectional links

Data a, b are kept, so that node merging can be reversed
The list contraction problem: reduce the list to a single node by successive merging (note the result is independent on the merging order)
The list expansion problem: restore the original list, reversing contraction

Further parallel algorithms

List contraction and colouring

Application: list ranking

Node's rank: distance from head
$\operatorname{rank}($ head $)=0, \operatorname{rank}(\operatorname{succ}($ head $))=1, \ldots$
The list ranking problem: each node to hold its rank

Note the solution should be independent of the merging order

Further parallel algorithms

List contraction and colouring

Application: list ranking (contd.)
Each intermediate node during contraction/expansion represents a contiguous sublist in the original list

Contraction phase: each node u holds length $I(u)$ of corresponding sublist Initially, $I(u) \leftarrow 1$ for each node u
Merging v, w into $u: I(u) \leftarrow I(v)+I(w)$, keeping $I(v)$, $I(w)$
Fully contracted list: single node t holding $I(t)=n$

Further parallel algorithms

List contraction and colouring

Application: list ranking (contd.)
Expansion phase: each node holds

- length $I(u)$ of corresponding sublist (as before)
- rank $r(u)$ of the sublist's starting node

Fully contracted list: single node t holding
$I(t)=n \quad r(t) \leftarrow 0$
Un-merging u to v, w : restore $I(u), I(v)$, then
$r(v) \leftarrow r(u) \quad r(w) \leftarrow r(v)+I(v)$
After full expansion: each node u holds
$I(u)=1 \quad r(u)=\operatorname{rank}(u)$

Further parallel algorithms

List contraction and colouring

Application: list prefix sums
Initially, each node u holds value $a_{\text {rank }}(u)$

Further parallel algorithms

List contraction and colouring

Application: list prefix sums
Initially, each node u holds value $a_{\text {rank }}(u)$

Let • be an associative operator with identity ϵ
The list prefix sums problem: each node u to hold prefix sum
$a_{0: \operatorname{rank}(u)}=a_{0} \bullet a_{1} \bullet \cdots \bullet a_{\operatorname{rank}(u)}$

Note the solution should be independent of the merging order

Further parallel algorithms

List contraction and colouring

Application: list prefix sums (contd.)
Each intermediate node during contraction/expansion represents a contiguous sublist in the original list
Contraction phase: each node u holds the \bullet-sum $I(u)$ corresponding sublist Initially, $I(u) \leftarrow a_{\operatorname{rank}(u)}$ for each node u
Merging v, w into $u: I(u) \leftarrow I(v) \bullet I(w)$, keeping $I(v)$, $I(w)$
Fully contracted list: single node t with $I(t)=a_{0: n-1}$

Further parallel algorithms

List contraction and colouring

Application: list prefix sums (contd.)
Expansion phase: each node holds

- •-sum $I(u)$ of corresponding sublist (as before)
- •-sum $r(u)$ of all nodes before the sublist

Fully contracted list: single node t holding
$I(t)=a_{0}: n-1 \quad r(t) \leftarrow \epsilon$
Un-merging u to v, w : restore $I(u), I(v)$, then
$r(v) \leftarrow r(u) \quad r(w) \leftarrow r(v) \bullet l(v)$
After full expansion: each node u holds
$I(u)=a_{\operatorname{rank}(u)} \quad r(u)=a_{0: \operatorname{rank}(u)}$

Further parallel algorithms

List contraction and colouring

In general, only need to consider contraction phase (expansion by symmetry)

Sequential contraction: always merge head with $\operatorname{succ}($ head $)$, time $O(n)$

Further parallel algorithms

List contraction and colouring

In general, only need to consider contraction phase (expansion by symmetry)

Sequential contraction: always merge head with succ(head), time $O(n)$
Parallel contraction must be based on local merging decisions: a node can be merged with either its successor or predecessor, but not both Therefore, we need either node splitting, or efficient symmetry breaking

Further parallel algorithms

List contraction and colouring

Wyllie's mating
[Wyllie: 1979]

Further parallel algorithms

List contraction and colouring

Wyllie's mating
[Wyllie: 1979]

Split every node, label copies "forward" 受 and "backward"

Further parallel algorithms

List contraction and colouring

Wyllie's mating
[Wyllie: 1979]

Split every node, label copies "forward" 縩and "backward"

Merge mating node pairs, obtaining two lists of size $\approx n / 2$

Further parallel algorithms

List contraction and colouring

Parallel list contraction by Wyllie's mating
In the first round, every processor

- inputs n / p nodes (not necessarily contiguous in input list), overall n nodes forming input list across p processors
- performs node splitting and labelling
- merges mating pairs; each merge involves communication between two processors; the merged node placed arbitrarily on either processor
- outputs the resulting $\leq 2 n / p$ nodes (not necessarily contiguous in output list), overall n nodes forming output lists across p processors

Subsequent rounds similar

Further parallel algorithms

List contraction and colouring

Parallel list contraction by Wyllie's mating (contd.)
Parallel list contraction:

- perform $\log n$ rounds of Wyllie's mating, reducing original list to n fully contracted lists of size 1
- select one fully contracted list

Further parallel algorithms

List contraction and colouring

Parallel list contraction by Wyllie's mating (contd.)
Parallel list contraction:

- perform $\log n$ rounds of Wyllie's mating, reducing original list to n fully contracted lists of size 1
- select one fully contracted list

Total work $O(n \log n)$, not optimal vs. sequential work $O(n)$

$$
\operatorname{comp}=O\left(\frac{n \log n}{p}\right)
$$

$$
c o m m=O\left(\frac{n \log n}{p}\right)
$$

$$
\text { sync }=O(\log n)
$$

$$
n \geq p
$$

Further parallel algorithms

List contraction and colouring

Random mating

[Miller, Reif: 1985]
Label every node "forward" probability $\frac{1}{2}$

Further parallel algorithms

List contraction and colouring

Random mating

[Miller, Reif: 1985]
Label every node "forward" or "backward" independently with probability $\frac{1}{2}$

Merge mating node pairs

Further parallel algorithms

Random mating

[Miller, Reif: 1985]
Label every node "forward" probability $\frac{1}{2}$

Merge mating node pairs

On average $\frac{n}{2}$ nodes mate, therefore new list has expected size $\frac{3 n}{4}$ Moreover, size $\leq \frac{15 n}{16}$ with high probability (whp), i.e. with probability exponentially close to 1 (as a function of n)
$\operatorname{Prob}\left(\right.$ new size $\left.\leq \frac{15 n}{16}\right) \geq 1-e^{-n / 64}$

Further parallel algorithms

List contraction and colouring

Parallel list contraction by random mating
In the first round, every processor

- inputs $\frac{n}{p}$ nodes (not necessarily contiguous in input list), overall n nodes forming input list across p processors
- performs node randomisation and labelling
- merges mating pairs; each merge involves communication between two processors; the merged node placed arbitrarily on either processor
- outputs the resulting $\leq \frac{n}{p}$ nodes (not necessarily contiguous in output list), overall $\leq \frac{15 n}{16}$ nodes (whp), forming output list across p processors

Subsequent rounds similar, on a list of decreasing size (whp)

Further parallel algorithms

List contraction and colouring

Parallel list contraction by random mating (contd.)
Parallel list contraction:

- perform $\log _{16 / 15} p$ rounds of random mating, reducing original list to size $\frac{n}{p}$ whp
- a designated processor inputs the remaining list, contracts it sequentially

Further parallel algorithms

List contraction and colouring

Parallel list contraction by random mating (contd.)
Parallel list contraction:

- perform $\log _{16 / 15} p$ rounds of random mating, reducing original list to size $\frac{n}{p}$ whp
- a designated processor inputs the remaining list, contracts it sequentially

Total work $O(n)$, optimal but randomised
comp $=O(n / p)$ whp

$$
\text { comm }=O(n / p) \text { whp }
$$

$$
\text { sync }=O(\log p)
$$

Required slackness $n \geq p^{2}$

Further parallel algorithms

List contraction and colouring

Block mating

Will mate nodes deterministically
Contract local chains (if any)

Build distribution graph:

- complete weighted digraph on p supernodes
- $w(i, j)=\mid\left\{u \rightarrow v: u \in\right.$ proc $\left._{i}, v \in \operatorname{proc}_{j}\right\} \mid$

Each processor holds a supernode's outgoing edges

Further parallel algorithms

List contraction and colouring

Block mating (contd.)
Designated processor collects the distribution graph
Label every supernode F ("forward") or B ("backward"), so that $\sum_{i \in F, j \in B} w(i, j) \geq \frac{1}{4} \cdot \sum_{i, j} w(i, j)$ by a sequential greedy algorithm

Distribute supernode labels to processors

Merge mating node pairs
By construction of supernode labelling, $\geq \frac{n}{2}$ nodes mate, therefore new list has size $\leq \frac{3 n}{4}$

Further parallel algorithms

List contraction and colouring

Parallel list contraction by block mating
In the first round, every processor

- inputs $\frac{n}{p}$ nodes (not necessarily contiguous in input list), overall n nodes forming input list across p processors
- participates in construction of distribution graph and communicating it to the designated processor

The designated processor collects distribution graph, computes and distributes labels

Further parallel algorithms

List contraction and colouring

Parallel list contraction by block mating (contd.)
Continuing the first round, every processor

- receives its label from the designated processor
- merges mating pairs; each merge involves communication between two processors; the merged node placed arbitrarily on either processor
- outputs the resulting $\leq \frac{n}{p}$ nodes (not necessarily contiguous in output list), overall $\leq \frac{3 n}{4}$ nodes, forming output list across p processors

Subsequent rounds similar, on a list of decreasing size

Further parallel algorithms

List contraction and colouring

Parallel list contraction by block mating (contd.)
Parallel list contraction:

- perform $\log _{4 / 3} p$ rounds of block mating, reducing the original list to size n / p
- a designated processor collects the remaining list and contracts it sequentially

Further parallel algorithms

List contraction and colouring

Parallel list contraction by block mating (contd.)
Parallel list contraction:

- perform $\log _{4 / 3} p$ rounds of block mating, reducing the original list to size n / p
- a designated processor collects the remaining list and contracts it sequentially

Total work $O(n)$, optimal and deterministic

$$
\begin{aligned}
& \operatorname{comp}=O(n / p) \quad c o m n \\
& \text { Required slackness } n \geq p^{4}
\end{aligned}
$$

Further parallel algorithms

List contraction and colouring

The list k-colouring problem: given a linked list and an integer $k>1$, assign a colour from $\{0, \ldots, k-1\}$ to every node, so that in each pair of adjacent nodes, the two colours are different

Further parallel algorithms

List contraction and colouring

The list k-colouring problem: given a linked list and an integer $k>1$, assign a colour from $\{0, \ldots, k-1\}$ to every node, so that in each pair of adjacent nodes, the two colours are different

Using list contraction, k-colouring for any k can be done in
$\operatorname{comp}=O(n / p) \quad \operatorname{comm}=O(n / p) \quad$ sync $=O(\log p)$

Is list contraction really necessary for list k-colouring?
Can list k-colouring be done more efficiently?

Further parallel algorithms

List contraction and colouring

The list k-colouring problem: given a linked list and an integer $k>1$, assign a colour from $\{0, \ldots, k-1\}$ to every node, so that in each pair of adjacent nodes, the two colours are different

Using list contraction, k-colouring for any k can be done in

$$
\operatorname{comp}=O(n / p) \quad \operatorname{comm}=O(n / p) \quad \text { sync }=O(\log p)
$$

Is list contraction really necessary for list k-colouring?
Can list k-colouring be done more efficiently?
For $k=p$: we can easily (how?) do p-colouring in

$$
\operatorname{comp}=O(n / p)
$$

$$
\mathrm{comm}=O(n / p)
$$

$$
\text { sync }=O(1)
$$

Further parallel algorithms

List contraction and colouring

The list k-colouring problem: given a linked list and an integer $k>1$, assign a colour from $\{0, \ldots, k-1\}$ to every node, so that in each pair of adjacent nodes, the two colours are different

Using list contraction, k-colouring for any k can be done in

$$
\operatorname{comp}=O(n / p) \quad \operatorname{comm}=O(n / p) \quad \text { sync }=O(\log p)
$$

Is list contraction really necessary for list k-colouring?
Can list k-colouring be done more efficiently?
For $k=p$: we can easily (how?) do p-colouring in

$$
\operatorname{comp}=O(n / p) \quad \text { comm }=O(n / p) \quad \text { sync }=O(1)
$$

Can this be extended to any $k \leq p$, e.g. $k=O(1)$?

Further parallel algorithms

List contraction and colouring

Deterministic coin tossing
[Cole, Vishkin: 1986]
Given a k-colouring, $k>6$

Further parallel algorithms

List contraction and colouring

Deterministic coin tossing

[Cole, Vishkin: 1986]
Given a k-colouring, $k>6$
Consider every node v. We have $\operatorname{col}(v) \neq \operatorname{col}(\operatorname{succ}(v))$.
If $\operatorname{col}(v)$ differs from $\operatorname{col}(\operatorname{succ}(v))$ in i-th bit, re-colour v in

- $2 i$, if i-th bit in $\operatorname{col}(v)$ is 0 , and in $\operatorname{col}(\operatorname{succ}(v))$ is 1
- $2 i+1$, if i-th bit in $\operatorname{col}(v)$ is 1 , and in $\operatorname{col}(\operatorname{succ}(v))$ is 0

Model assumption: can find lowest nonzero bit in an integer in time $O(1)$ After re-colouring, still have $\operatorname{col}(v) \neq \operatorname{col}(\operatorname{succ}(v))$

Number of colours reduced from k to $2\lceil\log k\rceil \ll k$ comp, comm: $O(n / p)$

Further parallel algorithms

List contraction and colouring

Parallel list colouring by deterministic coin tossing
Reducing the number of colours from p to 6 : need $O\left(\log ^{*} p\right)$ rounds of deterministic coin tossing

The iterated \log function

$$
\log ^{*} k=\min r: \underset{(r \text { times })}{\log \ldots \log } k \leq 1
$$

Further parallel algorithms

List contraction and colouring

Parallel list colouring by deterministic coin tossing
Reducing the number of colours from p to 6 : need $O\left(\log ^{*} p\right)$ rounds of deterministic coin tossing

The iterated log function

$$
\log ^{*} k=\min r: \underset{(r \text { times })}{\log \ldots \log } k \leq 1
$$

Number of particles in observable universe: $10^{81} \approx 2^{270}$
$\log ^{*} 2^{270}=\log ^{*} 2^{65536}=\log ^{*} 2^{2^{2^{2^{2}}}}=5$

Further parallel algorithms

List contraction and colouring

Parallel list colouring by deterministic coin tossing (contd.)
Initially, each processor reads a subset of n / p nodes

- partially contract the list to size $O\left(n / \log ^{*} p\right)$ by $\log _{4 / 3} \log ^{*} p$ rounds of block mating
- compute a p-colouring of the resulting list
- reduce the number of colours from p to 6 by $O\left(\log ^{*} p\right)$ rounds of deteministic coin tossing
comp, comm: $O\left(\frac{n}{p}+\frac{n}{p \log ^{*} p} \cdot \log ^{*} p\right)=O(n / p)$
sync: $O\left(\log ^{*} p\right)$

Further parallel algorithms

List contraction and colouring

Parallel list colouring by deterministic coin tossing (contd.)
We have a 6 -coloured, partially contacted list of size $O\left(n / \log ^{*} p\right)$

- select node v as a pivot, if $\operatorname{col}(\operatorname{pred}(v))>\operatorname{col}(v)<\operatorname{col}(\operatorname{succ}(v))$; no two pivots are adjacent or further than 12 nodes apart
- re-colour all pivots in one colour
- from each pivot, 2-colour the next ≤ 12 non-pivots sequentially; we now have a 3-coloured list
- reverse the partial contraction, maintaining the 3-colouring

We have now 3-coloured the original list
comp $=O(n / p) \quad$ comm $=O(n / p) \quad$ sync $=O\left(\log ^{*} p\right) \quad n \geq p^{4}$

Further parallel algorithms

Sorting

The sorting problem
Given $a=\left[a_{0}, \ldots, a_{n-1}\right]$, arrange elements of a in increasing order May assume all a_{i} are distinct (otherwise, attach unique tags)

Assume the comparison model: primitives $<,>$, no arithmetic or bit operations on a_{i}

Sequential work $O(n \log n)$ e.g. by mergesort

Further parallel algorithms

The sorting problem
Given $a=\left[a_{0}, \ldots, a_{n-1}\right]$, arrange elements of a in increasing order May assume all a_{i} are distinct (otherwise, attach unique tags)

Assume the comparison model: primitives $<,>$, no arithmetic or bit operations on a_{i}

Sequential work $O(n \log n)$ e.g. by mergesort
Parallel sorting based on an AKS sorting network

$$
c o m p=O\left(\frac{n \log n}{p}\right)
$$

$$
c o m m=O\left(\frac{n \log n}{p}\right)
$$

$$
\text { sync }=O(\log n)
$$

Further parallel algorithms

Parallel sorting by regular sampling
[Shi, Schaeffer: 1992]
Every processor

- reads subarray of a of size n / p and sorts it sequentially
- selects from it p samples from base index 0 at steps n / p^{2}

Samples define p equal-sized, contiguous blocks in local subarray

Further parallel algorithms

Parallel sorting by regular sampling
[Shi, Schaeffer: 1992]

Every processor

- reads subarray of a of size n / p and sorts it sequentially
- selects from it p samples from base index 0 at steps n / p^{2}

Samples define p equal-sized, contiguous blocks in local subarray
A designated processor

- collects all p^{2} samples and sorts them sequentially
- selects from them p splitters from base index 0 at steps p
- broadcasts the splitters

Splitters define p unequal-sized, rank-contiguous buckets in global array a

Further parallel algorithms

Sorting

Parallel sorting by regular sampling (contd.)

