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Computation by circuits
Computation models and algorithms

Model: abstraction of reality allowing qualitative and quantitative
reasoning

Examples:

atom

biological cell

galaxy

Kepler’s universe

Newton’s universe

Einstein’s universe

. . .
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Computation by circuits
Computation models and algorithms

Computation model: abstract computing device to reason about
computations and algorithms

Examples:

scales+weights (for “counterfeit coin” problems)

Turing machine

von Neumann machine (“ordinary computer”)

JVM

quantum computer

. . .
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Computation by circuits
Computation models and algorithms

Computation: input→ (computation steps)→ output

Algorithm: a finite description of a (usually infinite) set of computations
on different inputs

Assumes a specific computation model and input/output encoding

Algorithm’s running time (worst-case) T : N→ N

T (n) = max
input size=n

computation steps

Similarly for other resources (e.g. memory, communication)
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Computation by circuits
Computation models and algorithms

T (n) is usually analysed asymptotically:

up to a constant factor

for sufficiently large n

f (n) ≥ 0 n→∞
Asymptotic growth classes relative to f : O(f ), o(f ), Ω(f ), ω(f ), Θ(f )
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Computation by circuits
Computation models and algorithms

f (n), g(n) ≥ 0 n→∞
g = O(f ): “g grows at the same rate or slower than f ”. . .

g = O(f )⇐⇒ ∃C : ∃n0 : ∀n ≥ n0 : g(n) ≤ C · f (n)

In words: we can scale f up by a specific (possibly large) constant, so that
f will eventually overtake and stay above g

g = o(f ): “g grows (strictly) slower than f ”

g = o(f )⇐⇒ ∀c : ∃n0 : ∀n ≥ n0 : g(n) ≤ c · f (n)

In words: even if we scale f down by any (however small) constant, f will
still eventually overtake and stay above g

Overtaking point depends on the constant!

Exercise: ∃n0 : ∀c : ∀n ≥ n0 : g(n) ≤ c · f (n) — what does this say?
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Computation by circuits
Computation models and algorithms

g = Ω(f ): “g grows at the same rate or faster than f ”

g = ω(f ): “g grows (strictly) faster than f ”

g = Ω(f ) iff f = O(g) g = ω(f ) iff f = o(g)

g = Θ(f ): “g grows at the same rate as f ”

g = Θ(f ) iff g = O(f ) and g = Ω(f )

Note: an algorithm is faster, when its complexity grows slower

Note: the “equality” in g = O(f ) is actually set membership. Sometimes
written g ∈ O(f ), similarly for Ω, etc.
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Computation by circuits
Computation models and algorithms

f (n), g(n) ≥ 0 n→∞
The maximum rule: f + g = Θ

(
max(f , g)

)

Proof: for all n, we have

max(f (n) + g(n)) ≤ f (n) + g(n) ≤ 2 max(f (n) + g(n))
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Computation by circuits
Computation models and algorithms

Example usage: sorting an array of size n

All good comparison-based sorting algorithms run in time O(n log n)

If only pairwise comparisons between elements are allowed, no algorithm
can run faster than Ω(n log n)

Hence, comparison-based sorting has complexity Θ(n log n)

If we are not restricted to just making comparisons, we can often sort in
time o(n log n), or even O(n)
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Computation by circuits
Computation models and algorithms

Example usage: multiplying n × n matrices

All good algorithms run in time O(n3), where n is matrix size

If only addition and multiplication between elements are allowed, no
algorithm can run faster than Ω(n3)

Hence, (+,×) matrix multiplication has complexity Θ(n3)

If subtraction is allowed, everything changes! The best known matrix
multiplication algorithm (with subtraction) runs in time O(n2.373)

It is conjectured that O(n2+ε) for any ε > 0 is possible – open problem!

Matrix multiplication cannot run faster than Ω(n2 log n) even with
subtraction (under some natural assumptions)
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Computation by circuits
Computation models and algorithms

Algorithm complexity depends on the model

E.g. sorting n items:

Ω(n log n) in the comparison model

O(n) in the arithmetic model (by radix sort)

E.g. factoring large numbers:

hard in a von Neumann-type (standard) model

not so hard on a quantum computer

E.g. deciding if a program halts on a given input:

impossible in a standard (or even quantum) model

can be added to the standard model as an oracle, to create a more
powerful model
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Computation by circuits
The circuit model

Basic special-purpose parallel model: a circuit

a2 + 2ab + b2

a2 − b2

a b

x2 2xy y2

x + y + z x − y

Directed acyclic graph (dag), fixed number of inputs/outputs

Models oblivious computation: control sequence independent of the input

Computation on varying number of inputs: an (infinite) circuit family

May or may not admit a finite description (= algorithm)
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Computation by circuits
The circuit model

In a circuit family, node indegree/outdegree may be bounded (by a
constant), or unbounded: e.g. two-argument vs n-argument sum

Elementary operations:

arithmetic/Boolean/comparison

each (usually) constant time

size = number of nodes

depth = max path length from input to output

Other uses of circuits:

arbitrary (non-oblivious) computation can be thought of as a circuit
that is not given in advance, but revealed gradually

timed circuits with feedback: systolic arrays
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Computation by circuits
The comparison network model

A comparison network is a circuit of comparator nodes

x

x u y

y

x t y

denotes

x y

x u y x t y

u = min

t = max

Input/output: sequences of equal length, taken from a totally ordered set

Examples:

n = 4

size 5

depth 3

n = 4

size 6

depth 3
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Computation by circuits
The comparison network model

A merging network is a comparison network that takes two sorted input
sequences of length n′, n′′, and produces a sorted output sequence of
length n = n′ + n′′

A sorting network is a comparison network that takes an arbitrary input
sequence, and produces a sorted output sequence

A finitely described family of sorting (or merging) networks is equivalent to
an oblivious sorting (or merging) algorithm

The network’s size/depth determine the algorithm’s sequential/parallel
complexity

General merging: O(n) comparisons, non-oblivious

General sorting: O(n log n) comparisons by mergesort, non-oblivious

What is the complexity of oblivious sorting?
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Computation by circuits
Naive sorting networks

BUBBLE -SORT (n)

size n(n − 1)/2 = O(n2)

depth 2n − 3 = O(n)

BUBBLE -SORT (n−1)

BUBBLE -SORT (8)

size 28

depth 13
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Computation by circuits
Naive sorting networks

INSERTION-SORT (n)

size n(n − 1)/2 = O(n2)

depth 2n − 3 = O(n)

INSERTION-SORT (n−1)

INSERTION-SORT (8)

size 28

depth 13

Identical to BUBBLE -SORT !
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Computation by circuits
The zero-one principle

Zero-one principle: A comparison network is sorting, if and only if it sorts
all input sequences of 0s and 1s

Proof. “Only if”: trivial. “If”: by contradiction.

Assume a given network does not sort input x = 〈x1, . . . , xn〉
〈x1, . . . , xn〉 7→ 〈y1, . . . , yn〉 ∃k, l : k < l : yk > yl

Let Xi =

{
0 if xi < yk

1 if xi ≥ yk
, and run the network on input X = 〈X1, . . . ,Xn〉

For all i , j we have xi ≤ xj ⇒ Xi ≤ Xj , therefore each Xi follows the same
path through the network as xi

〈X1, . . . ,Xn〉 7→ 〈Y1, . . . ,Yn〉 Yk = 1 > 0 = Yl

We have k < l but Yk > Yl , so the network does not sort 0s and 1s
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Computation by circuits
The zero-one principle

The zero-one principle applies to sorting, merging and other comparison
problems (e.g. selection)

It allows one to test:

a sorting network by checking only 2n input sequences, instead of a
much larger number n! = (1 + o(1))(2πn)1/2 · (n/e)n

a merging network by checking only (n′ + 1) · (n′′ + 1) pairs of input
sequences, instead of a (typically) very much larger number( n
n′

)
=
( n
n′′

)
, e.g. for n = 2n′ = 2n′′:

( n
n′

)
= (1 + o(1))(πn/2)−1/2 · 2n
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Computation by circuits
Efficient merging and sorting networks

General merging: O(n) comparisons, non-oblivious

How fast can we merge obliviously?

〈x1 ≤ · · · ≤ xn′〉, 〈y1 ≤ · · · ≤ yn′′〉 7→ 〈z1 ≤ · · · ≤ zn〉
Odd-even merging

When n′ = n′′ = 1 compare (x1, y1), otherwise by recursion:

merge 〈x1, x3, . . . 〉, 〈y1, y3, . . . 〉 7→ 〈u1 ≤ u2 ≤ · · · ≤ udn′/2e+dn′′/2e〉
merge 〈x2, x4, . . . 〉, 〈y2, y4, . . . 〉 7→ 〈v1 ≤ v2 ≤ · · · ≤ vbn′/2c+bn′′/2c〉
compare pairwise: (u2, v1), (u3, v2), . . .

size(OEM(n′, n′′)) ≤ 2 · size(OEM(n′/2, n′′/2)) + O(n) = O(n log n)

depth(OEM(n′, n′′)) ≤ depth(OEM(n′/2, n′′/2)) + 1 = O(log n)
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Computation by circuits
Efficient merging and sorting networks

OEM(n′, n′′)

size O(n log n)

depth O(log n)

OEM(dn′/2e,dn′′/2e)

OEM(bn′/2c,bn′′/2c)

OEM(4, 4)

size 9

depth 3
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Computation by circuits
Efficient merging and sorting networks

Correctness proof of odd-even merging:

induction, zero-one principle

Induction base: trivial (2 inputs, 1 comparator)

Inductive step. Inductive hypothesis: odd, even merge both work correctly

Let the input consist of 0s and 1s. We have for all k, l :

〈0dk/2e11 . . .〉, 〈0dl/2e11 . . .〉 7→ 〈0dk/2e+dl/2e11 . . .〉 in the odd merge

〈0bk/2c11 . . .〉, 〈0bl/2c11 . . .〉 7→ 〈0bk/2c+bl/2c11 . . .〉 in the even merge

(dk/2e+ dl/2e)− (bk/2c+ bl/2c) ={
0, 1 result sorted: 〈0k+l11 . . .〉
2 single pair wrong: 〈0k+l−11011 . . .〉

The final stage of comparators corrects the wrong pair

〈0k11 . . .〉, 〈0l11 . . .〉 7→ 〈0k+l11 . . .〉
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Computation by circuits
Efficient merging and sorting networks