Further parallel algorithms

Parallel sorting by regular sampling (contd.)

Every processor

- receives the splitters and is assigned a bucket
- scans its subarray and sends each element to the appropriate bucket
- receives the elements of its bucket and sorts them sequentially
- writes the sorted bucket back to external memory

We will need to prove that bucket sizes, although not uniform, are still well-balanced ($\leq 2 n / p$)

$$
\operatorname{comp}=O\left(\frac{n \log n}{p}\right)
$$

$$
\text { comm }=O(n / p)
$$

$$
\text { sync }=O(1)
$$

Required slackness $n \geq p^{3}$

Further parallel algorithms

Sorting

Parallel sorting by regular sampling (contd.)
Claim: each bucket has size $\leq 2 n / p$

Further parallel algorithms

Parallel sorting by regular sampling (contd.)
Claim: each bucket has size $\leq 2 n / p$
Proof (sketch). Relative to a fixed bucket B, a block b is

- low, if lower boundary of b is \leq lower boundary of B
- high otherwise

A bucket may only intersect

- ≤ 1 low block per processor, hence $\leq p$ low blocks overall
- $\leq p$ high blocks overall

Therefore, bucket size $\leq(p+p) \cdot n / p^{2}=2 n / p$

Further parallel algorithms

Selection

The selection problem
Given $a=\left[a_{0}, \ldots, a_{n-1}\right]$, target rank k
Find k-th smallest element of a; e.g. median selection: $k=n / 2$
As with sorting, we assume the comparison model
Sequential work $O(n \log n)$ by naive sorting
Sequential work $O(n)$ by median sampling
[Blum+: 1973]

Further parallel algorithms

Selection

Selection by median sampling
[Blum+: 1973]
Proceed in rounds. In the first round:

- partition array a into subarrays of size 5
- in each subarray, select median e.g. by 5-element sorting
- select median-of-medians by recursion: $n \leftarrow n / 5, k \leftarrow n / 10$
- find rank / of median-of-medians in array a by linear search

If $I=k$, return a_{l}; otherwise, eliminate elements on the wrong side of median-of-medians; adjust size and target rank for next round:

- if $I<k$, discard all $a_{i} \leq a_{l}$; adjust $n \leftarrow n-I-1, k \leftarrow k-I-1$
- if $I>k$, discard all $a_{i} \geq a_{l}$; adjust $n \leftarrow I, k$ unchanged

Subsequents rounds similar, with adjusted n, k

Further parallel algorithms

Selection

Selection by median sampling (contd.)
Claim: Each round removes $\geq \frac{3 n}{10}$ of elements of a

Further parallel algorithms

Selection

Selection by median sampling (contd.)
Claim: Each round removes $\geq \frac{3 n}{10}$ of elements of a
Proof (sketch). We have $\frac{n}{5}$ subarrays
In at least $\frac{1}{2} \cdot \frac{n}{5}$ subarrays, subarray median $\leq a_{\text {I }}$
In every such subarray, three elements \leq subarray median $\leq a_{\text {I }}$
Hence, at least $\frac{1}{2} \cdot \frac{3 n}{5}=\frac{3 n}{10}$ elements $\leq a_{l}$
Symmetrically, at least $\frac{3 n}{10}$ elements $\geq a_{\text {I }}$
Therefore, in a round, at least $\frac{3 n}{10}$ elements are eliminated
With each round, array shrinks exponentially

$$
\begin{aligned}
& T(n) \leq T\left(\frac{n}{5}\right)+T\left(n-\frac{3 n}{10}\right)+O(n)=T\left(\frac{2 n}{10}\right)+T\left(\frac{7 n}{10}\right)+O(n), \text { therefore } \\
& T(n)=O(n)
\end{aligned}
$$

Further parallel algorithms

Selection

Parallel selection by median sampling
In the first round, every processor

- reads a subarray of size n / p, selects the median

A designated processor

- collects all p subarray medians
- selects and broadcasts the median-of-medians

Every processor

- determines rank of median-of-medians in local subarray

Further parallel algorithms

Parallel selection by median sampling (contd.)
A designated processor

- adds up local ranks to determine global rank of median-of-medians
- compares it against target rank to determine direction of elimination
- broadcasts info on this direction

Every processor

- performs elimination on local subarray, discarding elements on wrong side of median-of-medians
- writes remaining elements
$\leq 3 n / 4$ elements remain overall in array a
Subsequents rounds similar, with adjusted n, k

Further parallel algorithms

Selection

Parallel selection by median sampling (contd.)
Overall algorithm:

- perform $\log _{4 / 3} p$ rounds of median sampling and elimination, reducing original array to size n / p
- a designated processor collects the remaining array and performs selection sequentially

Further parallel algorithms

Selection

Parallel selection by median sampling (contd.)
Overall algorithm:

- perform $\log _{4 / 3} p$ rounds of median sampling and elimination, reducing original array to size n / p
- a designated processor collects the remaining array and performs selection sequentially

$$
\operatorname{comp}=O(n / p)
$$

$$
\mathrm{comm}=O(n / p)
$$

$$
\text { sync }=O(\log p)
$$

Further parallel algorithms

Selection

Parallel selection by regular sampling (generalised median sampling)
In the first round, every processor

- reads a subarray of size n / p
- selects from it $s=O(1)$ samples from base rank 0 at rank steps $\frac{n}{s p}$ Splitters define s equal-sized, rank-contiguous blocks in local subarray
A designated processor
- collects all $s p$ samples
- selects from them s splitters from base rank 0 at rank steps p
- broadcasts the splitters

Splitters define s unequal-sized, rank-contiguous buckets in global array a Every processor

- determines rank of every splitter in local subarray

Further parallel algorithms

Selection

Parallel selection by regular sampling (contd.)
A designated processor

- adds up local ranks to determine global rank of every splitter
- compares these against target rank to determine target bucket
- broadcasts info on target bucket

Every processor

- performs elimination on subarray, discarding elements outside target bucket
- writes remaining elements
$\leq 2 n / s$ elements remain overall in array a
Subsequents rounds similar, with adjusted n, k

Further parallel algorithms

Selection

Parallel selection by accelerated regular sampling

In the original median sampling, sampling frequency $s=2$ fixed across all rounds (samples at base rank 0 and local median rank $\frac{n}{2 p}$); array shrinks exponentially

We now increase s from round to round, accelerating array reduction; array now shrinks superexponentially

Round 0 : selecting samples and determining splitter ranks in time $O\left(\frac{n \log s}{p}\right)$; set $s=2$, time $O(n / p)$
Round 1: array size $O(n / s)$, we can afford sampling frequency 2^{s} Round 2: ...

Further parallel algorithms

Selection

Parallel selection by accelerated regular sampling
Overall algorithm:

- perform $O\left(\log ^{*} p\right)$ rounds of regular sampling (with increasing frequency) and elimination, reducing original array to size n / p
- a designated processor collects the remaining array and performs selection sequentially

$$
\operatorname{comp}=O(n / p)
$$

$$
\mathrm{comm}=O(n / p)
$$

$$
\text { sync }=O\left(\log ^{*} p\right)
$$

Further parallel algorithms

Selection

Parallel selection

$$
\operatorname{comp}=O(n / p) \quad \operatorname{comm}=O(n / p)
$$

$$
\text { sync }=O(\log p)
$$

$$
\text { sync }=O(\log \log n)
$$

sync $=O(1)$ whp \quad randomised

$$
\begin{aligned}
\text { sync } & =O(\log \log p) \\
\text { sync } & =O\left(\log ^{*} p\right)
\end{aligned}
$$

[Ishimizu+: 2002]
[Fujiwara+: 2000]
[Gerbessiotis, Siniolakis: 2003]
[T: 2010]
[T: NEW]

Further parallel algorithms

Convex hull
Set $S \subseteq \mathbb{R}^{d}$ is convex, if for all x, y in S, every point between x and y is also in S
$A \subseteq \mathbb{R}^{d}$
The convex hull conv A is the smallest convex set containing A conv A is a polytope, defined by its vertices $A_{i} \in A$ Set A is in convex position, if every its point is a vertex of conv A

Definition of convexity requires arithmetic on coordinates, hence we assume the arithmetic model

Further parallel algorithms

Convex hull

$d=2$
Fundamental arithmetic primitive: signed area of a triangle
Let $a_{0}=\left(x_{0}, y_{0}\right), a_{1}=\left(x_{1}, y_{1}\right), a_{2}=\left(x_{2}, y_{2}\right)$
$\Delta\left(a_{0}, a_{1}, a_{2}\right)=\frac{1}{2}\left|\begin{array}{lll}x_{0} & y_{0} & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=\frac{1}{2}\left(\left(x_{1}-x_{0}\right)\left(y_{2}-y_{0}\right)-\left(x_{2}-x_{0}\right)\left(y_{1}-y_{0}\right)\right)$
$\Delta\left(a_{0}, a_{1}, a_{2}\right)\left\{\begin{array}{l}<0 \text { if } a_{0}, a_{1}, a_{2} \text { clockwise } \\ =0 \text { if } a_{0}, a_{1}, a_{2} \text { collinear } \\ >0 \text { if } a_{0}, a_{1}, a_{2} \text { counterclockwise }\end{array}\right.$
An easy $O(1)$ check: a_{0} is to the left/right of directed line from a_{1} to a_{2} ? All of A is to the left of every edge of conv A, traversed counterclockwise

Further parallel algorithms

Convex hull

The (discrete) convex hull problem
Given $a=\left[a_{0}, \ldots, a_{n-1}\right], a_{i} \in \mathbb{R}^{d}$
Output (a finite representation of) conva
More precisely, output each k-dimensional face of conv $a, 1 \leq k<d$
E.g. in 3D: 1D vertices, 2D edges, 3D facets

Output must be structured, i.e. should give

- for $d=2$, all vertex-edge incidence pairs; every vertex should "know" its both neighbours
- for general d, all incidence pairs between a k-D and a $(k+1)$-D face

Further parallel algorithms

Convex hull

The (discrete) convex hull problem (contd.)
Claim: Convex hull problem in \mathbb{R}^{2} is at least as hard as sorting

Further parallel algorithms

Convex hull

The (discrete) convex hull problem (contd.)
Claim: Convex hull problem in \mathbb{R}^{2} is at least as hard as sorting
Proof. Let $x_{0}, \ldots, x_{n-1} \in \mathbb{R}$
To sort $\left[x_{0}, \ldots, x_{n-1}\right]$:

- compute conv $\left\{\left(x_{i}, x_{i}^{2}\right) \in \mathbb{R}^{2}: 0 \leq i<n\right\}$
- follow the edges to obtain sorted output

Further parallel algorithms

Convex hull

The (discrete) convex hull problem (contd.)
$d=2: \leq n$ vertices, $\leq n$ edges, output size $\leq 2 n$
$d=3: O(n)$ vertices, edges and facets, output size $O(n)$
$d>3$: much bigger output...

Further parallel algorithms

Convex hull

The (discrete) convex hull problem (contd.)
$d=2: \leq n$ vertices, $\leq n$ edges, output size $\leq 2 n$
$d=3: O(n)$ vertices, edges and facets, output size $O(n)$
$d>3$: much bigger output...
For general d, conv a contains $O\left(n^{\lfloor d / 2\rfloor}\right)$ faces of various dimensions
$d=4,5$: output size $O\left(n^{2}\right)$
$d=6,7:$ output size $O\left(n^{3}\right)$

From now on, will concentrate on $d=2$ and will sketch $d=3$

Further parallel algorithms

Convex hull

The (discrete) convex hull problem (contd.)
$d=2: \leq n$ vertices, $\leq n$ edges, output size $\leq 2 n$
$d=3: O(n)$ vertices, edges and facets, output size $O(n)$
$d>3$: much bigger output...
For general d, conv a contains $O\left(n^{\lfloor d / 2\rfloor}\right)$ faces of various dimensions
$d=4,5$: output size $O\left(n^{2}\right)$
$d=6,7$: output size $O\left(n^{3}\right)$

From now on, will concentrate on $d=2$ and will sketch $d=3$
Sequential work $O(n \log n)$: Graham's scan (2D); mergehull (2D, 3D) ‘

Further parallel algorithms

Convex hull

$A \subseteq \mathbb{R}^{d} \quad$ Let $0 \leq \epsilon \leq 1$
Set $E \subseteq A$ is an ϵ-net for A, if any halfspace with no points in E covers $\leq \epsilon|A|$ points in A
An ϵ-net may always be assumed to be in convex position

Further parallel algorithms

Convex hull

$A \subseteq \mathbb{R}^{d} \quad$ Let $0 \leq \epsilon \leq 1$
Set $E \subseteq A$ is an ϵ-net for A, if any halfspace with no points in E covers
$\leq \epsilon|A|$ points in A
An ϵ-net may always be assumed to be in convex position
Set $E \subseteq A$ is an ϵ-approximation for A, if for all $\alpha, 0 \leq \alpha \leq 1$, any halfspace with $\alpha|E|$ points in E covers $(\alpha \pm \epsilon)|A|$ points in A

An ϵ-approximation may not be in convex position
Both are easy to construct in 2D, much harder in 3D and higher

Further parallel algorithms

Convex hull

Claim. An ϵ-approximation for A is an ϵ-net for A
The converse does not hold!

Further parallel algorithms

Convex hull

Claim. An ϵ-approximation for A is an ϵ-net for A
The converse does not hold!
Claim. Union of ϵ-approximations for $A^{\prime}, A^{\prime \prime}$ is ϵ-approximation for $A^{\prime \prime} \cup A^{\prime \prime}$

Further parallel algorithms

Convex hull

Claim. An ϵ-approximation for A is an ϵ-net for A
The converse does not hold!
Claim. Union of ϵ-approximations for $A^{\prime}, A^{\prime \prime}$ is ϵ-approximation for $A^{\prime \prime} \cup A^{\prime \prime}$
Claim. An ϵ-net for a δ-approximation for A is an $(\epsilon+\delta)$-net for A

Further parallel algorithms

Convex hull

Claim. An ϵ-approximation for A is an ϵ-net for A
The converse does not hold!
Claim. Union of ϵ-approximations for $A^{\prime}, A^{\prime \prime}$ is ϵ-approximation for $A^{\prime \prime} \cup A^{\prime \prime}$
Claim. An ϵ-net for a δ-approximation for A is an $(\epsilon+\delta)$-net for A
Proofs: Easy by definitions, independently of d.

Further parallel algorithms

Convex hull

$$
d=2 \quad A \subseteq \mathbb{R}^{2} \quad|A|=n \quad \epsilon=1 / r \quad r \geq 1
$$

Claim. A $1 / r$-net for A of size $\leq 2 r$ exists and can be computed in sequential work $O(n \log n)$.

Further parallel algorithms

Convex hull

$d=2 \quad A \subseteq \mathbb{R}^{2} \quad|A|=n \quad \epsilon=1 / r \quad r \geq 1$
Claim. A $1 / r$-net for A of size $\leq 2 r$ exists and can be computed in sequential work $O(n \log n)$.

Proof. Consider convex hull of A and an arbitrary interior point v Partition A into triangles: base at a hull edge, apex at v

A triangle is heavy if it contains $>n / r$ points of A, otherwise light

Further parallel algorithms

Convex hull

$d=2 \quad A \subseteq \mathbb{R}^{2} \quad|A|=n \quad \epsilon=1 / r \quad r \geq 1$
Claim. A $1 / r$-net for A of size $\leq 2 r$ exists and can be computed in sequential work $O(n \log n)$.

Proof. Consider convex hull of A and an arbitrary interior point v Partition A into triangles: base at a hull edge, apex at v

A triangle is heavy if it contains $>n / r$ points of A, otherwise light Heavy triangles: for each triangle, put both hull vertices into E

Further parallel algorithms

Convex hull

$d=2 \quad A \subseteq \mathbb{R}^{2} \quad|A|=n \quad \epsilon=1 / r \quad r \geq 1$
Claim. A $1 / r$-net for A of size $\leq 2 r$ exists and can be computed in sequential work $O(n \log n)$.

Proof. Consider convex hull of A and an arbitrary interior point v
Partition A into triangles: base at a hull edge, apex at v
A triangle is heavy if it contains $>n / r$ points of A, otherwise light Heavy triangles: for each triangle, put both hull vertices into E

Light triangles: for each triangle chain, greedy next-fit bin packing

- combine adjacent triangles into bins with $\leq n / r$ points
- for each bin, put both boundary hull vertices into E

In total $\leq 2 r$ heavy triangles and bins, hence $|E| \leq 2 r$

Further parallel algorithms

Convex hull

$d=2 \quad A \subseteq \mathbb{R}^{2} \quad|A|=n \quad \epsilon=1 / r$
Claim. If A is in convex position, then a $1 / r$-approximation for A of size $\leq r$ exists and can be computed in sequential work $O(n \log n)$.

Further parallel algorithms

Convex hull

$d=2 \quad A \subseteq \mathbb{R}^{2} \quad|A|=n \quad \epsilon=1 / r$
Claim. If A is in convex position, then a $1 / r$-approximation for A of size $\leq r$ exists and can be computed in sequential work $O(n \log n)$.
Proof. Sort points of A in circular order they appear on the convex hull Put every n / r-th point into E. We have $|E| \leq r$.

Further parallel algorithms

Convex hull

Parallel 2D hull computation by generalised regular sampling
$a=\left[a_{0}, \ldots, a_{n-1}\right] \quad a_{i} \in \mathbb{R}^{2}$
Every processor

- reads a subset of n / p points, computes its hull, discards the rest
- selects p samples at regular intervals on the hull

Set of all samples: $1 / p$-approximation for set a (after discarding local interior points)

Further parallel algorithms

Convex hull
Parallel 2D hull computation by generalised regular sampling
$a=\left[a_{0}, \ldots, a_{n-1}\right] \quad a_{i} \in \mathbb{R}^{2}$

Every processor

- reads a subset of n / p points, computes its hull, discards the rest
- selects p samples at regular intervals on the hull

Set of all samples: $1 / p$-approximation for set a (after discarding local interior points)
A designated processor

- collects all p^{2} samples (and does not compute its hull)
- selects from the samples a $1 / p$-net of $\leq 2 p$ points as splitters

Set of splitters: $1 / p$-net for samples, therefore a $2 / p$-net for set a

Further parallel algorithms

Convex hull

Parallel 2D hull computation by generalised regular sampling (contd.)
The $2 p$ splitters can be assumed to be in convex position (like any ϵ-net), and therefore define a splitter polygon with at most $2 p$ edges

Each vertex of splitter polygon defines a bucket: the subset of set a visible when sitting at this vertex (assuming the polygon is opaque)

Each bucket can be covered by two half-planes not containg any splitters. Therefore, bucket size is at most $2 \cdot(2 / p) \cdot n=4 n / p$.

Further parallel algorithms

Convex hull

Parallel 2D hull computation by generalised regular sampling (contd.)
The designated processor broadcasts the splitters

Every processor

- receives the splitters and is assigned 2 buckets
- scans its hull and sends each point to the appropriate bucket
- receives the points of its buckets and computes their hulls sequentially
- writes the bucket hulls back to external memory

$$
\operatorname{comp}=O\left(\frac{n \log n}{p}\right)
$$

$$
\operatorname{comm}=O(n / p)
$$

$$
\text { sync }=O(1)
$$

Requires slackness $n \geq p^{3}$

Further parallel algorithms

Convex hull

$d=3 \quad A \subseteq \mathbb{R}^{3} \quad|A|=n \quad \epsilon=1 / r$
Claim. A $1 / r$-net for A of size $O(r)$ exists and can be computed in sequential work $O(r n \log n)$.
Proof: [Brönnimann, Goodrich: 1995]

Further parallel algorithms

Convex hull

$d=3 \quad A \subseteq \mathbb{R}^{3} \quad|A|=n \quad \epsilon=1 / r$
Claim. A $1 / r$-net for A of size $O(r)$ exists and can be computed in sequential work $O(r n \log n)$.

Proof: [Brönnimann, Goodrich: 1995]
Claim. A $1 / r$-approximation for A of size $O\left(r^{3}(\log r)^{O(1)}\right)$ exists and can be computed in sequential work $O(n \log r)$.
Proof: [Matoušek: 1992]
Better approximations are possible, but are slower to compute

Further parallel algorithms

Convex hull

Parallel 3D hull computation by generalised regular sampling
$a=\left[a_{0}, \ldots, a_{n-1}\right] \quad a_{i} \in \mathbb{R}^{3}$
Every processor

- reads a subset of n / p points
- selects a $1 / p$-approximation of $O\left(p^{3}(\log p)^{O(1)}\right)$ points as samples Set of all samples: $1 / p$-approximation for set a

Further parallel algorithms

Convex hull
Parallel 3D hull computation by generalised regular sampling
$a=\left[a_{0}, \ldots, a_{n-1}\right] \quad a_{i} \in \mathbb{R}^{3}$
Every processor

- reads a subset of n / p points
- selects a $1 / p$-approximation of $O\left(p^{3}(\log p)^{O(1)}\right)$ points as samples

Set of all samples: $1 / p$-approximation for set a
A designated processor

- collects all $O\left(p^{4}(\log p)^{O(1)}\right)$ samples
- selects from the samples a $1 / p$-net of $O(p)$ points as splitters

Set of splitters: $1 / p$-net for samples, therefore a $2 / p$-net for set a

Further parallel algorithms

Convex hull

Parallel 3D hull computation by generalised regular sampling (contd.)
The $O(p)$ splitters can be assumed to be in convex position (like any ϵ-net), and therefore define a splitter polytope with $O(p)$ edges

Each edge of splitter polytope defines a bucket: the subset of a visible when sitting on this edge (assuming the polytope is opaque)

Each bucket can be covered by two half-spaces not containg any splitters. Therefore, bucket size is at most $2 \cdot(2 / p) \cdot n=4 n / p$.

Further parallel algorithms

Convex hull

Parallel 3D hull computation by generalised regular sampling (contd.)
The designated processor broadcasts the splitters

Every processor

- receives the splitters and is assigned a bucket
- scans its hull and sends each point to the appropriate bucket
- receives the points of its bucket and computes their convex hull sequentially
- writes the bucket hull back to external memory

$$
\operatorname{comp}=O\left(\frac{n \log n}{p}\right)
$$

$$
\mathrm{comm}=O(n / p)
$$

$$
\text { sync }=O(1)
$$

Requires slackness $n \gg p$

Further parallel algorithms

Suffix sorting

The suffix sorting problem
Given string $a=a_{0} \ldots a_{n-1} \$$
$a_{i} \in\{0,1, \ldots, n-1\} \quad 0 \leq i<n \quad \$=-\infty$ is a sentinel
Sort all suffixes of a in lexicographic order (implicitly, by returning ranks)
Character sorting: time $O(n)$ e.g. by counting sort
Naive suffix sorting: time $O\left(n^{2}\right)$ by n-fold radix sort, performing character sorting successively in every position from least to most significant

Further parallel algorithms

Suffix sorting

Suffix sorting by DC mod 3 sampling
Difference cover (DC) modulo 3, aka skew algorithm
[Kärkkäinen, Sanders: 2003]
Denote a_{i} by [i]
Consider 3-substrings as super-characters: [012], [123], [234], ...
Sort all super-characters by 3-fold radix sort; replace each by its rank Call indices $3 i, 3 i+1$ (but not $3 i+2$) for any i sample indices Sample indices define

- sample suffixes: [012...], [123...], (not [234...]), [345...], ...
- sample super-characters: [012], [123], (not [234]), [345], ...

Further parallel algorithms

Suffix sorting

Suffix sorting by DC mod 3 sampling (contd.)
$b=[012][345][678] \ldots \$[123][456][789] . . . \$[345][678][91011] \ldots \$$
b is composed of sample suffixes of a, each broken up into sample super-characters; overall, b is of length $2 n / 3$ super-characters

Sort sample suffixes

- suffix sorting on b by recursion

Sort non-sample suffixes

- 2-fold radix sort on a at non-sample indices

```
[234...] = [2][345...]
[567...] = [5][678...]
```


Further parallel algorithms

Suffix sorting

Suffix sorting by DC mod 3 sampling (contd.)
We have two sorted sets of suffixes:

- sample [012...], [123...], (not [234...]), [345...], [456...], (not [567...]), ...
- non-sample [234...], [567...], ...

Perform comparison-based merging of suffix sets
Each comparison: either [$3 i \ldots$...] or [$3 i+1 \ldots$...] vs [$3 i+2 \ldots$...], performed as

- $[3 i][3 i+13 i+2 \ldots]$ vs $[3 j+2][3 j+33 j+4 \ldots]$
- $[3 i+13 i+2][3 i+33 i+4 \ldots]$ vs $[3 j+23 j+3][3 j+43 j+5 \ldots]$

Comparing pairs of the form (sample super-character, sample suffix)
Comparison time $O(1)$
Overall running time $T(n)=O(n)+T(2 n / 3)=O(n)$

Further parallel algorithms

Suffix sorting

Parallel suffix sorting by DC mod 3 sampling
$a=a_{0} \ldots a_{n-1} \$$
At the top recursion level, every processor

- reads substring of a of length n / p
- sorts super-characters locally by 3-fold radix sort

The processors collectively

- sort super-characters globally by regular sampling
- form string b
- sort sample suffixes of a by recursion on b
- sort non-sample suffixes of a by 2-fold radix sort at non-sample indices

Further parallel algorithms

Suffix sorting

Parallel suffix sorting by DC mod 3 sampling (contd.)
Every processor

- merges sample vs non-sample suffixes locally

The processors collectively

- merge sample vs non-sample suffixes globally by regular sampling

Subsequent recursion levels similar, with n adjusted

Further parallel algorithms

Suffix sorting

Parallel suffix sorting by DC mod 3 sampling (contd.)
Overall algorithm:

- perform $\log _{3 / 2} p$ recursion levels of suffix sorting by DC mod 3 sampling, obtaining a string of length n / p
- a designated processor collects the resulting string and performs suffix sorting sequentially

Further parallel algorithms

Suffix sorting

Parallel suffix sorting by DC mod 3 sampling (contd.)
Overall algorithm:

- perform $\log _{3 / 2} p$ recursion levels of suffix sorting by DC mod 3 sampling, obtaining a string of length n / p
- a designated processor collects the resulting string and performs suffix sorting sequentially

$$
\operatorname{comp}=O(n / p)
$$

$$
\text { comm }=O(n / p)
$$

$$
\text { sync }=O(\log p)
$$

Further parallel algorithms

Suffix sorting

Suffix sorting by DC mod d sampling
Difference cover (DC) modulo d : set S of integers mod d, such that for all $i \bmod d$, there are $j, k \in S$ with $k-j=i \bmod d$

Examples:
DC mod 3: $\{0,1\}$

i	0	1	2
j	0	0	1
k	0	1	0

DC mod 13: $\{0,1,4,6\}$

i	0	1	2	3	4	5	6	7	8	9	10	11	12
j	0	0	4	1	0	1	0	6	6	4	4	6	1
k	0	1	6	4	4	6	6	0	1	0	1	4	0

Further parallel algorithms

Suffix sorting

Suffix sorting by DC mod d sampling (contd.)
Claim: For any d, there is a DC mod d of size $O\left(d^{1 / 2}\right)$
[Colbourn, Ling: 2000]
DC mod 3 algorithm can be generalised to $D C \bmod d$ for any $d \geq 3$ [Kärkkäinen, Sanders: 2003]

Given d, consider d-substrings as super-characters
Sort all super-characters by d-fold radix sort; replace each by its rank Fix a DC mod d as sample indices

Sample indices define sample suffixes, sample super-characters

Further parallel algorithms

Suffix sorting

Suffix sorting by DC mod d sampling (contd.)
Form string b, composed of sample suffixes of a, each broken up into sample super-characters; overall length of b is $O\left(n / d^{1 / 2}\right)$ super-characters Sort sample suffixes

- suffix sorting on b by recursion

Sort non-sample suffixes in $<d$ separate subsets according to index mod d

- 2-fold radix sort on a for each non-sample index mod d

Further parallel algorithms

Suffix sorting

Suffix sorting by DC mod d sampling (contd.)
We have $\leq d$ ordered sets of suffixes:

- sample suffixes
- $<d$ subsets of non-sample suffixes according to index mod d

Perform $\leq d$-way comparison-based merging of suffix sets
Comparing pairs of the form (sample super-character, sample suffix)
Comparison time $O(1)$
Overall running time $T(n)=O(n d)+T\left(O\left(n / d^{1 / 2}\right)\right)=O(n d)$

Further parallel algorithms

Suffix sorting

Parallel suffix sorting by accelerated DC mod d sampling
In parallel DC mod 3 sampling, modulus $d=3$ fixed across all levels;
string shrinks exponentially
We now increase modulus from each recursion level to the next, accelerating string reduction; string shrinks superexponentially, allowing further increase in modulus while keeping work $O($ size \cdot modulus $)=O(n)$
Level 0: array size n; can only afford $\mathrm{DC} \bmod d=O(1)$
Level 1: array size $O\left(\frac{n}{d^{1 / 2}}\right)$; can now afford $D C \bmod d^{3 / 2}$
Level 2: array size $O\left(\frac{n}{d^{1 / 2} \cdot d^{3 / 4}}\right)=O\left(\frac{n}{d^{5 / 4}}\right)$; can now afford $D C \bmod d^{9 / 4}$
Level 3: array size $O\left(\frac{n}{d^{5 / 4} \cdot d^{9 / 8}}\right)=O\left(\frac{n}{d^{19 / 8}}\right) ; \ldots$

Level $O(\log \log p):$ array size $O(n / p)$

Further parallel algorithms

Suffix sorting

Parallel suffix sorting by accelerated DC mod d sampling
Overall algorithm:

- perform $O(\log \log p)$ recursion levels of suffix sorting by $\mathrm{DC} \bmod d$ sampling (with increasing d), obtaining a string of length n / p
- a designated processor collects the resulting string and performs suffix sorting sequentially

Further parallel algorithms

Suffix sorting

Parallel suffix sorting by accelerated DC mod d sampling
Overall algorithm:

- perform $O(\log \log p)$ recursion levels of suffix sorting by $\mathrm{DC} \bmod d$ sampling (with increasing d), obtaining a string of length n / p
- a designated processor collects the resulting string and performs suffix sorting sequentially

$$
\operatorname{comp}=O(n / p)
$$

$$
\text { comm }=O(n / p)
$$

$$
\text { sync }=O(\log \log p)
$$

(1) Computation by circuits

(2) Parallel computation models

(3) Basic parallel algorithms
(4) Further parallel algorithms
(5) Parallel matrix algorithms

6 Parallel graph algorithms

Parallel matrix algorithms

Matrix-vector multiplication

The matrix-vector multiplication problem
$A \cdot b=c \quad A: n$-matrix; $b, c: n$-vectors
Given A, B, compute C
$c_{i}=\sum_{j} A_{i j} \cdot b_{j} \quad 0 \leq i, j<n$

Parallel matrix algorithms

Matrix-vector multiplication

The matrix-vector multiplication problem
$A \cdot b=c \quad A: n$-matrix; $b, c: n$-vectors
Given A, B, compute C
$c_{i}=\sum_{j} A_{i j} \cdot b_{j} \quad 0 \leq i, j<n$

Consider elements of b as inputs and of c as outputs
Elements of A are considered to be problem parameters, do not count as inputs (motivation: iterative linear algebra methods)

Overall, n^{2} elementary products $A_{i j} \cdot b_{j}=c_{j}^{i}$
Sequential work $O\left(n^{2}\right)$

Parallel matrix algorithms

Matrix-vector multiplication

The matrix-vector multiplication circuit
$c \leftarrow 0$
For all $i, j: c_{i} \stackrel{+}{\leftarrow} c_{j}^{i} \leftarrow A_{i j} \cdot b_{j}$ (adding each c_{j}^{i} to c_{i} asynchronously)
n input nodes of outdegree n, one per element of b
n^{2} computation nodes of in- and outdegree 1 , one per elementary product
n output nodes of indegree n, one per element of c
 size $O\left(n^{2}\right)$, depth $O(1)$

Parallel matrix algorithms

Matrix-vector multiplication

Parallel matrix-vector multiplication
Partition computation nodes into a regular grid of $p=p^{1 / 2} \cdot p^{1 / 2}$ square $\frac{n}{p^{1 / 2}}$-blocks
Matrix A gets partitioned into p square $\frac{n}{p^{1 / 2}}$-blocks $A_{I J}\left(0 \leq I, J<p^{1 / 2}\right)$
Vectors b, c each gets partitioned into $p^{1 / 2}$ linear $\frac{n}{p^{1 / 2}}$-blocks b_{J}, c_{l}
Overall, p block products $A_{I J} \cdot b_{J}=c_{J}^{J}$
$c_{l}=\sum_{0 \leq J<p^{1 / 2}} c_{l}^{J}$ for all I

Parallel matrix algorithms

Matrix-vector multiplication

Parallel matrix-vector multiplication (contd.)
$c \leftarrow 0$
For all $I, J: c_{l} \stackrel{+}{\leftarrow} c_{l}^{J} \leftarrow A_{l J} \cdot b_{J}$

Parallel matrix algorithms

Matrix-vector multiplication

Parallel matrix-vector multiplication (contd.)