Sorting an arbitrary input 〈x1, . . . , xn〉
Odd-even merge sorting [Batcher: 1968]

When n = 1 we are done, otherwise by recursion:

sort 〈x1, . . . , xdn/2e〉
sort 〈xdn/2e+1, . . . , xn〉
merge results by OEM(dn/2e, bn/2c)

size(OEM-SORT )(n) ≤
2 · size(OEM-SORT (n/2)) + size(OEM(n/2, n/2)) =

2 · size(OEM-SORT (n/2)) + O(n log n) = O
(
n(log n)2

)
depth(OEM-SORT (n)) ≤
depth(OEM-SORT (n/2)) + depth(OEM(n/2, n/2)) =

depth(OEM-SORT (n/2)) + O(log n) = O
(
(log n)2

)
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Computation by circuits
Efficient merging and sorting networks

OEM-SORT (n)

size O
(
n(log n)2

)
depth O

(
(log n)2

) OEM-SORT

(dn/2e)
OEM-SORT

(bn/2c)

OEM(dn/2e,bn/2c)

OEM-SORT (8)

size 19

depth 6
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Computation by circuits
Efficient merging and sorting networks

A bitonic sequence: 〈x1 ≥ · · · ≥ xm ≤ · · · ≤ xn〉 1 ≤ m ≤ n

Bitonic merging: sorting a bitonic sequence

When n = 1 we are done, otherwise by recursion:

sort bitonic 〈x1, x3, . . . 〉 7→ 〈u1 ≤ u2 ≤ · · · ≤ udn/2e〉
sort bitonic 〈x2, x4, . . . 〉 7→ 〈v1 ≤ v2 ≤ · · · ≤ vbn/2c〉
compare pairwise: (u1, v1), (u2, v2), . . .

Exercise: prove correctness (by zero-one principle)

Note: cannot exchange ≥ and ≤ in definition of bitonic!

Bitonic merging is more flexible than odd-even merging, since for a fixed
n, a single circuit applies to all values of m

size(BM(n)) = O(n log n) depth(BM(n)) = O(log n)
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Computation by circuits
Efficient merging and sorting networks

BM(n)

size O(n log n)

depth O(log n)

BM(dn/2e)

BM(bn/2c)

BM(8)

size 12

depth 3
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Computation by circuits
Efficient merging and sorting networks

Bitonic merge sorting [Batcher: 1968]

When n = 1 we are done, otherwise by recursion:

sort 〈x1, . . . , xdn/2e〉 7→ 〈y1 ≥ · · · ≥ ydn/2e〉 in reverse

sort 〈xdn/2e+1, . . . , xn〉 7→ 〈ydn/2e+1 ≤ · · · ≤ yn〉
sort bitonic 〈y1 ≥ · · · ≥ ym ≤ · · · ≤ yn〉 m = dn/2e or dn/2e+ 1

Sorting in reverse seems to require “inverted comparators”

, however

comparators are actually nodes in a circuit, which can always be
drawn using “standard comparators”

a network drawn with “inverted comparators” can be converted into
one with only “standard comparators” by a top-down rearrangement

size(BM-SORT (n)) = O
(
n(log n)2

)
depth(BM-SORT (n)) = O

(
(log n)2

)
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Computation by circuits
Efficient merging and sorting networks
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Computation by circuits
Efficient merging and sorting networks

Both OEM-SORT and BM-SORT have size Θ
(
n(log n)2

)
Is it possible to sort obliviously in size o

(
n(log n)2

)
? O(n log n)?

AKS sorting [Ajtai, Komlós, Szemerédi: 1983]

[Paterson: 1990]; [Seiferas: 2009]

Sorting network: size O(n log n), depth O(log n)

Uses sophisticated graph theory (expanders)

Asymptotically optimal, but has huge constant factors
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Parallel computation models
The PRAM model

Parallel Random Access Machine (PRAM) [Fortune, Wyllie: 1978]

Simple, idealised general-purpose parallel
model

MEMORY

P

0

P

1

P

2

· · ·

Contains

unlimited number of processors (1 time unit/op)

global shared memory (1 time unit/access)

Operates in full synchrony
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Parallel computation models
The PRAM model

PRAM computation: sequence of parallel steps

Communication and synchronisation taken for granted

Not scalable in practice!

PRAM variants:

concurrent/exclusive read

concurrent/exclusive write

CRCW, CREW, EREW, (ERCW) PRAM

E.g. a linear system solver: O
(
(log n)2

)
steps using n4 processors :-O

PRAM algorithm design: minimising number of steps, sometimes also
number of processors
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Parallel computation models
The BSP model

Bulk-Synchronous Parallel (BSP) computer [Valiant: 1990]

Simple, realistic general-purpose parallel
model

Goals: scalability, portability, predictability

COMM. ENV . (g , l)

0

P
M

1

P
M

p − 1

P
M· · ·

Contains

p processors, each with local memory (1 time unit/operation)

communication environment, including a network and an external
memory (g time units/data unit communicated)

barrier synchronisation mechanism (l time units/synchronisation)
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Parallel computation models
The BSP model

Some elements of a BSP computer can be emulated by others, e.g.

external memory by local memory + network communication

barrier synchronisation mechanism by network communication

Communication network parameters:

g is communication gap (inverse bandwidth), worst-case time for a
data unit to enter/exit the network

l is latency, worst-case time for a data unit to get across the network

Every parallel system can be (approximately) described by p, g , l

Network efficiency grows slower than processor efficiency and costs more
energy: g , l � 1. E.g. for Cray T3E: p = 64, g ≈ 78, l ≈ 1825
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Parallel computation models
The BSP model
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Parallel computation models
The BSP model

BSP computation: sequence of parallel supersteps

0

1

p − 1

Asynchronous computation/communication within supersteps (includes
data exchange with external memory)

Synchronisation before/after each superstep

Cf. CSP: parallel collection of sequential processes
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Parallel computation models
The BSP model

Compositional cost model

For individual processor proc in superstep sstep:

comp(sstep, proc): the amount of local computation and local
memory operations by processor proc in superstep sstep

comm(sstep, proc): the amount of data sent and received by
processor proc in superstep sstep

For the whole BSP computer in one superstep sstep:

comp(sstep) = max0≤proc<p comp(sstep, proc)

comm(sstep) = max0≤proc<p comm(sstep, proc)

cost(sstep) = comp(sstep) + comm(sstep) · g + l
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Parallel computation models
The BSP model

For the whole BSP computation with sync supersteps:

comp =
∑

0≤sstep<sync comp(sstep)

comm =
∑

0≤sstep<sync comm(sstep)

cost =
∑

0≤sstep<sync cost(sstep) = comp + comm · g + sync · l

The input/output data are stored in the external memory; the cost of
input/output is included in comm

E.g. for a particular linear system solver with an n × n matrix:

comp = O(n3/p) comm = O(n2/p1/2) sync = O(p1/2)
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Parallel computation models
The BSP model

Conventions:

problem size n� p (slackness)

input/output in external memory, counts as one-sided communication

BSP algorithm design: minimising comp, comm, sync

Main principles:

computation load balancing: ideally, comp = O
( seq work

p

)
data locality: ideally comm = O

( input/output
p

)
coarse granularity: ideally, sync function of p not n (or better, O(1))

Data locality exploited, network locality ignored!
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Parallel computation models
The BSP model

BSP software: industrial projects

Google’s Pregel [2010]

Apache Hama, Spark, Giraph (apache.org) [2010–16]

BSP software: research projects

Oxford BSP (www.bsp-worldwide.org/implmnts/oxtool) [1998]

Paderborn PUB (www2.cs.uni-paderborn.de/~pub) [1998]

BSML (traclifo.univ-orleans.fr/BSML) [1998]

BSPonMPI (bsponmpi.sourceforge.net) [2006]

Multicore BSP (www.multicorebsp.com) [2011]

Epiphany BSP (www.codu.in/ebsp) [2015]

Petuum (petuum.org) [2015]
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Parallel computation models
Fundamental communication patterns

Broadcasting:

initially, one designated processor holds a value a

at the end, every processor must hold a copy of a

Combining (complementary to broadcasting):

initially, every processor r holds a value ar

at the end, one designated processor must hold
∑

r ar

addition can be replaced by any given associative operator •:
a • (b • c) = (a • b) • c, computable in time O(1)

Examples: numerical +, ·, min, max, Boolean ∧, ∨, . . .

By symmetry, we only need to consider broadcasting
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Parallel computation models
Fundamental communication patterns

Direct broadcast:

designated processor makes
p − 1 copies of a and sends
them directly to destinations

a

a a a a

comp = O(p) comm = O(p) sync = O(1)

Cost components will be shaded when they are optimal, i.e. cannot be
improved by another algorithm (under certain explicit assumptions)
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Parallel computation models
Fundamental communication patterns

Binary tree broadcast:

initially, only designated
processor is awake

processors wake up each other
in log p rounds

in every round, every awake
processor makes a copy of a and
send it to a sleeping processor,
waking it up

a

a a

a a a a

In round k = 0, . . . , log p − 1, the number of awake processors is 2k

comp = O(log p) comm = O(log p) sync = O(log p)
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Parallel computation models
Fundamental communication patterns

Array broadcasting:

initially, one designated processor holds array a of size n ≥ p

at the end, every processor must hold a copy of the whole array a

effectively, n independent instances of broadcasting

Array combining (complementary to array broadcasting):

initially, every processor r holds an array ar of size n ≥ p

at the end, one designated processor must hold componentwise
∑

r ar

addition can be replaced by any given associative operator •
effectively, n independent instances of combining

By symmetry, we only need to consider array broadcasting
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Parallel computation models
Fundamental communication patterns

Two-phase array broadcast:

partition array into p blocks of
size n/p

scatter blocks

total-exchange blocks

A B

C D

A B C D

A B

C D

A B

C D

A B

C D

A B

C D

comp = O(n) comm = O(n) sync = O(1)
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Parallel computation models
Fundamental communication patterns

Array broadcasting/combining enables concurrent access to external
memory in blocks of size ≥ p

Concurrent reading: a designated processor

reads block from external memory

broadcasts block

Concurrent writing, resolved by •: a designated processor

combines blocks from each processor by •
writes combined block to external memory

Two-phase array broadcast/combine used as subroutine
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Parallel computation models
Network routing

BSP network model: complete graph, uniformly accessible (access
efficiency described by parameters g , l)

Has to be implemented on concrete networks

Parameters of a network topology (i.e. the underlying graph):

degree — number of links per node

diameter — maximum distance between nodes

Low degree — easier to implement

Low diameter — more efficient
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Parallel computation models
Network routing

2D array network

p = q2 processors

degree 4

diameter p1/2 = q
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Parallel computation models
Network routing

3D array network

p = q3 processors

degree 6

diameter 3/2 · p1/3 = 3/2 · q
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Parallel computation models
Network routing

Butterfly network

p = q log q processors

degree 4

diameter ≈ log p ≈ log q
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Parallel computation models
Network routing

Hypercube network

p = 2q processors

degree log p = q

diameter log p = q
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Parallel computation models
Network routing

Network Degree Diameter

1D array 2 1/2 · p
2D array 4 p1/2

3D array 6 3/2 · p1/3

Butterfly 4 log p
Hypercube log p log p
· · · · · · · · ·
BSP parameters g , l depend on degree, diameter, routing strategy

Assume store-and-forward routing (alternative — wormhole)

Assume distributed routing: no global control

Oblivious routing: path determined only by source and destination

E.g. greedy routing: a packet always takes the shortest path
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Parallel computation models
Network routing

h-relation (h-superstep): every processor sends and receives ≤ h packets

Sufficient to consider permutations (1-relations): once we can route any
permutation in k steps, we can route any h-relation in hk steps

Any routing method may be forced to make Ω(diameter) steps

Any oblivious routing method may be forced to make Ω(p1/2/degree) steps

Many practical patterns force such “hot spots” on traditional networks
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Parallel computation models
Network routing

Routing based on sorting networks

Each processor corresponds to a wire

Each link corresponds to (possibly several) comparators

Routing corresponds to sorting by destination address

Each stage of routing corresponds to a stage of sorting

Such routing is non-oblivious (for individual packets)!

Network Degree Diameter

OEM-SORT/BM-SORT O
(
(log p)2

)
O
(
(log p)2

)
AKS O(log p) O(log p)

No “hot spots”: can always route a permutation in O(diameter) steps

Requires a specialised network, too messy and impractical
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Parallel computation models
Network routing

Two-phase randomised routing: [Valiant: 1980]

send every packet to random intermediate destination

forward every packet to final destination

Both phases oblivious (e.g. greedy), but non-oblivious overall due to
randomness

Hot spots very unlikely: on a 2D array, butterfly, hypercube, can route a
permutation in O(diameter) steps with high probability

On a hypercube, the same holds even for a log p-relation

Hence constant g , l in the BSP model
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Parallel computation models
Network routing

BSP implementation: processes placed at random, communication delayed
until end of superstep

All packets with same source and destination sent together, hence message
overhead absorbed in l

Network g l

1D array O(p) O(p)

2D array O(p1/2) O(p1/2)

3D array O(p1/3) O(p1/3)
Butterfly O(log p) O(log p)
Hypercube O(1) O(log p)
· · · · · · · · ·
Actual values of g , l obtained by running benchmarks
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Basic parallel algorithms
Balanced tree and prefix sums

The balanced binary tree dag:

tree(n)

1 input, n outputs

size n − 1

depth log n

a

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

Every node computes an arbitrary given operation in time O(1)

Can be directed

top-down (one input at root, n outputs at leaves)

bottom-up (n inputs at leaves, one output at root)

Sequential work O(n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 60 / 256



Basic parallel algorithms
Balanced tree and prefix sums

The balanced binary tree dag:

tree(n)

1 input, n outputs

size n − 1

depth log n

a

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

Every node computes an arbitrary given operation in time O(1)

Can be directed

top-down (one input at root, n outputs at leaves)

bottom-up (n inputs at leaves, one output at root)

Sequential work O(n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 60 / 256



Basic parallel algorithms
Balanced tree and prefix sums

Parallel balanced tree computation, p = 4

tree(n) a

tree(p)

tree(n/p) tree(n/p) tree(n/p) tree(n/p)

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

From now on, we always assume that a problem’s input/output is stored in
the external memory; reading/writing will also refer to the external memory

Partition tree(n) into

one top block, isomorphic to tree(p)

a bottom layer of p blocks, each isomorphic to tree(n/p)
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Basic parallel algorithms
Balanced tree and prefix sums

Parallel balanced tree computation (contd.)

For top-down computation, a designated processor

is assigned the top block

reads block’s input, computes block, writes block’s p outputs

Then every processor

is assigned a different bottom block

reads block’s input, computes block, writes block’s n/p outputs

For bottom-up computation, reverse the steps

comp = O(n/p) comm = O(n/p) sync = O(1)

Required slackness n ≥ p2
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Basic parallel algorithms
Balanced tree and prefix sums

The described parallel balanced tree algorithm is fully optimal:

optimal comp = O(n/p) = O
( sequential work

p

)
optimal comm = O(n/p) = O

( input/output size
p

)
optimal sync = O(1)

For other problems, we may not be so lucky to get a fully-optimal BSP
algorithm. However, we are typically interested in algorithms that are
optimal in comp (under reasonable assumptions).

Optimality in comm and sync is considered subject to optimality in comp

For example, we are not allowed to “cheat” by running the whole
computation in a single processor, sacrificing comp and comm to
guarantee optimal sync = O(1)
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Basic parallel algorithms
Balanced tree and prefix sums

The prefix sums problem

Given array a = [a0, . . . , an−1]

Compute b−1 = 0 bi = ai + bi−1 0 ≤ i < n

Addition can be replaced by any given associative operator •
Operator identity ε (can be introduced formally if missing)

Compute b−1 = ε bi = ai • bi−1 0 ≤ i < n

b0 = a0

b1 = a0 • a1

b2 = a0 • a1 • a2

· · ·
bn−1 = a0 • a1 • · · · • an−1

Sequential work O(n) by trivial circuit of size n − 1, depth n − 1
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Basic parallel algorithms
Balanced tree and prefix sums

The prefix circuit [Ladner, Fischer: 1980]

prefix(n) ε

ε

a0

a0

a1 a2

a0:2

a3 a4

a0:4

a5 a6

a0:6

a7 a8

a0:8

a9 a10

a0:10

a11 a12

a0:12

a13 a14

a0:14

a15

prefix(n/2)

a0:1

a0:1

a2:3

a0:3

a4:5

a0:5

a6:7

a0:7

a8:9

a0:9

a10:11

a0:11

a12:13

a0:13

a14:15

a0:15

where ak:l = ak • ak+1 • . . . • al
The underlying dag is called the prefix dag
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Basic parallel algorithms
Balanced tree and prefix sums

The prefix circuit (contd.)

prefix(n)

n inputs

n outputs

size 2n − 2

depth 2 log n

ε

ε

a0

a0

a1

a0:1

a2

a0:2

a3

a0:3

a4

a0:4

a5

a0:5

a6

a0:6

a7

a0:7

a8

a0:8

a9

a0:9

a10

a0:10

a11

a0:11

a12

a0:12

a13

a0:13

a14

a0:14

a15

a0:15

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 66 / 256



Basic parallel algorithms
Balanced tree and prefix sums

Parallel prefix sums computation

Dag prefix(n) consists of

a top subtree similar to bottom-up tree(n)

transfer of values from top subtree to bottom subtree

a bottom subtree similar to top-down tree(n)

Both trees can be computed by the previous algorithm

Transfer stage: communication cost O(n/p)

comp = O(n/p) comm = O(n/p) sync = O(1)

Required slackness n ≥ p2
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Basic parallel algorithms
Balanced tree and prefix sums

Application: generic first-order linear recurrence

Given arrays a = [a0, . . . , an−1], b = [b0, . . . , bn−1]

Compute c−1 = 0 ci = ai + bi · ci−1 0 ≤ i < n

c0 = a0

c1 = a1 + b1 · c0

c2 = a2 + b2 · c1

· · ·
cn−1 = an−1 + bn−1 · cn−2
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Basic parallel algorithms
Balanced tree and prefix sums

Application: generic first-order linear recurrence (contd.)

c−1 = 0 ci = ai + bi · ci−1 0 ≤ i < n

Let Ai =

[
1 0
ai bi

]
Ci =

[
1
ci

]
AiCi−1 =

[
1 0
ai bi

] [
1

ci−1

]
=

[
1
ci

]
= Ci

C0 = A0 · C−1

C1 = A1A0 · C−1

C2 = A2A1A0 · C−1

· · ·
Cn−1 = An−1 . . .A1A0 · C−1
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Basic parallel algorithms
Balanced tree and prefix sums

Application: generic first-order linear recurrence (contd.)

Computing the generic first-order linear recurrence:

suffix sums (= prefix sums in reverse) of [An−1, . . . ,A0], with
operator defined by 2× 2-matrix multiplication

each suffix sum multiplied by C−1

output obtained as bottom component of resulting 2-vectors

Resulting circuit: size O(n), depth O(log n)
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Basic parallel algorithms
Balanced tree and prefix sums

Application: generic first-order linear recurrence (contd.)