Initialise $c \leftarrow 0$ in external memory

Parallel matrix algorithms

Matrix-vector multiplication

Parallel matrix-vector multiplication (contd.)
Initialise $c \leftarrow 0$ in external memory

Every processor

- is assigned I, J and block $A_{I J}$
- reads block b_{J} and computes $c_{l}^{J} \leftarrow A_{I J} \cdot b_{J}$
- updates $c_{l} \stackrel{+}{\leftarrow} c_{l}^{J}$ in external memory
- concurrent writing resolved by operator + (recall concurrent block writing by array combining)

$$
c o m p=O\left(\frac{n^{2}}{p}\right)
$$

$$
c o m m=O\left(\frac{n}{p^{1 / 2}}\right)
$$

$$
\text { sync }=O(1)
$$

Slackness required $n \geq p$ (as $\frac{n}{p^{1 / 2}} \geq p^{1 / 2}$ needed for concurrent write)

Parallel matrix algorithms

Matrix multiplication

The matrix multiplication problem
$A \cdot B=C \quad A, B, C: n$-matrices
Given A, B, compute C
$C_{i k}=\sum_{j} A_{i j} \cdot B_{j k}$

$0 \leq i, j, k<n$

Parallel matrix algorithms

Matrix multiplication

The matrix multiplication problem
$A \cdot B=C \quad A, B, C: n$-matrices
Given A, B, compute C
$C_{i k}=\sum_{j} A_{i j} \cdot B_{j k}$

$0 \leq i, j, k<n$
Overall, n^{3} elementary products $A_{i j} \cdot B_{j k}=C_{i k}^{j}$
Sequential work $O\left(n^{3}\right)$

Parallel matrix algorithms

Matrix multiplication

The matrix multiplication circuit
$C_{i k} \leftarrow 0$
For all $i, j, k: C_{i k} \stackrel{+}{\leftarrow} C_{i k}^{j} \leftarrow A_{i j} \cdot B_{j k}$ (adding each $C_{i k}^{j}$ to $C_{i k}$ asynchronously)
$2 n$ input nodes of outdegree n, one per element of A, B
n^{2} computation nodes of in- and outdegree 1 , one per elementary product n output nodes of indegree n, one per element of C

size $O\left(n^{3}\right)$, depth $O(1)$

Parallel matrix algorithms

Matrix multiplication

Parallel matrix multiplication
Partition computation nodes into a regular grid of $p=p^{1 / 3} \cdot p^{1 / 3} \cdot p^{1 / 3}$ cubic $\frac{n}{p^{1 / 3}}$-blocks
Matrices A, B, C each gets partitioned into $p^{2 / 3}$ square $\frac{n}{p^{1 / 2}}$-blocks $A_{I J}$, $B_{J K}, C_{I K}\left(0 \leq I, J, K<p^{1 / 3}\right)$
Overall, p block products $A_{I J} \cdot B_{J K}=C_{I K}^{J}$
$C_{I K}=\sum_{0 \leq J<p^{1 / 2}} C_{I K}^{J}$ for all I,K

Parallel matrix algorithms

Matrix multiplication

Parallel matrix multiplication (contd.)
$C \leftarrow 0$
For all $I, J, K: C_{I K} \stackrel{+}{\leftarrow} C_{I K}^{J} \leftarrow A_{I J} \cdot B_{J K}$

Parallel matrix algorithms

Matrix multiplication

Parallel matrix multiplication (contd.)
Initialise $C \leftarrow 0$ in external memory

Parallel matrix algorithms

Matrix multiplication

Parallel matrix multiplication (contd.)
Initialise $C \leftarrow 0$ in external memory

Every processor

- is assigned I, J, K
- reads blocks $A_{I J}, B_{J K}$, and computes $C_{I K}^{J} \leftarrow A_{I J} \cdot B_{J K}$
- updates $C_{I K} \stackrel{+}{\leftarrow} C_{I K}^{J}$ in external memory
- concurrent writing resolved by operator + (recall concurrent block writing by array combining)

Parallel matrix algorithms

Matrix multiplication

Parallel matrix multiplication (contd.)
Initialise $C \leftarrow 0$ in external memory

Every processor

- is assigned I, J, K
- reads blocks $A_{I J}, B_{J K}$, and computes $C_{I K}^{J} \leftarrow A_{I J} \cdot B_{J K}$
- updates $C_{I K} \stackrel{+}{\leftarrow} C_{I K}^{J}$ in external memory
- concurrent writing resolved by operator + (recall concurrent block writing by array combining)

$$
\operatorname{comp}=O\left(\frac{n^{3}}{p}\right)
$$

$$
\mathrm{comm}=O\left(\frac{n^{2}}{p^{2 / 3}}\right)
$$

$$
\text { sync }=O(1)
$$

Slackness required $n \geq p^{2 / 3}$ (as $\frac{n}{p^{1 / 3}} \geq p^{1 / 3}$ needed for concurrent write)

Parallel matrix algorithms

Matrix multiplication

Theorem. Computing the matrix multiplication dag requires communication $\Omega\left(\frac{n^{2}}{p^{2 / 3}}\right)$ per processor

Parallel matrix algorithms

Matrix multiplication

Theorem. Computing the matrix multiplication dag requires communication $\Omega\left(\frac{n^{2}}{p^{2 / 3}}\right)$ per processor
Proof: (discrete) volume vs surface area
Let V be the subset of nodes computed by a certain processor
For at least one processor: $|V| \geq \frac{n^{3}}{p}$
Let A, B, C be projections of V onto coordinate planes

Parallel matrix algorithms

Matrix multiplication

Theorem. Computing the matrix multiplication dag requires communication $\Omega\left(\frac{n^{2}}{p^{2 / 3}}\right)$ per processor
Proof: (discrete) volume vs surface area
Let V be the subset of nodes computed by a certain processor
For at least one processor: $|V| \geq \frac{n^{3}}{p}$
Let A, B, C be projections of V onto coordinate planes
Arithmetic vs geometric mean: $|A|+|B|+|C| \geq 3(|A| \cdot|B| \cdot|C|)^{1 / 3}$ Loomis-Whitney inequality: $|A| \cdot|B| \cdot|C| \geq|V|^{2}$

Parallel matrix algorithms

Matrix multiplication

Theorem. Computing the matrix multiplication dag requires communication $\Omega\left(\frac{n^{2}}{p^{2 / 3}}\right)$ per processor
Proof: (discrete) volume vs surface area
Let V be the subset of nodes computed by a certain processor
For at least one processor: $|V| \geq \frac{n^{3}}{p}$
Let A, B, C be projections of V onto coordinate planes
Arithmetic vs geometric mean: $|A|+|B|+|C| \geq 3(|A| \cdot|B| \cdot|C|)^{1 / 3}$ Loomis-Whitney inequality: $|A| \cdot|B| \cdot|C| \geq|V|^{2}$
We have comm $\geq|A|+|B|+|C| \geq 3(|A| \cdot|B| \cdot|C|)^{1 / 3} \geq 3|V|^{2 / 3} \geq$ $3\left(\frac{n^{3}}{p}\right)^{2 / 3}=\frac{3 n^{2}}{p^{2 / 3}}$, hence comm $=\Omega\left(\frac{n^{2}}{p^{2 / 3}}\right)$
Note that this is not conditioned on comp $=O\left(\frac{n^{3}}{p}\right)$

Parallel matrix algorithms

Matrix multiplication

The optimality theorem only applies to matrix multiplication by the specific $O\left(n^{3}\right)$-node dag
Includes e.g. the following forms of matrix multiplication:

- numerical, with only operators + , allowed (not operator -)
- Boolean, with only operators \vee, \wedge allowed (not if/then)

Parallel matrix algorithms

Fast matrix multiplication

2-matrix multiplication: standard circuit
$A \cdot B=C \quad A=\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right] \quad B=\left[\begin{array}{ll}B_{00} & B_{01} \\ B_{10} & B_{11}\end{array}\right] \quad C=\left[\begin{array}{ll}C_{00} & C_{01} \\ C_{10} & C_{11}\end{array}\right]$
$C_{\underline{00}}=A_{\underline{00}} \cdot B_{\underline{00}}+A_{\underline{01}} \cdot B_{\underline{10}}$
$C_{01}=A_{00} \cdot B_{01}+A_{01} \cdot B_{11}$
$C_{\underline{10}}=A_{\underline{10}} \cdot B_{\underline{00}}+A_{\underline{11}} \cdot B_{\underline{10}} \quad C_{11}=A_{10} \cdot B_{01}+A_{11} \cdot B_{11}$
A_{00}, \ldots : either ordinary elements or blocks; 8 multiplications

Parallel matrix algorithms

Fast matrix multiplication

2-matrix multiplication: Strassen's circuit
$A \cdot B=C \quad A=\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right] \quad B=\left[\begin{array}{ll}B_{00} & B_{01} \\ B_{10} & B_{11}\end{array}\right] \quad C=\left[\begin{array}{ll}C_{00} & C_{01} \\ C_{10} & C_{11}\end{array}\right]$

Parallel matrix algorithms

Fast matrix multiplication

2-matrix multiplication: Strassen's circuit
$A \cdot B=C \quad A=\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right] \quad B=\left[\begin{array}{ll}B_{00} & B_{01} \\ B_{10} & B_{11}\end{array}\right] \quad C=\left[\begin{array}{ll}C_{00} & C_{01} \\ C_{10} & C_{11}\end{array}\right]$
Let A, B, C be over a ring: operators,,$+- \cdot$ allowed on elements
$D^{(0)}=\left(A_{00}+A_{11}\right) \cdot\left(B_{00}+B_{11}\right)$
$D^{(1)}=\left(A_{10}+A_{11}\right) \cdot B_{00} \quad D^{(2)}=A_{00} \cdot\left(B_{01}-B_{11}\right)$
$D^{(3)}=A_{11} \cdot\left(B_{10}-B_{00}\right) \quad D^{(4)}=\left(A_{00}+A_{01}\right) \cdot B_{11}$
$D^{(5)}=\left(A_{10}-A_{00}\right) \cdot\left(B_{00}+B_{01}\right) \quad D^{(6)}=\left(A_{01}-A_{11}\right) \cdot\left(B_{10}+B_{11}\right)$
$C_{00}=D^{(0)}+D^{(3)}-D^{(4)}+D^{(6)}$
$C_{\underline{01}}=D^{(2)}+D^{(4)}$
$C_{10}=D^{(1)}+D^{(3)}$
$C_{11}=D^{(0)}-D^{(1)}+D^{(2)}+D^{(5)}$
A_{00}, \ldots : either ordinary elements or square blocks; 7 multiplications

Parallel matrix algorithms

Fast matrix multiplication

N -matrix multiplication: bilinear circuit

- certain R linear combinations of elements of A
- certain R linear combinations of elements of B
- R pairwise products of these combinations
- certain N^{2} linear combinations of these products, each giving an element of C

Bilinear circuits for matrix multiplication:

- standard: $N=2, R=8$, combinations trivial
- Strassen: $N=2, R=7$, combinations highly surprising!
- sub-Strassen: $N>2, N^{2}<R<N^{\log _{2} 7} \approx N^{2.81}$

Elements of A, B, C : either ordinary elements or square blocks

Parallel matrix algorithms

Fast matrix multiplication

Block-recursive matrix multiplication
Given a scheme: bilinear circuit with fixed N, R
Let A, B, C be n-matrices, $n \geq N \quad A \cdot B=C$
Partition each of A, B, C into an $N \times N$ regular grid of n / N-blocks
Apply the scheme, treating

- each '+' as block '+', each '-' as block '-'
- each '.' as recursive call on blocks

Parallel matrix algorithms

Fast matrix multiplication

Block-recursive matrix multiplication

Given a scheme: bilinear circuit with fixed N, R
Let A, B, C be n-matrices, $n \geq N \quad A \cdot B=C$
Partition each of A, B, C into an $N \times N$ regular grid of n / N-blocks
Apply the scheme, treating

- each ' + ' as block ' + ', each '-' as block '-'
- each ' \cdot ' as recursive call on blocks

Resulting recursive bilinear circuit:

- size $O\left(n^{\omega}\right)$, where $\omega=\log _{N} R<\log _{N} N^{3}=3$
- depth $\approx 2 \log n$

Sequential work $O\left(n^{\omega}\right)$

Parallel matrix algorithms

Fast matrix multiplication

Block-recursive matrix multiplication (contd.)
Historical improvements in block-recursive matrix multiplication:

N	N^{3}	R	$\omega=\log _{N} R$	
2	8	8	3	standard
2	8	7	2.81	
3	27	23	$2.85>2.81$	
5	125	100	$2.86>2.81$	[Strassen: 1969]
48	110592	47216	2.78	[Pan: 1978]

HUGE	HUGE	HUGE	2.3755
HUGE	HUGE	HUGE	2.3737
HUGE	HUGE	HUGE	2.3727
$?$	$?$	$?$	$?$

[Coppersmith, Winograd: 1987]
[Stothers: 2010]
[Vassilevska-Williams: 2011]

Parallel matrix algorithms

Fast matrix multiplication

Block-recursive matrix multiplication (contd.)
Circuit size is determined by the scheme parameters N, R; the number of operations in scheme's linear combinations turns out to be irrelevant Optimal circuit size unknown: only near-trivial lower bound $\Omega\left(n^{2} \log n\right)$

Parallel matrix algorithms

Fast matrix multiplication

Parallel block-recursive matrix multiplication
At each level of the recursion tree, the R recursive calls are independent, hence the recursion tree can be computed breadth-first

At recursion level k :

- R^{k} independent block multiplication subproblems

In particular, at level $\log _{R} p$:

- p independent block multiplication subproblems, therefore each subproblem can be solved sequentially on an arbitrary processor

Parallel matrix algorithms

Fast matrix multiplication

Parallel block-recursive matrix multiplication (contd.)
In recursion levels 0 to $\log _{R} p$, need to compute elementwise linear combinations on distributed matrices

Assigning matrix elements to processors:

- partition A into regular $\frac{n}{p^{1 / \omega}}$-blocks
- distribute each block evenly and identically across processors
- partition B, C analogously (distribution identical across all blocks of the same matrix, need not be identical across different matrices)

Parallel matrix algorithms

Fast matrix multiplication

Parallel block-recursive matrix multiplication (contd.)
In recursion levels 0 to $\log _{R} p$, need to compute elementwise linear combinations on distributed matrices

Assigning matrix elements to processors:

- partition A into regular $\frac{n}{p^{1 / \omega}}$-blocks
- distribute each block evenly and identically across processors
- partition B, C analogously (distribution identical across all blocks of the same matrix, need not be identical across different matrices)
E.g. cyclic distribution

Linear combinations of matrix blocks in recursion levels 0 to $\log _{R} p$ can now be computed without communication

Parallel matrix algorithms

Fast matrix multiplication

Parallel block-recursive matrix multiplication (contd.)
Each processor inputs its assigned elements of A, B
Downsweep of recursion tree, levels 0 to $\log _{R} p$:

- linear combinations of blocks of A, B, no communication

Parallel matrix algorithms

Fast matrix multiplication

Parallel block-recursive matrix multiplication (contd.)
Each processor inputs its assigned elements of A, B
Downsweep of recursion tree, levels 0 to $\log _{R} p$:

- linear combinations of blocks of A, B, no communication

Recursion levels below $\log _{R} p$: p block multiplication subproblems

- assign each subproblem to a different processor
- a processor collects its subproblem's two input blocks, solves it sequentially, then redistributes the subproblem's output block