Operators +, · can be replaced by any given ⊕, �, where

operators ⊕, � computable in time O(1)

operator ⊕ associative: a⊕ (b ⊕ c) = (a⊕ b)⊕ c

operator � associative: a� (b � c) = (a� b)� c

operator � (left-)distributive over ⊕: a� (b ⊕ c) = (a� b)⊕ (a� c)

Examples of possible ⊕, �:

numerical +, ·
numerical min, +; numerical max, +

Boolean ∧, ∨; Boolean ∨, ∧
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Basic parallel algorithms
Balanced tree and prefix sums

Application: polynomial evaluation

Given a = [a0, . . . , an−1], x

Compute y = a0 + a1 · x + . . .+ an−2 · xn−2 + an−1 · xn−1

Evaluating the polynomial:

1, x , x2, . . . , xn−1 by prefix sums with operator ·
sum y by bottom-up balanced binary tree with operator +

Resulting circuit: size O(n), depth O(log n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 72 / 256



Basic parallel algorithms
Balanced tree and prefix sums

Application: polynomial evaluation

Given a = [a0, . . . , an−1], x

Compute y = a0 + a1 · x + . . .+ an−2 · xn−2 + an−1 · xn−1

Evaluating the polynomial:

1, x , x2, . . . , xn−1 by prefix sums with operator ·
sum y by bottom-up balanced binary tree with operator +

Resulting circuit: size O(n), depth O(log n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 72 / 256



Basic parallel algorithms
Balanced tree and prefix sums

Application: polynomial evaluation by Horner’s rule

Given a = [a0, . . . , an−1], x

Compute y = a0 + a1 · x + . . .+ an−2 · xn−2 + an−1 · xn−1

y = a0 + x · (a1 + x · (a2 + x · (. . .+ x · an−1) . . .))

y0 = an−1

y1 = an−2 + x · y0

y2 = an−3 + x · y1

· · ·
yn−1 = a0 + x · yn−2

Generic first-order linear recurrence over [an−1, . . . , a0], [x , x , . . . , x ]

Resulting circuit: size O(n), depth O(log n)
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Basic parallel algorithms
Balanced tree and prefix sums

Application: binary addition via Boolean logic

x + y = z x , y , z represented as binary arrays

x = [xn−1, . . . , x0] y = [yn−1, . . . , y0] z = [zn, zn−1, . . . , z0]

The binary adder problem: given x , y , compute z

Boolean operators as primitives: bitwise ∧ (“and”), ∨ (“or”), ⊕ (“xor”)

Let c = [cn−1, . . . , c0], where ci is the i-th carry bit

We have: xi + yi + ci−1 = zi + 2ci 0 ≤ i < n
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Basic parallel algorithms
Balanced tree and prefix sums

Application: binary addition via Boolean logic (contd.)

Define bit arrays u = [un−1, . . . , u0], v = [vn−1, . . . , v0]

ui = xi ∧ yi vi = xi ⊕ yi 0 ≤ i < n

z0 = v0 c0 = u0

z1 = v1 ⊕ c0 c1 = u1 ∨ (v1 ∧ c0)

· · · · · ·
zn−1 = vn−1 ⊕ cn−2 cn−1 = un−1 ∨ (vn−1 ∧ cn−2)

zn = cn−1

Resulting circuit has size and depth O(n)

Equivalent to a ripple-carry adder. Can we do better?
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Basic parallel algorithms
Balanced tree and prefix sums

Application: binary addition via Boolean logic (contd.)

c−1 = 0 ci = ui ∨ (vi ∧ ci−1)

Compute

c as generic first-order linear recurrence with inputs u, v and
operators ∨, ∧: size O(n), depth O(log n)

z in extra size O(n), depth O(1)

Resulting circuit has size O(n), depth O(log n)

Equivalent to a carry-lookahead adder
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Basic parallel algorithms
Integer sorting

The integer sorting problem

Given a = [a0, . . . , an−1], arrange elements of a in increasing order

ai ∈ {0, 1, . . . , n − 1} 0 ≤ i < n

Elements of a assumed to be distinguishable keys even if values equal

A bucket: subset of keys with equal values

Stable integer sorting: order of keys preserved within each bucket

Sequential work O(n) e.g. by bucket sort or counting sort
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Basic parallel algorithms
Integer sorting

Parallel integer sorting

Initially assume ai ∈
{

0, 1, . . . , np − 1
}

, i.e. n
p buckets

Every processor

reads subarray of a of size n/p

counts subarray elements in each bucket

A designated processor

adds subarray counts for each bucket (array combining)

determines bucket boundaries, broadcasts them (array broadcasting)

Every processor

writes each element at appropriate offset from bucket boundary
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Basic parallel algorithms
Integer sorting

Parallel integer sorting (contd.)

Now consider ai ∈ {0, 1, . . . , p − 1}, i.e. p buckets

Consider keys as pairs: ai =
(
ai mod n

p , ai div n
p

)
Perform 2-fold radix sort on pairs:

left (“least significant”) position

right (“most significant”) position

In each position, perform stable sorting over range
{

0, 1, . . . , np − 1
}

comp = O(n/p) comm = O(n/p) sync = O(1)

Required slackness n ≥ p2
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Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

A complex number ω is called a primitive root of unity of degree n, if
ω, ω2, . . . , ωn−1 6= 1, and ωn = 1

The Discrete Fourier Transform problem: given complex vector a, compute
b, where Fn,ω · a = b, and Fn,ω =

[
ωij
]n−1

i ,j=0
is the Fourier matrix

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ωn−2

...
...

...
. . .

...
1 ωn−1 ωn−2 · · · ω

 ·


a0

a1

a2

...
an−1

 =


b0

b1

b2

...
bn−1


∑

j ω
ijaj = bi i , j = 0, . . . , n − 1

Sequential work O(n2) by matrix-vector multiplication

Applications: digital signal processing (amplitude vs frequency);
polynomial multiplication; long integer multiplication
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 =


b0

b1

b2

...
bn−1


∑

j ω
ijaj = bi i , j = 0, . . . , n − 1

Sequential work O(n2) by matrix-vector multiplication

Applications: digital signal processing (amplitude vs frequency);
polynomial multiplication; long integer multiplication
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Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The Fast Fourier Transform (FFT) algorithm (“four-step” version)

Assume n = m2

Let Au,v = amu+v Bs,t = bms+t s, t, u, v = 0, . . . ,m − 1

Matrices A, B are vectors a, b written out as m ×m matrices

Bs,t =
∑

u,v ω
(ms+t)(mu+v)Au,v =

∑
u,v ω

msv+tv+mtuAu,v =∑
v

(
(ωm)sv · ωtv ·

∑
u(ωm)tuAu,v

)
, thus B = Fm,ωm · (Gm,ω ◦ (Fm,ωm ·A))T

Fm,ωm · A is m independent DFTs of size m on each column of A

Gm,ω =
[
ωtv
]m−1

t,v=0
is the twiddle-factor matrix

Operator ◦ is the Hadamard product (elementwise matrix multiplication)
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Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The Fast Fourier Transform (FFT) algorithm (contd.)

B = Fm,ωm · (Gm,ω ◦ (Fm,ωm · A))T

Thus, DFT of size n in four steps:

m independent DFTs of size m

transposition and twiddle-factor scaling

m independent DFTs of size m
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Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The Fast Fourier Transform (FFT) algorithm (contd.)

We reduced DFT of size n = m2 to DFTs of size m

Similarly, we can reduce DFT of size n = kl to DFTs of sizes k and l

Assume n = 22r , then m = 22r−1

By recursion, we have the FFT circuit

sizeFFT (n) = O(n) + 2 ·n1/2 · sizeFFT (n1/2) = O(1 ·n ·1 + 2 ·n1/2 ·n1/2 + 4 ·
n3/4 ·n1/4 + · · ·+ log n ·n ·1) = O(n+ 2n+ 4n+ · · ·+ log n ·n) = O(n log n)

depthFFT (n) = 1+2·depthFFT (n1/2) = O(1+2+4+· · ·+log n) = O(log n)
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Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The FFT circuit

bfly(n) a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a11

b11

a12

b12

a13

b13

a14

b14

a15

b15

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

The underlying dag is called butterfly dag
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Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The FFT circuit and the butterfly dag (contd.)

bfly(n)

n inputs

n outputs

size n log n
2

depth log n

a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a11

b11

a12

b12

a13

b13

a14

b14

a15

b15
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Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The FFT circuit and the butterfly dag (contd.)

Dag bfly(n) consists of

a top layer of n1/2 blocks, each isomorphic to bfly(n1/2)

a bottom layer of n1/2 blocks, each isomorphic to bfly(n1/2)

The data exchange pattern between the top and bottom layers
corresponds to n1/2 × n1/2 matrix transposition
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Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

Parallel butterfly computation

To compute bfly(n), every processor

reads inputs for n1/2

p blocks from top layer; computes blocks; writes
outputs

reads inputs for n1/2

p blocks from bottom layer; computes blocks;
writes outputs

In each layer, the processor reads the total of n/p inputs, performs
O(n log n/p) computation, then writes the total of n/p outputs

comp = O(n log n
p ) comm = O(n/p) sync = O(1)

Required slackness: n ≥ p2
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Basic parallel algorithms
Ordered grid

The ordered 2D grid dag

grid2(n)

nodes arranged in an n × n grid

edges directed top-to-bottom, left-to-right

≤ 2n inputs (to left/top borders)

≤ 2n outputs (from right/bottom borders)

size n2 depth 2n − 1

Applications: triangular linear system; discretised PDE via Gauss–Seidel
iteration (single step); 1D cellular automata; dynamic programming

Sequential work O(n2)
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Basic parallel algorithms
Ordered grid

Parallel ordered 2D grid computation

grid2(n)

Partition into a p × p grid of blocks, each
isomorphic to grid2(n/p)

Arrange blocks as 2p − 1 anti-diagonal
layers: ≤ p independent blocks in each layer
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Basic parallel algorithms
Ordered grid

Parallel ordered 2D grid computation (contd.)

The computation proceeds in 2p − 1 stages, each computing a layer of
blocks. In a stage:

every block assigned to a different processor (some processors idle)

the processor reads the 2n/p block inputs, computes the block, and
writes back the 2n/p block outputs

comp: (2p − 1) · O
(
(n/p)2

)
= O(p · n2/p2) = O(n2/p)

comm: (2p − 1) · O(n/p) = O(n)

comp = O(n2/p) comm = O(n) sync = O(p)

Required slackness n ≥ p
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Basic parallel algorithms
Ordered grid

Application: string comparison

Let a, b be strings of characters

A subsequence of string a is obtained by deleting some (possibly none, or
all) characters from a

The longest common subsequence (LCS) problem: find the longest string
that is a subsequence of both a and b

a = “DEFINE” b = “DESIGN” LCS(a, b) = “dein”

In computational molecular biology, the LCS problem and its variants are
referred to as sequence alignment
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Basic parallel algorithms
Ordered grid

LCS computation by dynamic programming [Wagner, Fischer: 1974]

Let lcs(a, b) denote the LCS length

lcs(a, “”) = 0

lcs(“”, b) = 0
lcs(aα, bβ) =

{
max(lcs(aα, b), lcs(a, bβ)) if α 6= β

lcs(a, b) + 1 if α = β

∗ D E F I N E

∗ 0

0 0 0 0 0 0

D 0

1 1 1 1 1 1

E 0

1 2 2 2 2 2

S 0

1 2 2 2 2 2

I 0

1 2 2 3 3 3

G 0

1 2 2 3 3 3

N 0

1 2 2 3 4 4

lcs(“DEFINE”, “DESIGN”) = 4

LCS(a, b) can be “traced back” through
the table at no extra asymptotic cost

Data dependence in the table
corresponds to the 2D grid dag
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Basic parallel algorithms
Ordered grid

Parallel LCS computation

The 2D grid algorithm solves the LCS problem (and many others) by
dynamic programming

comp = O(n2/p) comm = O(n) sync = O(p)

comm is not scalable (i.e. does not decrease with increasing p) :-(

Can scalable comm be achieved for the LCS problem?
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Basic parallel algorithms
Ordered grid

Parallel LCS computation

Solve the more general semi-local LCS problem:

each string vs all substrings of the other string

all prefixes of each string against all suffixes of the other string

Divide-and-conquer on substrings of a, b: log p recursion levels

Each level assembles substring LCS from smaller ones by parallel seaweed
multiplication

Base level: p semi-local LCS subproblems, each of size n/p1/2

Sequential time still O(n2)
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Basic parallel algorithms
Ordered grid

Parallel LCS computation (cont.)

Communication vs synchronisation tradeoff

Parallelising normal O(n log n) seaweed multiplication: [Krusche, T: 2010]

comp = O(n2/p) comm = O
(

n
p1/2

)
sync = O(log2 p)

Special seaweed multiplication [Krusche, T: 2007]

Sacrifices some comp, comm for sync

comp = O(n2/p) comm = O
(n log p

p1/2

)
sync = O(log p)

Open problem: can we achieve comm = O
(

n
p1/2

)
, sync = O(log p)?

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 95 / 256



Basic parallel algorithms
Ordered grid

Parallel LCS computation (cont.)

Communication vs synchronisation tradeoff

Parallelising normal O(n log n) seaweed multiplication: [Krusche, T: 2010]

comp = O(n2/p) comm = O
(

n
p1/2

)
sync = O(log2 p)

Special seaweed multiplication [Krusche, T: 2007]

Sacrifices some comp, comm for sync

comp = O(n2/p) comm = O
(n log p

p1/2

)
sync = O(log p)

Open problem: can we achieve comm = O
(

n
p1/2

)
, sync = O(log p)?

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 95 / 256



Basic parallel algorithms
Ordered grid

Parallel LCS computation (cont.)

Communication vs synchronisation tradeoff

Parallelising normal O(n log n) seaweed multiplication: [Krusche, T: 2010]

comp = O(n2/p) comm = O
(

n
p1/2

)
sync = O(log2 p)

Special seaweed multiplication [Krusche, T: 2007]

Sacrifices some comp, comm for sync

comp = O(n2/p) comm = O
(n log p

p1/2

)
sync = O(log p)

Open problem: can we achieve comm = O
(

n
p1/2

)
, sync = O(log p)?
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Basic parallel algorithms
Ordered grid

The ordered 3D grid dag

grid3(n)

nodes arranged in an n × n × n grid

edges directed top-to-bottom, left-to-right,
front-to-back

≤ 3n2 inputs (to front/left/top)

≤ 3n2 outputs (from back/right/bottom)

size n3 depth 3n − 2

Applications: Gaussian elimination; discretised PDE via Gauss–Seidel
iteration; 2D cellular automata; dynamic programming

Sequential work O(n3)
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Basic parallel algorithms
Ordered grid

Parallel ordered 3D grid computation

grid3(n)

Partition into p1/2 × p1/2 × p1/2 grid of
blocks, each isomorphic to grid3(n/p1/2)

Arrange blocks as 3p1/2 − 2 anti-diagonal
layers: ≤ p independent blocks in each layer
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Basic parallel algorithms
Ordered grid

Parallel ordered 3D grid computation (contd.)

The computation proceeds in 3p1/2 − 2 stages, each computing a layer of
blocks. In a stage:

every processor is either assigned a block or is idle

a non-idle processor reads the 3n2/p block inputs, computes the
block, and writes back the 3n2/p block outputs

comp: (3p1/2 − 2) · O
(
(n/p1/2)3

)
= O(p1/2 · n3/p3/2) = O(n3/p)

comm: (3p1/2 − 2) · O
(
(n/p1/2)2

)
= O(p1/2 · n2/p) = O(n2/p1/2)

comp = O(n3/p) comm = O(n2/p1/2) sync = O(p1/2)

Required slackness n ≥ p1/2
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Basic parallel algorithms
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Basic parallel algorithms
Discussion

Costs comp, comm, sync : functions of n, p

Typically, realistic slackness requirements: n� p

The goals:

comp = compopt = compseq/p

comm scales down with increasing p

sync is a function of p, independent of n

The challenges:

efficient (optimal) algorithms

good (sharp) lower bounds
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1 Computation by circuits

2 Parallel computation models

3 Basic parallel algorithms

4 Further parallel algorithms

5 Parallel matrix algorithms

6 Parallel graph algorithms
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Further parallel algorithms
List contraction and colouring

Linked list: array of n nodes

Each node contains data and a pointer to (= index of) successor node

Nodes may be placed in array in an arbitrary order

Logical structure linear: head , succ(head), succ(succ(head)), . . .

a pointer can be followed in time O(1)

no global ranks/indexing/comparison
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Further parallel algorithms
List contraction and colouring

Pointer jumping at node u

Let • be an associative operator, computable in time O(1)

v ← succ(u) succ(u)← succ(v)
a← data(u) b ← data(v) data(u)← a • b

a b

a

a•b b

Pointer v and data a, b are kept, so that pointer jumping can be reversed:

succ(u)← v data(u)← a data(v)← b
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Further parallel algorithms
List contraction and colouring

Abstract view: node merging, allows e.g. for bidirectional links

a b

a • b

Data a, b are kept, so that node merging can be reversed

The list contraction problem: reduce the list to a single node by successive
merging (note the result is independent on the merging order)

The list expansion problem: restore the original list, reversing contraction
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Further parallel algorithms
List contraction and colouring

Application: list ranking

Node’s rank: distance from head

rank(head) = 0, rank(succ(head)) = 1, . . .

The list ranking problem: each node to hold its rank

0 1 2 3 4 5 6 7

Note the solution should be independent of the merging order
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Further parallel algorithms
List contraction and colouring

Application: list ranking (contd.)

Each intermediate node during contraction/expansion represents a
contiguous sublist in the original list

Contraction phase: each node u holds length l(u) of corresponding sublist

Initially, l(u)← 1 for each node u

Merging v , w into u: l(u)← l(v) + l(w), keeping l(v), l(w)

Fully contracted list: single node t holding l(t) = n
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Further parallel algorithms
List contraction and colouring

Application: list ranking (contd.)

Expansion phase: each node holds

length l(u) of corresponding sublist (as before)

rank r(u) of the sublist’s starting node

Fully contracted list: single node t holding

l(t) = n r(t)← 0

Un-merging u to v , w : restore l(u), l(v), then

r(v)← r(u) r(w)← r(v) + l(v)

After full expansion: each node u holds

l(u) = 1 r(u) = rank(u)
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Further parallel algorithms
List contraction and colouring

Application: list prefix sums

Initially, each node u holds value arank(u)

a0 a1 a2 a3 a4 a5 a6 a7

Let • be an associative operator with identity ε

The list prefix sums problem: each node u to hold prefix sum
a0:rank(u) = a0 • a1 • · · · • arank(u)

a0 a0:1 a0:2 a0:3 a0:4 a0:5 a0:6 a0:7

Note the solution should be independent of the merging order
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Further parallel algorithms
List contraction and colouring

Application: list prefix sums (contd.)

Each intermediate node during contraction/expansion represents a
contiguous sublist in the original list

Contraction phase: each node u holds the •-sum l(u) corresponding sublist

Initially, l(u)← arank(u) for each node u

Merging v , w into u: l(u)← l(v) • l(w), keeping l(v), l(w)

Fully contracted list: single node t with l(t) = a0:n−1
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Further parallel algorithms
List contraction and colouring

Application: list prefix sums (contd.)

Expansion phase: each node holds

•-sum l(u) of corresponding sublist (as before)

•-sum r(u) of all nodes before the sublist

Fully contracted list: single node t holding

l(t) = a0:n−1 r(t)← ε

Un-merging u to v , w : restore l(u), l(v), then

r(v)← r(u) r(w)← r(v) • l(v)

After full expansion: each node u holds

l(u) = arank(u) r(u) = a0:rank(u)
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Further parallel algorithms
List contraction and colouring

In general, only need to consider contraction phase (expansion by
symmetry)

Sequential contraction: always merge head with succ(head), time O(n)

Parallel contraction must be based on local merging decisions: a node can
be merged with either its successor or predecessor, but not both

Therefore, we need either node splitting, or efficient symmetry breaking
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Further parallel algorithms
List contraction and colouring

Wyllie’s mating [Wyllie: 1979]

Split every node, label copies “forward”
� ��and “backward”
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Merge mating node pairs, obtaining two lists of size ≈ n/2
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Further parallel algorithms
List contraction and colouring

Parallel list contraction by Wyllie’s mating

In the first round, every processor

inputs n/p nodes (not necessarily contiguous in input list), overall n
nodes forming input list across p processors

performs node splitting and labelling

merges mating pairs; each merge involves communication between
two processors; the merged node placed arbitrarily on either processor

outputs the resulting ≤ 2n/p nodes (not necessarily contiguous in
output list), overall n nodes forming output lists across p processors

Subsequent rounds similar
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Further parallel algorithms
List contraction and colouring

Parallel list contraction by Wyllie’s mating (contd.)

Parallel list contraction:

perform log n rounds of Wyllie’s mating, reducing original list to n
fully contracted lists of size 1

select one fully contracted list

Total work O(n log n), not optimal vs. sequential work O(n)

comp = O(n log n
p ) comm = O(n log n

p ) sync = O(log n) n ≥ p
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Further parallel algorithms
List contraction and colouring

Random mating [Miller, Reif: 1985]

Label every node “forward”
� ��or “backward”

���independently with
probability 1

2

� �� � �� � �� � ����� ��� ��� ���

Merge mating node pairs

� �� � �� � �� � ����� ��� ��� ���

On average n
2 nodes mate, therefore new list has expected size 3n

4

Moreover, size ≤ 15n
16 with high probability (whp), i.e. with probability

exponentially close to 1 (as a function of n)

Prob
(
new size ≤ 15n

16

)
≥ 1− e−n/64
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Further parallel algorithms
List contraction and colouring

Parallel list contraction by random mating

In the first round, every processor

inputs n
p nodes (not necessarily contiguous in input list), overall n

nodes forming input list across p processors

performs node randomisation and labelling

merges mating pairs; each merge involves communication between
two processors; the merged node placed arbitrarily on either processor

outputs the resulting ≤ n
p nodes (not necessarily contiguous in output

list), overall ≤ 15n
16 nodes (whp), forming output list across p

processors

Subsequent rounds similar, on a list of decreasing size (whp)
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Further parallel algorithms
List contraction and colouring

Parallel list contraction by random mating (contd.)