Parallel matrix algorithms

Fast matrix multiplication

Parallel block-recursive matrix multiplication (contd.)
Each processor inputs its assigned elements of A, B
Downsweep of recursion tree, levels 0 to $\log _{R} p$:

- linear combinations of blocks of A, B, no communication

Recursion levels below $\log _{R} p$: p block multiplication subproblems

- assign each subproblem to a different processor
- a processor collects its subproblem's two input blocks, solves it sequentially, then redistributes the subproblem's output block

Upsweep of recursion tree, levels $\log _{R} p$ to 0 :

- linear combinations giving blocks of C, no communication

Parallel matrix algorithms

Fast matrix multiplication

Parallel block-recursive matrix multiplication (contd.)
Each processor inputs its assigned elements of A, B
Downsweep of recursion tree, levels 0 to $\log _{R} p$:

- linear combinations of blocks of A, B, no communication

Recursion levels below $\log _{R} p$: p block multiplication subproblems

- assign each subproblem to a different processor
- a processor collects its subproblem's two input blocks, solves it sequentially, then redistributes the subproblem's output block

Upsweep of recursion tree, levels $\log _{R} p$ to 0 :

- linear combinations giving blocks of C, no communication

Each processor outputs its assigned elements of C

Parallel matrix algorithms

Fast matrix multiplication

Parallel block-recursive matrix multiplication (contd.)
Each processor inputs its assigned elements of A, B
Downsweep of recursion tree, levels 0 to $\log _{R} p$:

- linear combinations of blocks of A, B, no communication

Recursion levels below $\log _{R} p$: p block multiplication subproblems

- assign each subproblem to a different processor
- a processor collects its subproblem's two input blocks, solves it sequentially, then redistributes the subproblem's output block

Upsweep of recursion tree, levels $\log _{R} p$ to 0 :

- linear combinations giving blocks of C, no communication

Each processor outputs its assigned elements of C

$$
\operatorname{comp}=O\left(\frac{n^{\omega}}{p}\right)
$$

$$
\mathrm{comm}=O\left(\frac{n^{2}}{p^{2 / \omega}}\right)
$$

$$
\text { sync }=O(1)
$$

Parallel matrix algorithms

Fast matrix multiplication

Theorem. Computing the block-recursive matrix multiplication dag requires communication $\Omega\left(\frac{n^{2}}{p^{2 / \omega}}\right)$ per processor
[Ballard+:2012]

Parallel matrix algorithms

Fast matrix multiplication

Theorem. Computing the block-recursive matrix multiplication dag requires communication $\Omega\left(\frac{n^{2}}{p^{2 / \omega}}\right)$ per processor
[Ballard+:2012]
Proof: generalises the Loomis-Whitney inequality using graph expansion (details omitted)

Parallel matrix algorithms

Boolean matrix multiplication

Boolean matrix multiplication
Let A, B, C be Boolean n-matrices: ' \vee ', ' \wedge ', 'if/then' allowed on elements
$A \wedge B=C$
$C_{i k}=\bigvee_{j} A_{i k} \wedge B_{j k} \quad 0 \leq i, j, k<n$
Overall, n^{3} elementary products $A_{i j} \wedge B_{j k}$
Sequential work $O\left(n^{3}\right)$ bit operations
BSP costs in bit operations:

$$
\begin{equation*}
c o m p=O\left(\frac{n^{3}}{p}\right) \tag{1}
\end{equation*}
$$

$$
c o m m=O\left(\frac{n^{2}}{p^{2 / 3}}\right)
$$

Parallel matrix algorithms

Boolean matrix multiplication

Fast Boolean matrix multiplication
$A \wedge B=C$
Convert A, B into integer matrices by treating 0,1 as integers (requires if/then on elements)

Compute $A \cdot B=C$ modulo $n+1$ using a Strassen-like algorithm
Convert C into a Boolean matrix by evaluating $C_{j k} \neq 0 \bmod n+1$ Sequential work $O\left(n^{\omega}\right)$ BSP costs:

$$
\begin{equation*}
c o m p=O\left(\frac{n^{\omega}}{p}\right) \tag{1}
\end{equation*}
$$

$$
c o m m=O\left(\frac{n^{2}}{p^{2 / \omega}}\right)
$$

Parallel matrix algorithms

Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition
The following algorithm is impractical, but of theoretical interest, because it beats the generic Loomis-Whitney communication lower bound

Parallel matrix algorithms

Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition
The following algorithm is impractical, but of theoretical interest, because it beats the generic Loomis-Whitney communication lower bound Regularity Lemma: in a Boolean matrix, the rows and the columns can be partitioned into K (almost) equal-sized subsets, so that K^{2} resulting submatrices are random-like (of various densities)
[Szemerédi: 1978]

Parallel matrix algorithms

Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition
The following algorithm is impractical, but of theoretical interest, because it beats the generic Loomis-Whitney communication lower bound

Regularity Lemma: in a Boolean matrix, the rows and the columns can be partitioned into K (almost) equal-sized subsets, so that K^{2} resulting submatrices are random-like (of various densities)
[Szemerédi: 1978]
$K=K(\epsilon)$, where ϵ is the "degree of random-likeness"

Function $K(\epsilon)$ grows enormously as
$\epsilon \rightarrow 0$, but is independent of n

We shall call this the regular decomposition of a Boolean matrix

Parallel matrix algorithms

Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition (contd.)
$A \wedge B=C$
If A, B, C random-like, then either A or B has few 1 s , or C has few 0 s
Equivalently, at least one of A, B, \bar{C} has few 1 s , i.e. is sparse
Fix ϵ so that "sparse" means density $\leq 1 / p$

Parallel matrix algorithms

Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition (contd.)
By Regularity Lemma, we have the three-way regular decomposition

- $A^{(1)} \wedge B^{(1)}=C^{(1)}$, where $A^{(1)}$ is sparse
- $A^{(2)} \wedge B^{(2)}=C^{(2)}$, where $B^{(2)}$ is sparse

- $A^{(3)} \wedge B^{(3)}=C^{(3)}$, where $\overline{C^{(3)}}$ is sparse
- $C=C^{(1)} \vee C^{(2)} \vee C^{(3)}$
$A^{(1,2,3)}, B^{(1,2,3)}, C^{(1,2,3)}$ can be computed "efficiently" from A, B, C

Parallel matrix algorithms

Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition (contd.)
$A \wedge B=\bar{C}$
Partition ijk-cube into a regular grid of $p^{3}=p \cdot p \cdot p$ cubic $\frac{n}{p}$-blocks A, B, C each gets partitioned into p^{2} square $\frac{n}{p}$-blocks $A_{I J}, B_{J K}, C_{I K}$ $0 \leq I, J, K<p$

Parallel matrix algorithms

Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition (contd.)
Consider J-layers of cubic blocks for a fixed J and all I, K
Every processor

- assigned a J-layer for fixed J
- reads $A_{I J}, B_{J K}$
- computes $A_{I J} \wedge B_{J K}=C_{I K}^{J}$ by fast Boolean multiplication for all I,K
- computes regular decomposition $A_{I J}^{(1,2,3)} \wedge B_{J K}^{(1,2,3)}=C_{I K}^{J(1,2,3)}$ where $A_{I J}^{(1)}, B_{J K}^{(2)}, \overline{C_{I K}^{J(3)}}$ sparse, for all I, K
$0 \leq I, J, K<p$

Parallel matrix algorithms

Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition (contd.)
Consider also I-layers for a fixed I and K-layers for a fixed K
Recompute every block product $A_{I J} \wedge B_{J K}=C_{I K}^{J}$ by computing

- $A_{I J}^{(1)} \wedge B_{J K}^{(1)}=C_{I K}^{J(1)}$ in K-layers
- $A_{I J}^{(2)} \wedge B_{J K}^{(2)}=C_{I K}^{J(2)}$ in I-layers
- $A_{I J}^{(3)} \wedge B_{J K}^{(3)}=C_{I K}^{J(3)}$ in J-layers

Every layer depends on $\leq \frac{n^{2}}{p}$ nonzeros of A, B, contributes $\leq \frac{n^{2}}{p}$ nonzeros to \bar{C} due to sparsity

Communication saved by only sending the indices of nonzeros

$$
\operatorname{comp}=O\left(\frac{n^{\omega}}{p}\right)
$$

$$
c o m m=O\left(\frac{n^{2}}{p}\right)
$$

$$
\text { sync }=O(1)
$$

$$
n \ggg \gg p \quad:-1
$$

Parallel matrix algorithms

Triangular system solution

Let L be an n-matrix, b, c be n-vectors
L is lower triangular: $L_{i j}= \begin{cases}0 & 0 \leq i<j<n \\ \text { arbitrary } & \text { otherwise }\end{cases}$

Parallel matrix algorithms

Triangular system solution

Let L be an n-matrix, b, c be n-vectors
L is lower triangular: $L_{i j}= \begin{cases}0 & 0 \leq i<j<n \\ \text { arbitrary } & \text { otherwise }\end{cases}$
$L \cdot b=c$
The triangular system problem: given L, c, find b

Parallel matrix algorithms

Triangular system solution

Forward substitution
$L \cdot b=c$
$L_{00} \cdot b_{0}=c_{0}$
$L_{10} \cdot b_{0}+L_{11} \cdot b_{1}=c_{1}$
$L_{20} \cdot b_{0}+L_{21} \cdot b_{1}+L_{22} \cdot b_{2}=c_{2}$
$\sum_{j: j \leq i} L_{i j} \cdot b_{j}=c_{i}$
$\sum_{j: j \leq n-1} L_{n-1, j} \cdot b_{j}=c_{n-1}$

Parallel matrix algorithms

Triangular system solution

Forward substitution
$L \cdot b=c$
$L_{00} \cdot b_{0}=c_{0}$
$b_{0} \leftarrow L_{00}^{-1} \cdot c_{0}$
$L_{10} \cdot b_{0}+L_{11} \cdot b_{1}=c_{1}$
$b_{1} \leftarrow L_{11}^{-1} \cdot\left(c_{1}-L_{10} \cdot b_{0}\right)$
$L_{20} \cdot b_{0}+L_{21} \cdot b_{1}+L_{22} \cdot b_{2}=c_{2} \quad b_{2} \leftarrow L_{22}^{-1} \cdot\left(c_{2}-L_{20} \cdot b_{0}-L_{21} \cdot b_{1}\right)$
$\sum_{j: j \leq i} L_{i j} \cdot b_{j}=c_{i}$
$b_{i} \leftarrow L_{i i}^{-1} \cdot\left(c_{i}-\sum_{j: j<i} L_{i j} \cdot b_{j}\right)$
$\sum_{j: j \leq n-1} L_{n-1, j} \cdot b_{j}=c_{n-1}$
$b_{n-1} \leftarrow L_{n-1, n-1}^{-1} \cdot\left(c_{n-1}-\sum_{j: j<n-1} L_{n-1, j} \cdot b_{j}\right)$

Parallel matrix algorithms

Triangular system solution

Forward substitution
$L \cdot b=c$
$L_{00} \cdot b_{0}=c_{0}$
$b_{0} \leftarrow L_{00}^{-1} \cdot c_{0}$
$L_{10} \cdot b_{0}+L_{11} \cdot b_{1}=c_{1}$
$b_{1} \leftarrow L_{11}^{-1} \cdot\left(c_{1}-L_{10} \cdot b_{0}\right)$
$L_{20} \cdot b_{0}+L_{21} \cdot b_{1}+L_{22} \cdot b_{2}=c_{2} \quad b_{2} \leftarrow L_{22}^{-1} \cdot\left(c_{2}-L_{20} \cdot b_{0}-L_{21} \cdot b_{1}\right)$
$\sum_{j: j \leq i} L_{i j} \cdot b_{j}=c_{i}$
$b_{i} \leftarrow L_{i i}^{-1} \cdot\left(c_{i}-\sum_{j: j<i} L_{i j} \cdot b_{j}\right)$
$\sum_{j: j \leq n-1} L_{n-1, j} \cdot b_{j}=c_{n-1}$
$b_{n-1} \leftarrow L_{n-1, n-1}^{-1} \cdot\left(c_{n-1}-\sum_{j: j<n-1} L_{n-1, j} \cdot b_{j}\right)$
Sequential work $O\left(n^{2}\right)$

Parallel matrix algorithms

Triangular system solution

Forward substitution

$L \cdot b=c$
$L_{00} \cdot b_{0}=c_{0}$
$b_{0} \leftarrow L_{00}^{-1} \cdot c_{0}$
$L_{10} \cdot b_{0}+L_{11} \cdot b_{1}=c_{1}$
$b_{1} \leftarrow L_{11}^{-1} \cdot\left(c_{1}-L_{10} \cdot b_{0}\right)$
$L_{20} \cdot b_{0}+L_{21} \cdot b_{1}+L_{22} \cdot b_{2}=c_{2} \quad b_{2} \leftarrow L_{22}^{-1} \cdot\left(c_{2}-L_{20} \cdot b_{0}-L_{21} \cdot b_{1}\right)$
$\sum_{j: j \leq i} L_{i j} \cdot b_{j}=c_{i}$
$b_{i} \leftarrow L_{i i}^{-1} \cdot\left(c_{i}-\sum_{j: j<i} L_{i j} \cdot b_{j}\right)$
$\sum_{j: j \leq n-1} L_{n-1, j} \cdot b_{j}=c_{n-1}$
$b_{n-1} \leftarrow L_{n-1, n-1}^{-1} \cdot\left(c_{n-1}-\sum_{j: j<n-1} L_{n-1, j} \cdot b_{j}\right)$
Sequential work $O\left(n^{2}\right)$
Symmetrically, an upper triangular system solved by back substitution

Parallel matrix algorithms

Triangular system solution

Parallel forward substitution by 2D grid
Assume L is predistributed as needed, does not count as input

Pivot node:

Update node:
$s_{i} \rightarrow \stackrel{\substack{b_{i} \\ \vdots \\ b_{i}}}{\substack{b_{i} \\ b_{i}}} s_{i} \leftarrow s_{i}+L_{i j} \cdot b_{i}$
comp $=O\left(n^{2} / p\right) \quad$ comm $=O(n)$

$$
\text { sync }=O(p)
$$

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{00}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{00}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{00}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{0} \underline{0}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{00}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{0}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{0} \underline{0}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{0} \underline{0}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{0} \underline{0}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{0} \underline{0}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{00}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{00}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{00}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{00}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{0}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{0}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Parallel matrix algorithms

Triangular system solution

Block-recursive forward substitution
$L \cdot b=c$
$\left[\begin{array}{ll}L_{\underline{00}} & \\ L_{\underline{10}} & L_{\underline{11}}\end{array}\right] \cdot\left[\begin{array}{l}b_{\underline{0}} \\ b_{\underline{1}}\end{array}\right]=\left[\begin{array}{l}c_{\underline{0}} \\ c_{\underline{1}}\end{array}\right]$
Recursion: two half-sized subproblems
$L_{\underline{0}} \cdot b_{\underline{0}}=c_{\underline{0}}$ by recursion
$L_{\underline{11}} \cdot b_{\underline{1}}=c_{\underline{1}}-L_{\underline{10}} \cdot b_{\underline{1}}$ by recursion

Sequential work $O\left(n^{2}\right)$

Parallel matrix algorithms

Triangular system solution

Parallel block-recursive forward substitution
Assume L is predistributed as needed, does not count as input

Parallel matrix algorithms

Triangular system solution

Parallel block-recursive forward substitution
Assume L is predistributed as needed, does not count as input
At each level, the two recursive subproblems are dependent, hence recursion tree must be computed depth-first

At recursion level k :

- sequence of 2^{k} triangular system subproblems, each on $n / 2^{k}$-blocks In particular, at level $\log p$:
- sequence of p triangular system subproblems, each on n / p-blocks
- total $p \cdot O\left((n / p)^{2}\right)=O\left(n^{2} / p\right)$ sequential work, therefore each subproblem can be solved sequentially on an arbitrary processor

Parallel matrix algorithms

Triangular system solution

Parallel block-recursive forward substitution (contd.)
Recursion levels 0 to $\log p$: block forward substitution using parallel matrix-vector multiplication

Parallel matrix algorithms

Triangular system solution

Parallel block-recursive forward substitution (contd.)
Recursion levels 0 to $\log p$: block forward substitution using parallel matrix-vector multiplication

Recursion level $\log p$: a designated processor reads the current task's input, performs the task sequentially, and writes back the task's output

Parallel matrix algorithms

Triangular system solution

Parallel block-recursive forward substitution (contd.)
Recursion levels 0 to $\log p$: block forward substitution using parallel matrix-vector multiplication