Parallel list contraction:

perform log16/15 p rounds of random mating, reducing original list to
size n

p whp

a designated processor inputs the remaining list, contracts it
sequentially

Total work O(n), optimal but randomised

comp = O(n/p) whp comm = O(n/p) whp sync = O(log p)

Required slackness n ≥ p2
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Further parallel algorithms
List contraction and colouring

Block mating

Will mate nodes deterministically

Contract local chains (if any)

Build distribution graph:

complete weighted digraph on p supernodes

w(i , j) = |{u → v : u ∈ proc i , v ∈ proc j}|

Each processor holds a supernode’s outgoing edges

2

1

1

2

1

1

1
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Further parallel algorithms
List contraction and colouring

Block mating (contd.)

Designated processor collects the distribution graph

Label every supernode F (“forward”) or B (“backward”),
so that

∑
i∈F ,j∈B w(i , j) ≥ 1

4 ·
∑

i ,j w(i , j) by a sequential
greedy algorithm

Distribute supernode labels to processors

2

1

1

2

1

1

1

F

F

F B

B

Merge mating node pairs

By construction of supernode labelling, ≥ n
2 nodes

mate, therefore new list has size ≤ 3n
4
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Further parallel algorithms
List contraction and colouring

Parallel list contraction by block mating

In the first round, every processor

inputs n
p nodes (not necessarily contiguous in input list), overall n

nodes forming input list across p processors

participates in construction of distribution graph and communicating
it to the designated processor

The designated processor collects distribution graph, computes and
distributes labels
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Further parallel algorithms
List contraction and colouring

Parallel list contraction by block mating (contd.)

Continuing the first round, every processor

receives its label from the designated processor

merges mating pairs; each merge involves communication between
two processors; the merged node placed arbitrarily on either processor

outputs the resulting ≤ n
p nodes (not necessarily contiguous in output

list), overall ≤ 3n
4 nodes, forming output list across p processors

Subsequent rounds similar, on a list of decreasing size
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Further parallel algorithms
List contraction and colouring

Parallel list contraction by block mating (contd.)

Parallel list contraction:

perform log4/3 p rounds of block mating, reducing the original list to
size n/p

a designated processor collects the remaining list and contracts it
sequentially

Total work O(n), optimal and deterministic

comp = O(n/p) comm = O(n/p) sync = O(log p)

Required slackness n ≥ p4
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Further parallel algorithms
List contraction and colouring

The list k-colouring problem: given a linked list and an integer k > 1,
assign a colour from {0, . . . , k − 1} to every node, so that in each pair of
adjacent nodes, the two colours are different

Using list contraction, k-colouring for any k can be done in

comp = O(n/p) comm = O(n/p) sync = O(log p)

Is list contraction really necessary for list k-colouring?

Can list k-colouring be done more efficiently?
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Further parallel algorithms
List contraction and colouring

Deterministic coin tossing [Cole, Vishkin: 1986]

Given a k-colouring, k > 6

Consider every node v . We have col(v) 6= col(succ(v)).

If col(v) differs from col(succ(v)) in i-th bit, re-colour v in

2i , if i-th bit in col(v) is 0, and in col(succ(v)) is 1

2i + 1, if i-th bit in col(v) is 1, and in col(succ(v)) is 0

Model assumption: can find lowest nonzero bit in an integer in time O(1)

After re-colouring, still have col(v) 6= col(succ(v))

Number of colours reduced from k to 2dlog ke � k

comp, comm: O(n/p)
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Further parallel algorithms
List contraction and colouring

Parallel list colouring by deterministic coin tossing

Reducing the number of colours from p to 6: need O(log∗ p) rounds of
deterministic coin tossing

The iterated log function log∗ k = min r : log . . . log
(r times)

k ≤ 1

Number of particles in observable universe: 1081 ≈ 2270

log∗ 2270 = log∗ 265536 = log∗ 22222

= 5
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Further parallel algorithms
List contraction and colouring

Parallel list colouring by deterministic coin tossing (contd.)

Initially, each processor reads a subset of n/p nodes

partially contract the list to size O(n/ log∗ p) by log4/3 log∗ p rounds
of block mating

compute a p-colouring of the resulting list

reduce the number of colours from p to 6 by O(log∗ p) rounds of
deteministic coin tossing

comp, comm: O
(
n
p + n

p log∗ p · log∗ p
)

= O(n/p)

sync : O(log∗ p)
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Further parallel algorithms
List contraction and colouring

Parallel list colouring by deterministic coin tossing (contd.)

We have a 6-coloured, partially contacted list of size O(n/ log∗ p)

select node v as a pivot, if col(pred(v)) > col(v) < col(succ(v)); no
two pivots are adjacent or further than 12 nodes apart

re-colour all pivots in one colour

from each pivot, 2-colour the next ≤ 12 non-pivots sequentially; we
now have a 3-coloured list

reverse the partial contraction, maintaining the 3-colouring

We have now 3-coloured the original list

comp = O(n/p) comm = O(n/p) sync = O(log∗ p) n ≥ p4
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Further parallel algorithms
Sorting

The sorting problem

Given a = [a0, . . . , an−1], arrange elements of a in increasing order

May assume all ai are distinct (otherwise, attach unique tags)

Assume the comparison model: primitives <, >, no arithmetic or bit
operations on ai

Sequential work O(n log n) e.g. by mergesort

Parallel sorting based on an AKS sorting network

comp = O
(n log n

p

)
comm = O

(n log n
p

)
sync = O(log n)
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Further parallel algorithms
Sorting

Parallel sorting by regular sampling [Shi, Schaeffer: 1992]

Every processor

reads subarray of a of size n/p and sorts it sequentially

selects from it p samples from base index 0 at steps n/p2

Samples define p equal-sized, contiguous blocks in local subarray

A designated processor

collects all p2 samples and sorts them sequentially

selects from them p splitters from base index 0 at steps p

broadcasts the splitters

Splitters define p unequal-sized, rank-contiguous buckets in global array a
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Further parallel algorithms
Sorting

Parallel sorting by regular sampling (contd.)
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Further parallel algorithms
Sorting

Parallel sorting by regular sampling (contd.)

Every processor

receives the splitters and is assigned a bucket

scans its subarray and sends each element to the appropriate bucket

receives the elements of its bucket and sorts them sequentially

writes the sorted bucket back to external memory

We will need to prove that bucket sizes, although not uniform, are still
well-balanced (≤ 2n/p)

comp = O(n log n
p ) comm = O(n/p) sync = O(1)

Required slackness n ≥ p3
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Further parallel algorithms
Sorting

Parallel sorting by regular sampling (contd.)

Claim: each bucket has size ≤ 2n/p
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Further parallel algorithms
Sorting

Parallel sorting by regular sampling (contd.)

Claim: each bucket has size ≤ 2n/p

Proof (sketch). Relative to a fixed bucket B, a block b is

low, if lower boundary of b is ≤ lower boundary of B

high otherwise

A bucket may only intersect

≤ 1 low block per processor, hence ≤ p low blocks overall

≤ p high blocks overall

Therefore, bucket size ≤ (p + p) · n/p2 = 2n/p
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Further parallel algorithms
Selection

The selection problem

Given a = [a0, . . . , an−1], target rank k

Find k-th smallest element of a; e.g. median selection: k = n/2

As with sorting, we assume the comparison model

Sequential work O(n log n) by naive sorting

Sequential work O(n) by median sampling [Blum+: 1973]
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Further parallel algorithms
Selection

Selection by median sampling [Blum+: 1973]

Proceed in rounds. In the first round:

partition array a into subarrays of size 5

in each subarray, select median e.g. by 5-element sorting

select median-of-medians by recursion: n← n/5, k ← n/10

find rank l of median-of-medians in array a by linear search

If l = k , return al ; otherwise, eliminate elements on the wrong side of
median-of-medians; adjust size and target rank for next round:

if l < k , discard all ai ≤ al ; adjust n← n − l − 1, k ← k − l − 1

if l > k , discard all ai ≥ al ; adjust n← l , k unchanged

Subsequents rounds similar, with adjusted n, k
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Further parallel algorithms
Selection

Selection by median sampling (contd.)

Claim: Each round removes ≥ 3n
10 of elements of a

Proof (sketch). We have n
5 subarrays

In at least 1
2 ·

n
5 subarrays, subarray median ≤ al

In every such subarray, three elements ≤ subarray median ≤ al

Hence, at least 1
2 ·

3n
5 = 3n

10 elements ≤ al

Symmetrically, at least 3n
10 elements ≥ al

Therefore, in a round, at least 3n
10 elements are eliminated

With each round, array shrinks exponentially

T (n) ≤ T
(
n
5

)
+ T

(
n − 3n

10

)
+ O(n) = T

(
2n
10

)
+ T

(
7n
10

)
+ O(n), therefore

T (n) = O(n)
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Further parallel algorithms
Selection

Parallel selection by median sampling

In the first round, every processor

reads a subarray of size n/p, selects the median

A designated processor

collects all p subarray medians

selects and broadcasts the median-of-medians

Every processor

determines rank of median-of-medians in local subarray
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Further parallel algorithms
Selection

Parallel selection by median sampling (contd.)

A designated processor

adds up local ranks to determine global rank of median-of-medians

compares it against target rank to determine direction of elimination

broadcasts info on this direction

Every processor

performs elimination on local subarray, discarding elements on wrong
side of median-of-medians

writes remaining elements

≤ 3n/4 elements remain overall in array a

Subsequents rounds similar, with adjusted n, k
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Further parallel algorithms
Selection

Parallel selection by median sampling (contd.)