Recursion level $\log p$: a designated processor reads the current task's input, performs the task sequentially, and writes back the task's output comp $=O\left(n^{2} / p\right) \cdot\left(1+2 \cdot\left(\frac{1}{2}\right)^{2}+2^{2} \cdot\left(\frac{1}{2^{2}}\right)^{2}+\ldots\right)+O\left((n / p)^{2}\right) \cdot p=$ $O\left(n^{2} / p\right)+O\left(n^{2} / p\right)=O\left(n^{2} / p\right)$
comm $=O\left(n / p^{1 / 2}\right) \cdot\left(1+2 \cdot \frac{1}{2}+2^{2} \cdot \frac{1}{2^{2}}+\ldots\right)+O(n / p) \cdot p=$ $O\left(n / p^{1 / 2}\right) \cdot \log p+O(n)=O(n)$

Parallel matrix algorithms

Triangular system solution

Parallel block-recursive forward substitution (contd.)
Recursion levels 0 to $\log p$: block forward substitution using parallel matrix-vector multiplication

Recursion level log p : a designated processor reads the current task's input, performs the task sequentially, and writes back the task's output

$$
\begin{aligned}
& \operatorname{comp}=O\left(n^{2} / p\right) \cdot\left(1+2 \cdot\left(\frac{1}{2}\right)^{2}+2^{2} \cdot\left(\frac{1}{2^{2}}\right)^{2}+\ldots\right)+O\left((n / p)^{2}\right) \cdot p= \\
& O\left(n^{2} / p\right)+O\left(n^{2} / p\right)=O\left(n^{2} / p\right) \\
& \operatorname{comm}=O\left(n / p^{1 / 2}\right) \cdot\left(1+2 \cdot \frac{1}{2}+2^{2} \cdot \frac{1}{2^{2}}+\ldots\right)+O(n / p) \cdot p= \\
& O\left(n / p^{1 / 2}\right) \cdot \log p+O(n)=O(n) \\
& \operatorname{comp}=O\left(n^{2} / p\right) \quad \operatorname{comm}=O(n) \quad \text { sync }=O(p)
\end{aligned}
$$

Parallel matrix algorithms

Generic Gaussian elimination

Let A, L, U be n-matrices
LU decomposition of $A: A=L \cdot U$

L is unit lower triangular: $L_{i j}= \begin{cases}0 & 0 \leq i<j<n \\ 1 & 0 \leq i=j<n \\ \text { arbitrary } & \text { otherwise }\end{cases}$
U is upper triangular: $\quad U_{i j}= \begin{cases}0 & 0 \leq j<i<n \\ \text { arbitrary } & \text { otherwise }\end{cases}$
The LU decomposition problem: given A, find L, U

Parallel matrix algorithms

Generic Gaussian elimination

Application: solving a linear system
$A x=b$
If LU decomposition of A is known: $A x=L U x=b$
Solve triangular systems $L y=b$ then $U x=y$, obtaining x
LU decomposition of A can be reused for multiple right-hand sides b

Parallel matrix algorithms

Generic Gaussian elimination

Block generic Gaussian elimination
LU decomposition: $A=L \cdot U$, also returns L^{-1}, U^{-1}
$\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]=\left[\begin{array}{ll}L_{00} & \\ L_{10} & L_{11}\end{array}\right]\left[\begin{array}{ll}U_{00} & U_{01} \\ & U_{11}\end{array}\right]$

Parallel matrix algorithms

Generic Gaussian elimination

Block generic Gaussian elimination
LU decomposition: $A=L \cdot U$, also returns L^{-1}, U^{-1}
$\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]=\left[\begin{array}{ll}L_{00} & \\ L_{10} & L_{11}\end{array}\right]\left[\begin{array}{ll}U_{00} & U_{01} \\ & U_{11}\end{array}\right]$
Compute $A_{00}=L_{00} \cdot U_{00}$, also L_{00}^{-1}, U_{00}^{-1}
$L_{10} \leftarrow A_{10} \cdot U_{00}^{-1} \quad U_{01} \leftarrow L_{00}^{-1} \cdot A_{01}$
$\bar{A}_{11}=A_{11}-L_{10} \cdot U_{01}=A_{11}-A_{10} A_{00}^{-1} A_{01}$ (Schur complement of A_{11})
$\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]=\left[\begin{array}{ll}L_{00} & \\ L_{10} & \bar{A}_{11}\end{array}\right]\left[\begin{array}{cc}U_{00} & U_{01} \\ & I\end{array}\right]$
Compute $\bar{A}_{11}=L_{11} \cdot U_{11}$, also L_{11}^{-1}, U_{11}^{-1}, then return L^{-1}, U^{-1} :
$L^{-1} \leftarrow\left[\begin{array}{cc}L_{00}^{-1} & \\ -L_{11}^{-1} L_{10} L_{00}^{-1} & L_{11}^{-1}\end{array}\right] \quad U^{-1} \leftarrow\left[\begin{array}{cc}U_{00}^{-1} & -U_{00}^{-1} U_{10} U_{11}^{-1} \\ & U_{11}^{-1}\end{array}\right]$

Parallel matrix algorithms

Generic Gaussian elimination

Block generic Gaussian elimination (contd.)
A_{00}, \ldots : either ordinary elements or blocks, can be applied recursively
Recursion base: 1×1 matrix $A=1 \cdot A$
Assumption: pivot elements nonzero (respectively pivot blocks nonsingular):

- $A_{00} \neq 0$ (respectively $\left.\operatorname{det} A_{00} \neq 0\right)$
- $\bar{A}_{11} \neq 0$ (respectively $\left.\operatorname{det} \bar{A}_{11} \neq 0\right)$

Hence no pivoting required
In practice, pivots must be sufficiently large. Holds for some special classes of matrices: diagonally dominant; symmetric positive definite.

Parallel matrix algorithms

Generic Gaussian elimination

Iterative generic Gaussian elimination
Let A be an $n \times n$ matrix
(1) $\quad(n-1)$
$A=\underset{(n-1)}{(1)}\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]$
$A=L U$ by block generic Gaussian elimination on A, then on \bar{A}_{11}
Sequential work $O\left(n^{3}\right)$

Parallel matrix algorithms

Generic Gaussian elimination

Recursive generic Gaussian elimination
Let A be an $n \times n$ matrix
$A=\underset{(n / 2)}{(n / 2)}\left[\begin{array}{cc}(n / 2) & (n / 2) \\ A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]$
$A=L U$ by block generic Gaussian elimination on A, treating

- each LU decomposition as recursive call on blocks

Parallel matrix algorithms

Generic Gaussian elimination

Recursive generic Gaussian elimination
Let A be an $n \times n$ matrix

$$
(n / 2) \quad(n / 2)
$$

$A=\underset{(n / 2)}{(n / 2)}\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]$
$A=L U$ by block generic Gaussian elimination on A, treating

- each LU decomposition as recursive call on blocks

Sequential work:

- $O\left(n^{3}\right)$ using standard matrix multiplication
- $O\left(n^{\omega}\right)$ using fast (Strassen-like) matrix multiplication

Parallel matrix algorithms

Generic Gaussian elimination

Parallel recursive generic Gaussian elimination
At each level, the two recursive subproblems are dependent, hence recursion tree must be computed depth-first

At recursion level k :

- sequence of $2^{k} L U$ decomposition subproblems, each on $\frac{n}{2^{k}}$-blocks In particular, at level $\frac{1}{2} \cdot \log p$:
- sequence of $p^{1 / 2} \mathrm{LU}$ decomposition subproblems, each on $\frac{n}{p^{1 / 2}}$-blocks
- total $p^{1 / 2} \cdot O\left(\left(\frac{n}{p^{1 / 2}}\right)^{3}\right)=O\left(\frac{n^{3}}{p}\right)$ sequential work, therefore each subproblem can be solved sequentially on an arbitrary processor

Parallel matrix algorithms

Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)
Level $\frac{1}{2} \cdot \log p$: threshold to switch from parallel to sequential computation Recursion levels 0 to $\frac{1}{2} \cdot \log p$:

- block generic LU decomposition using parallel matrix multiplication

Parallel matrix algorithms

Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)
Level $\frac{1}{2} \cdot \log p$: threshold to switch from parallel to sequential computation Recursion levels 0 to $\frac{1}{2} \cdot \log p$:

- block generic LU decomposition using parallel matrix multiplication Threshold recursion level $\frac{1}{2} \cdot \log p$:
- a designated processor reads the subproblem's input block, solves it sequentially, and writes the output blocks

Parallel matrix algorithms

Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)
Level $\frac{1}{2} \cdot \log p$: threshold to switch from parallel to sequential computation Recursion levels 0 to $\frac{1}{2} \cdot \log p$:

- block generic LU decomposition using parallel matrix multiplication Threshold recursion level $\frac{1}{2} \cdot \log p$:
- a designated processor reads the subproblem's input block, solves it sequentially, and writes the output blocks

$$
\operatorname{comp}=O\left(n^{3} / p\right)
$$

$$
c o m m=O\left(n^{2} / p^{1 / 2}\right)
$$

$$
\text { sync }=O\left(p^{1 / 2}\right)
$$

Parallel matrix algorithms

Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)
More generally: threshold level $\alpha \log p, 1 / 2 \leq \alpha \leq 2 / 3$
Recursion levels 0 to $\alpha \log p$:

- block generic LU decomposition using parallel matrix multiplication

Parallel matrix algorithms

Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)
More generally: threshold level $\alpha \log p, 1 / 2 \leq \alpha \leq 2 / 3$
Recursion levels 0 to $\alpha \log p$:

- block generic LU decomposition using parallel matrix multiplication Threshold recursion level $\alpha \log p$:
- a designated processor reads the subproblem's input block, solves it sequentially, and writes the output blocks

Parallel matrix algorithms

Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)
More generally: threshold level $\alpha \log p, 1 / 2 \leq \alpha \leq 2 / 3$
Recursion levels 0 to $\alpha \log p$:

- block generic LU decomposition using parallel matrix multiplication Threshold recursion level $\alpha \log p$:
- a designated processor reads the subproblem's input block, solves it sequentially, and writes the output blocks

$$
\operatorname{comp}=O\left(n^{3} / p\right)
$$

$$
\operatorname{comm}=O\left(n^{2} / p^{\alpha}\right)
$$

$$
\text { sync }=O\left(p^{\alpha}\right)
$$

Parallel matrix algorithms

Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)
Continuous tradeoff between comm and sync
Controlled by parameter $\alpha, 1 / 2 \leq \alpha \leq 2 / 3$
$\alpha=1 / 2$: comm and sync as for 3D grid
$\operatorname{comp}=O\left(n^{3} / p\right)$
$c o m m=O\left(n^{2} / p^{1 / 2}\right)$
sync $=O\left(p^{1 / 2}\right)$

Parallel matrix algorithms

Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)
Continuous tradeoff between comm and sync
Controlled by parameter $\alpha, 1 / 2 \leq \alpha \leq 2 / 3$
$\alpha=1 / 2$: comm and sync as for 3D grid
$\operatorname{comp}=O\left(n^{3} / p\right)$
$c o m m=O\left(n^{2} / p^{1 / 2}\right)$
sync $=O\left(p^{1 / 2}\right)$
$\alpha=2 / 3:$

- comm goes down to that of matrix multiplication
- sync goes up accordingly

$$
\operatorname{comp}=O\left(n^{3} / p\right)
$$

$$
c o m m=O\left(n^{2} / p^{2 / 3}\right)
$$

$$
\text { sync }=O\left(p^{2 / 3}\right)
$$

Parallel matrix algorithms

Gaussian elimination with pivoting

Pivoting permutes rows/columns of input matrix to remove the assumptions of generic Gaussian elimination, ensuring that:

- pivot elements are always nonzero
- pivot blocks are always nonsingular

Parallel matrix algorithms

Gaussian elimination with pivoting

Let A, P, L, U be n-matrices
PLU decomposition of $A: P \cdot A=L \cdot U$

P is a permutation matrix:

- all elements 0 or 1
- exactly one 1 in every row and column
L is unit lower triangular, U is upper triangular
The PLU decomposition problem: given A, find P, L, U

Parallel matrix algorithms

Gaussian elimination with pivoting

Block Gaussian elimination with column pivoting
Generalise PLU decomposition to "tall" rectangular matrices
Let A be an $m \times n$ matrix, $m \geq n$
(n)
$A=\underset{(m-n)}{(n)}\left[\begin{array}{l}A_{00} \\ A_{10}\end{array}\right] \quad P \cdot\left[\begin{array}{c}A_{00} \\ A_{10}\end{array}\right]=\left[\begin{array}{c}L_{00} \\ L_{10}\end{array}\right] \cdot\left[\begin{array}{c}U_{00} \\ \cdot\end{array}\right]$
P is an $m \times m$ permutation matrix
L_{00} is $n \times n$ unit lower triangular, U_{00} is $n \times n$ upper triangular

Parallel matrix algorithms

Gaussian elimination with pivoting

Block Gaussian elimination with column pivoting (contd.)
$\left[\begin{array}{ll}P_{00} & P_{01} \\ P_{10} & P_{11}\end{array}\right]\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]=\left[\begin{array}{ll}L_{00} & \\ L_{10} & L_{11}\end{array}\right]\left[\begin{array}{ll}U_{00} & U_{01} \\ & U_{11}\end{array}\right]$
Compute $\left[\begin{array}{ll}P_{00} & P_{01} \\ P_{10}^{\prime} & P_{11}^{\prime}\end{array}\right]\left[\begin{array}{l}A_{00} \\ A_{10}\end{array}\right]=\left[\begin{array}{c}L_{00} \\ L_{10}^{\prime}\end{array}\right]\left[\begin{array}{c}U_{00} \\ \cdot\end{array}\right]$
$U_{01} \leftarrow L_{00}^{-1}\left(P_{00} A_{01}+P_{01} A_{11}\right)$
$\bar{A}_{11}^{\prime} \leftarrow P_{10}^{\prime} A_{01}+P_{11}^{\prime} A_{11}-L_{10}^{\prime} U_{01}$
$\left[\begin{array}{ll}P_{00} & P_{01} \\ P_{10}^{\prime} & P_{11}^{\prime}\end{array}\right]\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{01} & A_{11}\end{array}\right]=\left[\begin{array}{ll}L_{00} & \\ L_{10}^{\prime} & \bar{A}_{11}^{\prime}\end{array}\right]\left[\begin{array}{cc}U_{00} & U_{01} \\ \cdot & I\end{array}\right]$
Compute $P_{11}^{\prime \prime} \bar{A}_{11}^{\prime}=L_{11} U_{11}$
$\left[\begin{array}{cc}P_{00} & P_{01} \\ P_{11}^{\prime \prime} P_{10}^{\prime} & P_{11}^{\prime \prime} P_{11}^{\prime}\end{array}\right]\left[\begin{array}{cc}A_{00} & A_{01} \\ A_{01} & A_{11}\end{array}\right]=\left[\begin{array}{cc}L_{00} & \\ P_{11}^{\prime \prime} L_{10}^{\prime} & L_{11}\end{array}\right]\left[\begin{array}{cc}U_{00} & U_{01} \\ \cdot & U_{11}\end{array}\right]$

Parallel matrix algorithms

Gaussian elimination with pivoting

Block Gaussian elimination with column pivoting (contd.)
A_{00}, \ldots : either ordinary elements or blocks, can be applied recursively
Recursion base: $m \times 1$ matrix
(1)
$A=\underset{(m-1)}{(1)}\left[\begin{array}{l}A_{0} \\ A_{1}\end{array}\right] \quad P\left[\begin{array}{l}A_{0} \\ A_{1}\end{array}\right]=\left[\begin{array}{c}A_{0}^{\prime} \\ A_{1}^{\prime}\end{array}\right]=\left[\begin{array}{c}1 \\ L_{1}\end{array}\right]\left[\begin{array}{c}A_{0}^{\prime} \\ \cdot\end{array}\right]$
P is a permutation such that $\left|A_{0}^{\prime}\right|$ is largest across A

Parallel matrix algorithms

Gaussian elimination with pivoting

Iterative Gaussian elimination with column pivoting
Let A be an $n \times n$ matrix
(1) $\quad(n-1)$
$A={ }_{(n-1)}^{(1)}\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]$
$P A=L U$ by block Gaussian elimination with column pivoting on A, then on \bar{A}_{11}^{\prime}
Sequential work $O\left(n^{3}\right)$

Parallel matrix algorithms

Gaussian elimination with pivoting

Recursive Gaussian elimination with column pivoting
Let A be an $n \times n$ matrix

$$
(n / 2) \quad(n / 2)
$$

$A=\underset{(n / 2)}{(n / 2)}\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]$
$P A=L U$ by block Gaussian elimination with column pivoting on A, treating

- each '+' (${ }^{\prime}$ ', ' \cdot ') as block '+' (${ }^{-}$', ' \quad ’)
- each PLU decomposition as recursive call on blocks

Parallel matrix algorithms

Gaussian elimination with pivoting

Recursive Gaussian elimination with column pivoting

Let A be an $n \times n$ matrix

$$
(n / 2) \quad(n / 2)
$$

$A=\underset{(n / 2)}{(n / 2)}\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]$
$P A=L U$ by block Gaussian elimination with column pivoting on A, treating

- each PLU decomposition as recursive call on blocks

Sequential work:

- $O\left(n^{3}\right)$ using standard matrix multiplication
- $O\left(n^{\omega}\right)$ using fast (Strassen-like) matrix multiplication

Parallel matrix algorithms

Gaussian elimination with pivoting

Parallel recursive Gaussian elimination with column pivoting
At each level, the two recursive subproblems are dependent, hence recursion tree must be computed depth-first

At recursion level k :

- sequence of 2^{k} PLU decomposition subproblems, each on $\frac{n}{2^{k}} \times n$ blocks

In particular, at level $\log p$:

- sequence of p PLU decomposition subproblems, each on $\frac{n}{p} \times n$ blocks
- total $p \cdot O\left(\frac{n^{3}}{p^{2}}\right)=O\left(\frac{n^{3}}{p}\right)$ sequential work, therefore each subproblem can be solved sequentially on an arbitrary processor

Parallel matrix algorithms

Gaussian elimination with pivoting

Parallel recursive Gaussian elimination with column pivoting (contd.)
Level $\log p$: threshold to switch from parallel to sequential computation
Recursion levels 0 to $\log p$:

- block PLU decomposition using parallel matrix multiplication Threshold recursion level $\log p$:
- a designated processor reads the subproblem's input block, solves it sequentially, and writes the output blocks

$$
\operatorname{comp}=O\left(n^{3} / p\right)
$$

$$
\text { comm }=O\left(n^{2}\right)
$$

$$
\text { sync }=O(p)
$$

Parallel matrix algorithms

Gaussian elimination with pivoting

Parallel recursive Gaussian elimination with column pivoting (contd.)
Alternative: no switching to sequential computation
Level $\log p$: threshold to switch to fine-grained parallel computation
Recursion levels 0 to $\log p$:

- block PLU decomposition using parallel matrix multiplication Recursion levels $\log p$ to $\log n$:
- block PLU decomposition on partitioned matrix, using broadcast of pivot subrows and p instances of sequential matrix multiplication Recursion base at level $\log n$:
- column PLU decomposition; pivot selected by balanced binary tree

$$
c o m m=O\left(n^{2} / p^{2 / 3}\right)
$$

$$
\text { sync }=O(n)
$$

Parallel matrix algorithms

Gaussian elimination with pivoting

Parallel recursive Gaussian elimination with column pivoting (contd.)
Discontinuous tradeoff between comm and sync
Coarse-grained algorithm: comm and sync as for 2D grid with work and data size $O(n)$ per node

$$
\operatorname{comp}=O\left(n^{3} / p\right) \quad \text { comm }=O\left(n^{2}\right) \quad \text { sync }=O(p)
$$

Fine-grained algorithm: comm as for matrix multiplication; sync becomes a function of n

$$
\operatorname{comp}=O\left(n^{3} / p\right)
$$

$$
\operatorname{comm}=O\left(n^{2} / p^{2 / 3}\right)
$$

$$
\text { sync }=O(n)
$$

(1) Computation by circuits

(2) Parallel computation models

(3) Basic parallel algorithms
(4) Further parallel algorithms
(5) Parallel matrix algorithms
(6) Parallel graph algorithms

Parallel graph algorithms

Algebraic path problem

Semiring: a set S with addition \oplus and multiplication \odot
\oplus commutative, associative, has identity 0
$a \oplus b=b \oplus a \quad a \oplus(b \oplus c)=(a \oplus b) \oplus c \quad a \oplus 0=0 \oplus a=a$
\odot associative, has annihilator 0 and identity $\mathbb{1}$
$a \odot(b \odot c)=(a \odot b) \odot c \quad a \odot 0=0 \odot a=0 \quad a \odot \square=\square \odot a=a$
\odot distributes over \odot
$a \odot(b \oplus c)=a \odot b \oplus a \odot c \quad(a \oplus b) \odot c=a \odot c \oplus b \odot c$
In general, no subtraction or division!
We will occasionally write $a b$ for $a \odot b, a^{2}$ for $a \odot a$, etc.

Parallel graph algorithms

Algebraic path problem
Some specific semirings:

	S	\oplus	0	\odot	1
real	\mathbb{R}	+	0	\cdot	1
Boolean	$\{0,1\}$	\vee	0	\wedge	1
tropical	\mathbb{R}^{+}	min	$+\infty$	+	0

$\mathbb{R}^{+}=\mathbb{R}_{\geq 0} \cup\{+\infty\}$

Parallel graph algorithms

Algebraic path problem

Some specific semirings:

	S	\oplus	0	\odot	1
real	\mathbb{R}	+	0	\cdot	1
Boolean	$\{0,1\}$	\vee	0	\wedge	1
tropical	\mathbb{R}^{+}	\min	$+\infty$	+	0

$\mathbb{R}^{+}=\mathbb{R}_{\geq 0} \cup\{+\infty\}$
Given a semiring S, square matrices of size n over S also form a semiring:

- \oplus given by matrix addition; 0 by the zero matrix
- \odot given by matrix multiplication; 1 by the identity matrix

Parallel graph algorithms

Algebraic path problem

The closure of $a: a^{*}=1 \oplus a \oplus a^{2} \oplus a^{3} \oplus \cdots$

Parallel graph algorithms

Algebraic path problem

The closure of $a: a^{*}=1 \oplus a \oplus a^{2} \oplus a^{3} \oplus \cdots$
Examples

- real: $a^{*}=1+a+a^{2}+a^{3}+\cdots= \begin{cases}\frac{1}{1-a} & \text { if }|a|<1 \\ \text { undefined } & \text { otherwise }\end{cases}$
- Boolean: $a^{*}=1 \vee a \vee a \vee a \vee \ldots=1$
- tropical: $a^{*}=\min (0, a, 2 a, 3 a, \ldots)=0$

In matrix semirings, closures are more interesting

Parallel graph algorithms

Algebraic path problem

A semiring is closed, if

- infinite $a_{1} \oplus a_{2} \oplus a_{3} \oplus \cdots$ (e.g. a closure) always defined
- infinite \oplus commutative, associative
- \odot distributive over infinite \oplus

In a closed semiring, every element and every square matrix have a closure

Parallel graph algorithms

Algebraic path problem

A semiring is closed, if

- infinite $a_{1} \oplus a_{2} \oplus a_{3} \oplus \cdots$ (e.g. a closure) always defined
- infinite \oplus commutative, associative
- \odot distributive over infinite \oplus

In a closed semiring, every element and every square matrix have a closure Examples

- real semiring not closed: infinite + can be divergent

Parallel graph algorithms

Algebraic path problem

A semiring is closed, if

- infinite $a_{1} \oplus a_{2} \oplus a_{3} \oplus \cdots$ (e.g. a closure) always defined
- infinite \oplus commutative, associative
- \odot distributive over infinite \oplus

In a closed semiring, every element and every square matrix have a closure Examples

- real semiring not closed: infinite + can be divergent
- Boolean semiring closed: infinite \vee is \exists

Parallel graph algorithms

Algebraic path problem

A semiring is closed, if

- infinite $a_{1} \oplus a_{2} \oplus a_{3} \oplus \cdots$ (e.g. a closure) always defined
- infinite \oplus commutative, associative
- \odot distributive over infinite \oplus

In a closed semiring, every element and every square matrix have a closure Examples

- real semiring not closed: infinite + can be divergent
- Boolean semiring closed: infinite \vee is \exists
- tropical semiring closed: infinite min is inf (greatest lower bound)

Parallel graph algorithms

Algebraic path problem

A semiring is closed, if

- infinite $a_{1} \oplus a_{2} \oplus a_{3} \oplus \cdots$ (e.g. a closure) always defined
- infinite \oplus commutative, associative
- \odot distributive over infinite \oplus

In a closed semiring, every element and every square matrix have a closure Examples

- real semiring not closed: infinite + can be divergent
- Boolean semiring closed: infinite \vee is \exists
- tropical semiring closed: infinite min is inf (greatest lower bound)

Parallel graph algorithms

Algebraic path problem

Matrix closure problem, aka algebraic path problem
Given A : $n \times n$ matrix over a semiring
Compute $A^{*}=I \oplus A \oplus A^{2} \oplus A^{3} \oplus \cdots$

Parallel graph algorithms

Algebraic path problem

Matrix closure problem, aka algebraic path problem
Given $A: n \times n$ matrix over a semiring
Compute $A^{*}=I \oplus A \oplus A^{2} \oplus A^{3} \oplus \cdots$

- real: $A^{*}=I+A+A^{2}+\cdots=(I-A)^{-1}$, if nonsingular

Parallel graph algorithms

Algebraic path problem
Matrix closure problem, aka algebraic path problem
Given A : $n \times n$ matrix over a semiring
Compute $A^{*}=I \oplus A \oplus A^{2} \oplus A^{3} \oplus \cdots$

- real: $A^{*}=I+A+A^{2}+\cdots=(I-A)^{-1}$, if nonsingular

Weighted digraph on n nodes: define matrix as
$A_{i j}= \begin{cases}1=0 & \text { if } i=j \\ \text { length of edge } i \rightarrow j & \text { if edge exists } \\ 0=+\infty & \text { otherwise }\end{cases}$

- Boolean: A^{*} gives transitive closure
- tropical: A^{*} gives all-pairs shortest paths

Parallel graph algorithms

Algebraic path problem

$$
A=\left[\begin{array}{ccccc}
0 & 5 & 10 & \infty & 10 \\
\infty & 0 & 3 & 2 & 9 \\
\infty & 2 & 0 & \infty & 1 \\
7 & \infty & \infty & 0 & 6 \\
\infty & \infty & \infty & 4 & 0
\end{array}\right]
$$

Parallel graph algorithms

Algebraic path problem

$A=\left[\begin{array}{ccccc}0 & 5 & 10 & \infty & 10 \\ \infty & 0 & 3 & 2 & 9 \\ \infty & 2 & 0 & \infty & 1 \\ 7 & \infty & \infty & 0 & 6 \\ \infty & \infty & \infty & 4 & 0\end{array}\right]$

$A^{*}=\left[\begin{array}{ccccc}0 & 5 & 8 & 7 & 9 \\ 9 & 0 & 3 & 2 & 4 \\ 11 & 2 & 0 & 4 & 1 \\ 7 & 12 & 15 & 0 & 6 \\ 11 & 16 & 19 & 4 & 0\end{array}\right]$

Parallel graph algorithms

Algebraic path problem

Floyd-Warshall algorithm
A: $n \times n$ matrix over closed semiring
First step of elimination: pivot $A_{00}=1$
$A_{\underline{11}}^{\prime} \leftarrow A_{\underline{11}} \oplus A_{\underline{10}} \odot A_{0 \underline{1}}$
(E.g. replace $A_{i j}$ with $A_{i 0}+A_{0 j}$, if it gives a shortcut)
Continue elimination on reduced matrix $A_{\underline{11}}^{\prime}$
Generic Gaussian elimination in disguise
Works for any closed semiring
Sequential work $O\left(n^{3}\right)$
[Floyd, Warshall: 1962]

Parallel graph algorithms

Algebraic path problem

Block Floyd-Warshall algorithm
$A=\left[\begin{array}{ll}A_{\underline{00}} & A_{\underline{01}} \\ A_{\underline{10}} & A_{\underline{11}}\end{array}\right] \quad A^{*}=\left[\begin{array}{ll}A_{00}^{\prime \prime} & A_{\underline{01}}^{\prime \prime} \\ A_{\underline{10}}^{\prime \prime} & A_{\underline{11}}^{\prime \prime}\end{array}\right]$

Parallel graph algorithms

Algebraic path problem

Block Floyd-Warshall algorithm
$A=\left[\begin{array}{ll}A_{\underline{00}} & A_{\underline{01}} \\ A_{\underline{10}} & A_{\underline{11}}\end{array}\right] \quad A^{*}=\left[\begin{array}{ll}A_{00}^{\prime \prime} & A_{\underline{01}}^{\prime \prime} \\ A_{\underline{10}}^{\prime \prime} & A_{\underline{11}}^{\prime \prime}\end{array}\right]$
Recursion: two half-sized subproblems
$A_{\underline{00}}^{\prime} \leftarrow A_{\underline{0}}^{*}$ by recursion
$A_{\underline{01}}^{\prime} \leftarrow A_{\underline{00}}^{\prime} A_{\underline{01}} \quad A_{\underline{10}}^{\prime} \leftarrow A_{\underline{10}} A_{\underline{00}}^{\prime} \quad A_{\underline{11}}^{\prime} \leftarrow A_{\underline{11}} \oplus A_{\underline{10}} A_{00}^{\prime} A_{\underline{01}}$
$A_{\underline{11}}^{\prime \prime} \leftarrow\left(A_{\underline{11}}^{\prime}\right)^{*}$ by recursion

$A_{\underline{10}}^{\prime \prime} \leftarrow A_{\underline{11}}^{\prime \prime} A_{\underline{10}}^{\prime} \quad A_{\underline{01}}^{\prime \prime} \leftarrow A_{\underline{01}}^{\prime} A_{\underline{11}}^{\prime \prime} \quad A_{\underline{00}}^{\prime \prime} \leftarrow A_{\underline{00}}^{\prime} \oplus A_{\underline{01}}^{\prime} A_{11}^{\prime \prime} A_{\underline{10}}^{\prime}$

Parallel graph algorithms

Algebraic path problem

Block Floyd-Warshall algorithm
$A=\left[\begin{array}{ll}A_{\underline{00}} & A_{\underline{01}} \\ A_{\underline{10}} & A_{\underline{11}}\end{array}\right] \quad A^{*}=\left[\begin{array}{ll}A_{00}^{\prime \prime} & A_{\underline{01}}^{\prime \prime} \\ A_{\underline{10}}^{\prime \prime} & A_{\underline{11}}^{\prime \prime}\end{array}\right]$
Recursion: two half-sized subproblems
$A_{\underline{00}}^{\prime} \leftarrow A_{\underline{0}}^{*}$ by recursion
$A_{\underline{01}}^{\prime} \leftarrow A_{\underline{00}}^{\prime} A_{\underline{01}} \quad A_{\underline{10}}^{\prime} \leftarrow A_{\underline{10}} A_{\underline{00}}^{\prime} \quad A_{\underline{11}}^{\prime} \leftarrow A_{\underline{11}} \oplus A_{\underline{10}} A_{\underline{00}}^{\prime} A_{\underline{01}}$
$A_{\underline{11}}^{\prime \prime} \leftarrow\left(A_{\underline{11}}^{\prime}\right)^{*}$ by recursion

$A_{\underline{10}}^{\prime \prime} \leftarrow A_{11}^{\prime \prime} A_{\underline{10}}^{\prime} \quad A_{\underline{01}}^{\prime \prime} \leftarrow A_{\underline{01}}^{\prime} A_{11}^{\prime \prime} \quad A_{\underline{00}}^{\prime \prime} \leftarrow A_{0 \underline{00}}^{\prime} \oplus A_{01}^{\prime} A_{11}^{\prime \prime} A_{10}^{\prime}$
Block generic Gaussian elimination in disguise
Sequential work $O\left(n^{3}\right)$

Parallel graph algorithms Algebraic path problem

Parallel algebraic path computation
Similar to LU decomposition by block generic Gaussian elimination
Recursion tree is unfolded depth-first
Recursion levels 0 to $\alpha \log p$: block Floyd-Warshall using parallel matrix multiplication

Recursion level $\alpha \log p$: on each visit, a designated processor reads the current task's input, performs the task sequentially, and writes back the task's output

Parallel graph algorithms Algebraic path problem

Parallel algebraic path computation
Similar to LU decomposition by block generic Gaussian elimination
Recursion tree is unfolded depth-first
Recursion levels 0 to $\alpha \log p$: block Floyd-Warshall using parallel matrix multiplication

Recursion level $\alpha \log p$: on each visit, a designated processor reads the current task's input, performs the task sequentially, and writes back the task's output

Threshold level controlled by parameter $\alpha: 1 / 2 \leq \alpha \leq 2 / 3$

$$
\operatorname{comp}=O\left(n^{3} / p\right)
$$

$$
c o m m=O\left(n^{2} / p^{\alpha}\right)
$$

$$
\text { sync }=O\left(p^{\alpha}\right)
$$

Parallel graph algorithms

Algebraic path problem

Parallel algebraic path computation (contd.)
In particular:
$\alpha=1 / 2$
$\operatorname{comp}=O\left(n^{3} / p\right)$
$c o m m=O\left(n^{2} / p^{1 / 2}\right)$
sync $=O\left(p^{1 / 2}\right)$
Cf. 2D grid

Parallel graph algorithms

Algebraic path problem

Parallel algebraic path computation (contd.)