Overall algorithm:

perform log4/3 p rounds of median sampling and elimination, reducing
original array to size n/p

a designated processor collects the remaining array and performs
selection sequentially

comp = O(n/p) comm = O(n/p) sync = O(log p)
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Further parallel algorithms
Selection

Parallel selection by regular sampling (generalised median sampling)

In the first round, every processor

reads a subarray of size n/p

selects from it s = O(1) samples from base rank 0 at rank steps n
sp

Splitters define s equal-sized, rank-contiguous blocks in local subarray

A designated processor

collects all sp samples

selects from them s splitters from base rank 0 at rank steps p

broadcasts the splitters

Splitters define s unequal-sized, rank-contiguous buckets in global array a

Every processor

determines rank of every splitter in local subarray
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Further parallel algorithms
Selection

Parallel selection by regular sampling (contd.)

A designated processor

adds up local ranks to determine global rank of every splitter

compares these against target rank to determine target bucket

broadcasts info on target bucket

Every processor

performs elimination on subarray, discarding elements outside target
bucket

writes remaining elements

≤ 2n/s elements remain overall in array a

Subsequents rounds similar, with adjusted n, k
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Further parallel algorithms
Selection

Parallel selection by accelerated regular sampling

In the original median sampling, sampling frequency s = 2 fixed across all
rounds (samples at base rank 0 and local median rank n

2p ); array shrinks
exponentially

We now increase s from round to round, accelerating array reduction;
array now shrinks superexponentially

Round 0: selecting samples and determining splitter ranks in time
O
(n log s

p

)
; set s = 2, time O(n/p)

Round 1: array size O(n/s), we can afford sampling frequency 2s

Round 2: . . .
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Further parallel algorithms
Selection

Parallel selection by accelerated regular sampling

Overall algorithm:

perform O(log∗ p) rounds of regular sampling (with increasing
frequency) and elimination, reducing original array to size n/p

a designated processor collects the remaining array and performs
selection sequentially

comp = O(n/p) comm = O(n/p) sync = O(log∗ p)
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Further parallel algorithms
Selection

Parallel selection

comp = O(n/p) comm = O(n/p)

sync = O(log p) [Ishimizu+: 2002]

sync = O(log log n) [Fujiwara+: 2000]

sync = O(1) whp randomised [Gerbessiotis, Siniolakis: 2003]

sync = O(log log p) [T: 2010]

sync = O(log∗ p) [T: NEW]
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Further parallel algorithms
Convex hull

Set S ⊆ Rd is convex, if for all x , y in S , every point between x and y is
also in S

A ⊆ Rd

The convex hull convA is the smallest convex set
containing A

convA is a polytope, defined by its vertices Ai ∈ A

Set A is in convex position, if every its point is a
vertex of convA

Definition of convexity requires arithmetic on
coordinates, hence we assume the arithmetic model
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Further parallel algorithms
Convex hull

d = 2

Fundamental arithmetic primitive: signed area of a triangle

Let a0 = (x0, y0), a1 = (x1, y1), a2 = (x2, y2)

∆(a0, a1, a2) = 1
2

∣∣∣∣∣∣
x0 y0 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = 1
2

(
(x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)

)

∆(a0, a1, a2)


< 0 if a0, a1, a2 clockwise

= 0 if a0, a1, a2 collinear

> 0 if a0, a1, a2 counterclockwise

An easy O(1) check: a0 is to the left/right of directed line from a1 to a2?

All of A is to the left of every edge of convA, traversed counterclockwise

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 145 / 256



Further parallel algorithms
Convex hull

The (discrete) convex hull problem

Given a = [a0, . . . , an−1], ai ∈ Rd

Output (a finite representation of) conv a

More precisely, output each k-dimensional face of conv a, 1 ≤ k < d

E.g. in 3D: 1D vertices, 2D edges, 3D facets

Output must be structured, i.e. should give

for d = 2, all vertex-edge incidence pairs; every vertex should “know”
its both neighbours

for general d , all incidence pairs between a k-D and a (k + 1)-D face
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Further parallel algorithms
Convex hull

The (discrete) convex hull problem (contd.)

Claim: Convex hull problem in R2 is at least as hard as sorting

Proof. Let x0, . . . , xn−1 ∈ R

To sort [x0, . . . , xn−1]:

compute conv
{

(xi , x
2
i ) ∈ R2 : 0 ≤ i < n

}
follow the edges to obtain sorted output
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Further parallel algorithms
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Further parallel algorithms
Convex hull

The (discrete) convex hull problem (contd.)

d = 2: ≤ n vertices, ≤ n edges, output size ≤ 2n

d = 3: O(n) vertices, edges and facets, output size O(n)

d > 3: much bigger output...

For general d , conv a contains O(nbd/2c) faces of various dimensions

d = 4, 5: output size O(n2)

d = 6, 7: output size O(n3)

. . .

From now on, will concentrate on d = 2 and will sketch d = 3

Sequential work O(n log n): Graham’s scan (2D); mergehull (2D, 3D) ‘
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Further parallel algorithms
Convex hull

A ⊆ Rd Let 0 ≤ ε ≤ 1

Set E ⊆ A is an ε-net for A, if any halfspace with no points in E covers
≤ ε|A| points in A

An ε-net may always be assumed to be in convex position

Set E ⊆ A is an ε-approximation for A, if for all α, 0 ≤ α ≤ 1, any
halfspace with α|E | points in E covers (α± ε)|A| points in A

An ε-approximation may not be in convex position

Both are easy to construct in 2D, much harder in 3D and higher
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Further parallel algorithms
Convex hull

Claim. An ε-approximation for A is an ε-net for A

The converse does not hold!

Claim. Union of ε-approximations for A′, A′′ is ε-approximation for A′′ ∪A′′

Claim. An ε-net for a δ-approximation for A is an (ε+ δ)-net for A

Proofs: Easy by definitions, independently of d .
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Further parallel algorithms
Convex hull

d = 2 A ⊆ R2 |A| = n ε = 1/r r ≥ 1

Claim. A 1/r -net for A of size ≤ 2r exists and can be computed in
sequential work O(n log n).

Proof. Consider convex hull of A and an arbitrary interior point v

Partition A into triangles: base at a hull edge, apex at v

A triangle is heavy if it contains > n/r points of A, otherwise light

Heavy triangles: for each triangle, put both hull vertices into E

Light triangles: for each triangle chain, greedy next-fit bin packing

combine adjacent triangles into bins with ≤ n/r points

for each bin, put both boundary hull vertices into E

In total ≤ 2r heavy triangles and bins, hence |E | ≤ 2r
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Partition A into triangles: base at a hull edge, apex at v

A triangle is heavy if it contains > n/r points of A, otherwise light

Heavy triangles: for each triangle, put both hull vertices into E

Light triangles: for each triangle chain, greedy next-fit bin packing

combine adjacent triangles into bins with ≤ n/r points

for each bin, put both boundary hull vertices into E

In total ≤ 2r heavy triangles and bins, hence |E | ≤ 2r
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Further parallel algorithms
Convex hull

d = 2 A ⊆ R2 |A| = n ε = 1/r

Claim. If A is in convex position, then a 1/r -approximation for A of size
≤ r exists and can be computed in sequential work O(n log n).

Proof. Sort points of A in circular order they appear on the convex hull

Put every n/r -th point into E . We have |E | ≤ r .
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Further parallel algorithms
Convex hull

Parallel 2D hull computation by generalised regular sampling

a = [a0, . . . , an−1] ai ∈ R2

Every processor

reads a subset of n/p points, computes its hull, discards the rest

selects p samples at regular intervals on the hull

Set of all samples: 1/p-approximation for set a (after discarding local
interior points)

A designated processor

collects all p2 samples (and does not compute its hull)

selects from the samples a 1/p-net of ≤ 2p points as splitters

Set of splitters: 1/p-net for samples, therefore a 2/p-net for set a
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Further parallel algorithms
Convex hull

Parallel 2D hull computation by generalised regular sampling (contd.)

The 2p splitters can be assumed to be in convex position (like any ε-net),
and therefore define a splitter polygon with at most 2p edges

Each vertex of splitter polygon defines a bucket: the subset of set a visible
when sitting at this vertex (assuming the polygon is opaque)

Each bucket can be covered by two half-planes not containg any splitters.
Therefore, bucket size is at most 2 · (2/p) · n = 4n/p.
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Further parallel algorithms
Convex hull

Parallel 2D hull computation by generalised regular sampling (contd.)

The designated processor broadcasts the splitters

Every processor

receives the splitters and is assigned 2 buckets

scans its hull and sends each point to the appropriate bucket

receives the points of its buckets and computes their hulls sequentially

writes the bucket hulls back to external memory

comp = O(n log n
p ) comm = O(n/p) sync = O(1)

Requires slackness n ≥ p3
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Further parallel algorithms
Convex hull

d = 3 A ⊆ R3 |A| = n ε = 1/r

Claim. A 1/r -net for A of size O(r) exists and can be computed in
sequential work O(rn log n).

Proof: [Brönnimann, Goodrich: 1995]

Claim. A 1/r -approximation for A of size O
(
r3(log r)O(1)

)
exists and can

be computed in sequential work O(n log r).

Proof: [Matoušek: 1992]

Better approximations are possible, but are slower to compute
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Further parallel algorithms
Convex hull

Parallel 3D hull computation by generalised regular sampling

a = [a0, . . . , an−1] ai ∈ R3

Every processor

reads a subset of n/p points

selects a 1/p-approximation of O
(
p3(log p)O(1)

)
points as samples

Set of all samples: 1/p-approximation for set a

A designated processor

collects all O
(
p4(log p)O(1)

)
samples

selects from the samples a 1/p-net of O(p) points as splitters

Set of splitters: 1/p-net for samples, therefore a 2/p-net for set a
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Further parallel algorithms
Convex hull

Parallel 3D hull computation by generalised regular sampling (contd.)

The O(p) splitters can be assumed to be in convex position (like any
ε-net), and therefore define a splitter polytope with O(p) edges

Each edge of splitter polytope defines a bucket: the subset of a visible
when sitting on this edge (assuming the polytope is opaque)

Each bucket can be covered by two half-spaces not containg any splitters.
Therefore, bucket size is at most 2 · (2/p) · n = 4n/p.
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Further parallel algorithms
Convex hull

Parallel 3D hull computation by generalised regular sampling (contd.)