In particular:
$\alpha=1 / 2$

$$
\operatorname{comp}=O\left(n^{3} / p\right) \quad \text { comm }=O\left(n^{2} / p^{1 / 2}\right) \quad \text { sync }=O\left(p^{1 / 2}\right)
$$

Cf. 2D grid
$\alpha=2 / 3$

$$
\operatorname{comp}=O\left(n^{3} / p\right) \quad \text { comm }=O\left(n^{2} / p^{2 / 3}\right) \quad \text { sync }=O\left(p^{2 / 3}\right)
$$

Cf. matrix multiplication

Parallel graph algorithms

All-pairs shortest paths

All-pairs shortest paths (APSP) problem: matrix closure (algebraic path) problem over tropical semiring

	S	\oplus	0	\odot	1
tropical	$\mathbb{R}_{\geq 0} \cup\{+\infty\}$	\min	$+\infty$	+	0

We continue to use the generic notation: \oplus for min, \odot for +

Parallel graph algorithms

All-pairs shortest paths

All-pairs shortest paths (APSP) problem: matrix closure (algebraic path) problem over tropical semiring

	S	\oplus	0	\odot	1
tropical	$\mathbb{R}_{\geq 0} \cup\{+\infty\}$	\min	$+\infty$	+	0

We continue to use the generic notation: \oplus for min, \odot for + Can be solved by Floyd-Warshall algorithm (ordinary or block) Also works with negative weights, but no negative cycles

To improve on Floyd-Warshall, we must exploit the tropical semiring's idempotence: $a \oplus a=\min (a, a)=a$

Parallel graph algorithms

All-pairs shortest paths

A: $n \times n$ matrix over the tropical semiring, defining a weighted digraph Path length: sum (\odot-product) of all its edge lengths Path size: its total number of edges

Parallel graph algorithms

All-pairs shortest paths

A: $n \times n$ matrix over the tropical semiring, defining a weighted digraph Path length: sum (\odot-product) of all its edge lengths

Path size: its total number of edges
$\left(A^{k}\right)_{i j}=$ length of shortest path $i \rightsquigarrow j$ among those of size $\leq k$ $\left(A^{*}\right)_{i j}=$ length of the shortest path $i \rightsquigarrow j$ of any size

Parallel graph algorithms

All-pairs shortest paths

A: $n \times n$ matrix over the tropical semiring, defining a weighted digraph Path length: sum (\odot-product) of all its edge lengths

Path size: its total number of edges
$\left(A^{k}\right)_{i j}=$ length of shortest path $i \rightsquigarrow j$ among those of size $\leq k$
$\left(A^{*}\right)_{i j}=$ length of the shortest path $i \rightsquigarrow j$ of any size
The APSP problem:
$A^{*}=I \oplus A \oplus A^{2} \oplus \cdots=I \oplus A \oplus A^{2} \oplus \cdots \oplus A^{n}=(I \oplus A)^{n}=A^{n}$

Parallel graph algorithms

All-pairs shortest paths

APSP by multi-Dijkstra
Dijkstra's algorithm
[Dijkstra: 1959]
Computes single-source shortest paths from fixed source (say, node 0)
Ranks all nodes by distance from node 0: nearest, second nearest, etc.
Every time a node i has been ranked:
$A_{0 j} \leftarrow A_{0 j} \oplus A_{0 i} \odot A_{i j}$ for all j not yet ranked
Assign the next rank to the unranked node closest to node 0 and repeat

Parallel graph algorithms

All-pairs shortest paths
APSP by multi-Dijkstra
Dijkstra's algorithm
[Dijkstra: 1959]
Computes single-source shortest paths from fixed source (say, node 0)
Ranks all nodes by distance from node 0: nearest, second nearest, etc.
Every time a node i has been ranked:
$A_{0 j} \leftarrow A_{0 j} \oplus A_{0 i} \odot A_{i j}$ for all j not yet ranked
Assign the next rank to the unranked node closest to node 0 and repeat
It is essential that the edge lengths are nonnegative
Sequential work $O\left(n^{2}\right)$

Parallel graph algorithms

All-pairs shortest paths

APSP by multi-Dijkstra
Dijkstra's algorithm
[Dijkstra: 1959]
Computes single-source shortest paths from fixed source (say, node 0)
Ranks all nodes by distance from node 0: nearest, second nearest, etc.
Every time a node i has been ranked:
$A_{0 j} \leftarrow A_{0 j} \oplus A_{0 i} \odot A_{i j}$ for all j not yet ranked
Assign the next rank to the unranked node closest to node 0 and repeat
It is essential that the edge lengths are nonnegative
Sequential work $O\left(n^{2}\right)$
APSP: run Dijkstra's algorithm independently from every node as a source, sequential work $O\left(n^{3}\right)$

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by multi-Dijkstra

Every processor

- reads matrix A and is assigned a subset of n / p nodes
- runs n / p independent instances of Dijkstra's algorithm from its assigned nodes
- writes back the resulting n^{2} / p shortest distances

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by multi-Dijkstra

Every processor

- reads matrix A and is assigned a subset of n / p nodes
- runs n / p independent instances of Dijkstra's algorithm from its assigned nodes
- writes back the resulting n^{2} / p shortest distances

$$
\operatorname{comp}=O\left(n^{3} / p\right)
$$

$$
\text { comm }=O\left(n^{2}\right)
$$

$$
\text { sync }=O(1)
$$

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP: summary so far

$$
\operatorname{comp}=O\left(n^{3} / p\right)
$$

Floyd-Warshall, $\alpha=2 / 3$
Floyd-Warshall, $\alpha=1 / 2$ Multi-Dijkstra

$$
\operatorname{comm}=O\left(n^{2} / p^{2 / 3}\right)
$$

$$
c o m m=O\left(n^{2} / p^{1 / 2}\right)
$$

$$
\mathrm{comm}=O\left(n^{2}\right)
$$

$$
\text { sync }=O\left(p^{2 / 3}\right)
$$

$$
\text { sync }=O\left(p^{1 / 2}\right)
$$

$$
\text { sync }=O(1)
$$

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP: summary so far

$$
\operatorname{comp}=O\left(n^{3} / p\right)
$$

Floyd-Warshall, $\alpha=2 / 3$
Floyd-Warshall, $\alpha=1 / 2$
Multi-Dijkstra

$$
\operatorname{comm}=O\left(n^{2} / p^{2 / 3}\right)
$$

$$
\text { sync }=O\left(p^{2 / 3}\right)
$$

$c o m m=O\left(n^{2} / p^{1 / 2}\right)$
sync $=O\left(p^{1 / 2}\right)$
comm $=O\left(n^{2}\right)$
sync $=O(1)$
Coming next
comm $=O\left(n^{2} / p^{2 / 3}\right)$
sync $=O(\log p)$

Parallel graph algorithms

All-pairs shortest paths

Path doubling

Compute $A, A^{2}, A^{4}=\left(A^{2}\right)^{2}, A^{8}=\left(A^{4}\right)^{2}, \ldots, A^{n}=A^{*}$
Overall, $\log n$ rounds of matrix \odot-multiplication: looks promising. . .
... but not work-optimal: sequential time $O\left(n^{3} \log n\right)$

Parallel graph algorithms

All-pairs shortest paths

Sparsified path doubling
[Alon+: 1997]
Idea: remove redundancy in path doubling by keeping track of path sizes

Parallel graph algorithms

All-pairs shortest paths

Sparsified path doubling
Idea: remove redundancy in path doubling by keeping track of path sizes
Lex-tropical semiring (aka lexicographic semiring)

- elements are pairs $(a, k) \quad a \in \mathbb{R}^{+} \quad k \in \mathbb{Z}^{+}$
- \oplus is lexicographic min $0=(+\infty,+\infty)$
- \odot is numerical $+\square=(0,0)$

Weighted digraph on n nodes: define matrix as
$A_{i j}= \begin{cases}1=(0,0) & \text { if } i=j \\ (\text { length of edge } i \rightarrow j, 1) & \text { if edge exists } \\ 0=(+\infty,+\infty) & \text { otherwise }\end{cases}$

Parallel graph algorithms

All-pairs shortest paths

Sparsified path doubling (contd.)
$A_{i j}^{k}=$ length of shortest path $i \rightsquigarrow j$ among those of size $\leq k$
Let $\left.(a, k)\right|_{t}= \begin{cases}(a, k) & \text { if } k=t \\ 0 & \text { otherwise }\end{cases}$
$\left.A_{i j}^{k}\right|_{\ell}= \begin{cases}A_{i j}^{k} & \text { if realised by a path of size exactly } \ell \leq k \\ 0 & \text { otherwise }\end{cases}$
$\left.A^{k}\right|_{\ell}$ contains all lengths of shortest paths of size exactly ℓ. May also contain some non-shortest path lengths (where the shortest path is of size $\geq k$), but that does no harm.

Parallel graph algorithms

All-pairs shortest paths

Sparsified path doubling (contd.)
We have $A^{k}=\left.\left.\left.A^{k}\right|_{0} \oplus \cdots \oplus A^{k}\right|_{\frac{k}{2}} \oplus \cdots \oplus A^{k}\right|_{k}$
Consider matrices in \oplus-sum $\left.\left.A^{k}\right|_{\frac{k}{2}} \oplus \cdots \oplus A^{k}\right|_{k}$
Total density of these $\frac{k}{2}$ matrices is ≤ 1. This is $\leq \frac{2}{k}$ per matrix on average, and hence also for some specific $\left.A^{k}\right|_{\frac{k}{2}+\ell}, 0 \leq \ell \leq \frac{k}{2}$
We have $\left(\left.I \oplus A^{k}\right|_{\frac{k}{2}+\ell}\right) \odot A^{k}=A^{\frac{3 k}{2}+\ell}$
This is because a shortest path of size $\leq \frac{3 k}{2}+\ell$ is either

- of size $\leq k$, or
- (shortest path of size exactly $\left.\frac{k}{2}+\ell\right) \odot($ one of size $\leq k)$

Sparse-by-dense matrix \odot-product: $\leq \frac{2 n^{2}}{k} \cdot n=\frac{2 n^{3}}{k}$ elementary \odot-products

Parallel graph algorithms

All-pairs shortest paths

Sparsified path doubling (contd.)
Compute matrices $A, A^{\frac{3}{2}+\ell}, A^{\left(\frac{3}{2}\right)^{2}+\ell^{\prime}}, \ldots, A^{n}=A^{*}$
Overall, $\leq \log _{3 / 2} n$ rounds of sparsified path doubling
Sequential work $O\left(n^{3}\right) \cdot\left(1+\left(\frac{3}{2}\right)^{-1}+\left(\frac{3}{2}\right)^{-2}+\cdots\right)=O\left(n^{3}\right)$

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by sparsified path doubling
All processors collectively

- compute $B=A^{p+\ell}$ by $\leq \log _{3 / 2} p$ rounds of sparsified path doubling
- select $\left.B\right|_{p}$ from B
$\left.B\right|_{p}$ is dense, but can be decomposed into a \odot-product of sparse matrices $\left.B\right|_{p}=\left.\left.B\right|_{q} \odot B\right|_{p-q} \quad 0 \leq q \leq \frac{p}{2}$

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by sparsified path doubling
All processors collectively

- compute $B=A^{p+\ell}$ by $\leq \log _{3 / 2} p$ rounds of sparsified path doubling
- select $\left.B\right|_{p}$ from B
$\left.B\right|_{p}$ is dense, but can be decomposed into a \odot-product of sparse matrices
$\left.B\right|_{p}=\left.\left.B\right|_{q} \odot B\right|_{p-q} \quad 0 \leq q \leq \frac{p}{2}$
Consider matrix pair $\left.B\right|_{q},\left.B\right|_{p-q}$ for each q
Total density of these $\frac{p}{2}$ pairs is ≤ 1. This is $\leq \frac{2}{p}$ per pair on average, and hence also for some specific pair with a fixed q

Such a q is found sequentially by a designated processor

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by sparsified path doubling (contd.)

Every processor

- selects and writes its shares of $\left.B\right|_{q},\left.B\right|_{p-q}$ from B
- reads whole $\left.B\right|_{q},\left.B\right|_{p-q}$ and combines them to $\left.B\right|_{p}=\left.\left.B\right|_{q} \odot B\right|_{p-q}$

All processors collectively

- compute $\left(\left.B\right|_{p}\right)^{*}$ by parallel multi-Dijkstra
- compute $\left(\left.B\right|_{p}\right)^{*} \odot B=A^{*}$ by parallel matrix \odot-multiplication

Use of multi-Dijkstra requires that all edge lengths in A are nonnegative

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by sparsified path doubling (contd.)

Every processor

- selects and writes its shares of $\left.B\right|_{q},\left.B\right|_{p-q}$ from B
- reads whole $\left.B\right|_{q},\left.B\right|_{p-q}$ and combines them to $\left.B\right|_{p}=\left.\left.B\right|_{q} \odot B\right|_{p-q}$

All processors collectively

- compute $\left(\left.B\right|_{p}\right)^{*}$ by parallel multi-Dijkstra
- compute $\left(\left.B\right|_{p}\right)^{*} \odot B=A^{*}$ by parallel matrix \odot-multiplication

Use of multi-Dijkstra requires that all edge lengths in A are nonnegative

$$
\operatorname{comp}=O\left(n^{3} / p\right) \quad \text { comm }=O\left(n^{2} / p^{2 / 3}\right) \quad \text { sync }=O(\log p)
$$

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by sparsified path doubling (contd.)
Now let A have arbitrary (nonnegative or negative) edge lengths. We still assume there are no negative-length cycles.

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by sparsified path doubling (contd.)
Now let A have arbitrary (nonnegative or negative) edge lengths. We still assume there are no negative-length cycles.

All processors collectively

- compute $B=A^{p^{2}+\ell}$ by $\leq 2 \log _{3 / 2} p$ rounds of sparsified path doubling

Let $P=\left\{p, 2 p, \ldots, p^{2}\right\}, P-q=\left\{p-q, 2 p-q, \ldots, p^{2}-q\right\}$ for any q
$\left.B\right|_{P}=\left.\left.\left.B\right|_{p} \oplus B\right|_{2 p} \oplus \cdots \oplus B\right|_{p^{2}}$
All processors collectively

- select $\left.B\right|_{P}$ from B

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by sparsified path doubling (contd.)
$\left.B\right|_{P}$ is dense, but can be decomposed into a \odot-product of sparse matrices
$\left.B\right|_{P}=\left.\left.B\right|_{q} \odot B\right|_{P-q} \quad 0 \leq q \leq \frac{p}{2}$
Consider matrix pair $\left.B\right|_{q},\left.B\right|_{P_{-q}}$ for each q
Total density of these $\frac{p}{2}$ pairs is ≤ 1. This is $\leq \frac{2}{p}$ per pair on average, and hence also for some specific pair with a fixed q

Such a q is found sequentially by a designated processor

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by sparsified path doubling (contd.)

Every processor

- selects and writes its shares of $\left.B\right|_{q},\left.B\right|_{P-q}$ from B
- reads whole $\left.B\right|_{q},\left.B\right|_{P-q}$ and combines them to $\left.B\right|_{P}=\left.\left.B\right|_{q} \odot B\right|_{P-q}$
- computes $\left(\left.B\right|_{P}\right)^{*}$ by $\leq \log _{3 / 2} n$ rounds of sparsified path doubling (with path sizes multiples of p)

All processors collectively

- compute $\left(\left.B\right|_{P}\right)^{*} \odot B=A^{*}$ by parallel matrix \odot-multiplication

Parallel graph algorithms

All-pairs shortest paths

Parallel APSP by sparsified path doubling (contd.)

Every processor

- selects and writes its shares of $\left.B\right|_{q},\left.B\right|_{P-q}$ from B
- reads whole $\left.B\right|_{q},\left.B\right|_{P-q}$ and combines them to $\left.B\right|_{P}=\left.\left.B\right|_{q} \odot B\right|_{P-q}$
- computes $\left(\left.B\right|_{P}\right)^{*}$ by $\leq \log _{3 / 2} n$ rounds of sparsified path doubling (with path sizes multiples of p)

All processors collectively

- compute $\left(\left.B\right|_{P}\right)^{*} \odot B=A^{*}$ by parallel matrix \odot-multiplication

$$
\operatorname{comp}=O\left(n^{3} / p\right)
$$

$$
c o m m=O\left(n^{2} / p^{2 / 3}\right)
$$

$$
\text { sync }=O(\log p)
$$