The designated processor broadcasts the splitters

Every processor

receives the splitters and is assigned a bucket

scans its hull and sends each point to the appropriate bucket

receives the points of its bucket and computes their convex hull
sequentially

writes the bucket hull back to external memory

comp = O(n log n
p ) comm = O(n/p) sync = O(1)

Requires slackness n� p
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Further parallel algorithms
Suffix sorting

The suffix sorting problem

Given string a = a0 . . . an−1$

ai ∈ {0, 1, . . . , n − 1} 0 ≤ i < n $ = −∞ is a sentinel

Sort all suffixes of a in lexicographic order (implicitly, by returning ranks)

Character sorting: time O(n) e.g. by counting sort

Naive suffix sorting: time O(n2) by n-fold radix sort, performing character
sorting successively in every position from least to most significant
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Further parallel algorithms
Suffix sorting

Suffix sorting by DC mod 3 sampling

Difference cover (DC) modulo 3, aka skew algorithm
[Kärkkäinen, Sanders: 2003]

Denote ai by [i ]

Consider 3-substrings as super-characters: [012], [123], [234], . . .

Sort all super-characters by 3-fold radix sort; replace each by its rank

Call indices 3i , 3i + 1 (but not 3i + 2) for any i sample indices

Sample indices define

sample suffixes: [012...], [123...], (not [234...]), [345...], . . .

sample super-characters: [012], [123], (not [234]), [345], . . .
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Further parallel algorithms
Suffix sorting

Suffix sorting by DC mod 3 sampling (contd.)

b = [012][345][678]...$[123][456][789]...$[345][678][9 10 11]...$

b is composed of sample suffixes of a, each broken up into sample
super-characters; overall, b is of length 2n/3 super-characters

Sort sample suffixes

suffix sorting on b by recursion

Sort non-sample suffixes

2-fold radix sort on a at non-sample indices

[234...] = [2][345...]

[567...] = [5][678...]

. . .
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Further parallel algorithms
Suffix sorting

Suffix sorting by DC mod 3 sampling (contd.)

We have two sorted sets of suffixes:

sample [012...], [123...], (not [234...]), [345...], [456...], (not [567...]), . . .

non-sample [234...], [567...], . . .

Perform comparison-based merging of suffix sets

Each comparison: either [3i ...] or [3i+1 ...] vs [3i+2 ...], performed as

[3i ][3i+1 3i+2 ...] vs [3j+2][3j+3 3j+4 ...]

[3i+1 3i+2][3i+3 3i+4 ...] vs [3j+2 3j+3][3j+4 3j+5 ...]

Comparing pairs of the form (sample super-character, sample suffix)

Comparison time O(1)

Overall running time T (n) = O(n) + T (2n/3) = O(n)
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Further parallel algorithms
Suffix sorting

Parallel suffix sorting by DC mod 3 sampling

a = a0 . . . an−1$

At the top recursion level, every processor

reads substring of a of length n/p

sorts super-characters locally by 3-fold radix sort

The processors collectively

sort super-characters globally by regular sampling

form string b

sort sample suffixes of a by recursion on b

sort non-sample suffixes of a by 2-fold radix sort at non-sample indices
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Further parallel algorithms
Suffix sorting

Parallel suffix sorting by DC mod 3 sampling (contd.)

Every processor

merges sample vs non-sample suffixes locally

The processors collectively

merge sample vs non-sample suffixes globally by regular sampling

Subsequent recursion levels similar, with n adjusted
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Further parallel algorithms
Suffix sorting

Parallel suffix sorting by DC mod 3 sampling (contd.)

Overall algorithm:

perform log3/2 p recursion levels of suffix sorting by DC mod 3
sampling, obtaining a string of length n/p

a designated processor collects the resulting string and performs suffix
sorting sequentially

comp = O(n/p) comm = O(n/p) sync = O(log p)
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Further parallel algorithms
Suffix sorting

Parallel suffix sorting by DC mod 3 sampling (contd.)
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Further parallel algorithms
Suffix sorting

Suffix sorting by DC mod d sampling

Difference cover (DC) modulo d : set S of integers mod d , such that for
all i mod d , there are j , k ∈ S with k − j = i mod d

Examples:

DC mod 3: {0, 1}
i 0 1 2
j 0 0 1
k 0 1 0

DC mod 13: {0, 1, 4, 6}
i 0 1 2 3 4 5 6 7 8 9 10 11 12
j 0 0 4 1 0 1 0 6 6 4 4 6 1
k 0 1 6 4 4 6 6 0 1 0 1 4 0
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Further parallel algorithms
Suffix sorting

Suffix sorting by DC mod d sampling (contd.)

Claim: For any d , there is a DC mod d of size O(d1/2)
[Colbourn, Ling: 2000]

DC mod 3 algorithm can be generalised to DC mod d for any d ≥ 3
[Kärkkäinen, Sanders: 2003]

Given d , consider d-substrings as super-characters

Sort all super-characters by d-fold radix sort; replace each by its rank

Fix a DC mod d as sample indices

Sample indices define sample suffixes, sample super-characters
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Further parallel algorithms
Suffix sorting

Suffix sorting by DC mod d sampling (contd.)

Form string b, composed of sample suffixes of a, each broken up into
sample super-characters; overall length of b is O(n/d1/2) super-characters

Sort sample suffixes

suffix sorting on b by recursion

Sort non-sample suffixes in <d separate subsets according to index mod d

2-fold radix sort on a for each non-sample index mod d
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Further parallel algorithms
Suffix sorting

Suffix sorting by DC mod d sampling (contd.)

We have ≤d ordered sets of suffixes:

sample suffixes

<d subsets of non-sample suffixes according to index mod d

Perform ≤d-way comparison-based merging of suffix sets

Comparing pairs of the form (sample super-character, sample suffix)

Comparison time O(1)

Overall running time T (n) = O(nd) + T (O(n/d1/2)) = O(nd)
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Further parallel algorithms
Suffix sorting

Parallel suffix sorting by accelerated DC mod d sampling

In parallel DC mod 3 sampling, modulus d = 3 fixed across all levels;
string shrinks exponentially

We now increase modulus from each recursion level to the next,
accelerating string reduction; string shrinks superexponentially, allowing
further increase in modulus while keeping work O(size ·modulus) = O(n)

Level 0: array size n; can only afford DC mod d = O(1)

Level 1: array size O
(

n
d1/2

)
; can now afford DC mod d3/2

Level 2: array size O
(

n
d1/2·d3/4

)
= O

(
n

d5/4

)
; can now afford DC mod d9/4

Level 3: array size O
(

n
d5/4·d9/8

)
= O

(
n

d19/8

)
; . . .

. . .

Level O(log log p): array size O(n/p)
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Further parallel algorithms
Suffix sorting

Parallel suffix sorting by accelerated DC mod d sampling

Overall algorithm:

perform O(log log p) recursion levels of suffix sorting by DC mod d
sampling (with increasing d), obtaining a string of length n/p

a designated processor collects the resulting string and performs suffix
sorting sequentially

comp = O(n/p) comm = O(n/p) sync = O(log log p)
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Further parallel algorithms
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1 Computation by circuits

2 Parallel computation models

3 Basic parallel algorithms

4 Further parallel algorithms

5 Parallel matrix algorithms

6 Parallel graph algorithms
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Parallel matrix algorithms
Matrix-vector multiplication

The matrix-vector multiplication problem

A · b = c A: n-matrix; b, c : n-vectors

Given A, B, compute C

ci =
∑

j Aij · bj 0 ≤ i , j < n

A · b = c

Consider elements of b as inputs and of c as outputs

Elements of A are considered to be problem parameters, do not count as
inputs (motivation: iterative linear algebra methods)

Overall, n2 elementary products Aij · bj = c ij

Sequential work O(n2)
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Parallel matrix algorithms
Matrix-vector multiplication

The matrix-vector multiplication circuit

c ← 0

For all i , j : ci
+
← c ij ← Aij · bj

(adding each c ij to ci asynchronously)

n input nodes of outdegree n, one per element of b

n2 computation nodes of in- and outdegree 1, one
per elementary product

n output nodes of indegree n, one per element of c

size O(n2), depth O(1)

A

b

c

j

i

•

• •
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Parallel matrix algorithms
Matrix-vector multiplication

Parallel matrix-vector multiplication

Partition computation nodes into a regular grid of p = p1/2 · p1/2 square
n

p1/2 -blocks

Matrix A gets partitioned into p square n
p1/2 -blocks AIJ (0 ≤ I , J < p1/2)

Vectors b, c each gets partitioned into p1/2 linear n
p1/2 -blocks bJ , cI

Overall, p block products AIJ · bJ = cJI

cI =
∑

0≤J<p1/2 cJI for all I
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Parallel matrix algorithms
Matrix-vector multiplication

Parallel matrix-vector multiplication (contd.)

c ← 0

For all I , J: cI
+
← cJI ← AIJ · bJ

A

b

c

j

i
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Parallel matrix algorithms
Matrix-vector multiplication

Parallel matrix-vector multiplication (contd.)

Initialise c ← 0 in external memory

Every processor

is assigned I , J and block AIJ

reads block bJ and computes cJI ← AIJ · bJ

updates cI
+
← cJI in external memory

concurrent writing resolved by operator + (recall concurrent block
writing by array combining)

comp = O
(
n2

p

)
comm = O

(
n

p1/2

)
sync = O(1)

Slackness required n ≥ p (as n
p1/2 ≥ p1/2 needed for concurrent write)
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Parallel matrix algorithms
Matrix multiplication

The matrix multiplication problem

A · B = C A, B, C : n-matrices

Given A, B, compute C

Cik =
∑

j Aij · Bjk

0 ≤ i , j , k < n

A · B = C

Overall, n3 elementary products Aij · Bjk = C j
ik

Sequential work O(n3)
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Parallel matrix algorithms
Matrix multiplication

The matrix multiplication circuit

Cik ← 0

For all i , j , k : Cik

+
← C j

ik ← Aij · Bjk

(adding each C j
ik to Cik asynchronously)

2n input nodes of outdegree n, one per
element of A, B

n2 computation nodes of in- and outdegree
1, one per elementary product

n output nodes of indegree n, one per
element of C

size O(n3), depth O(1)

A

B

C

•

•

•

•
ij

jk

ik
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Parallel matrix algorithms
Matrix multiplication

Parallel matrix multiplication

Partition computation nodes into a regular grid of p = p1/3 · p1/3 · p1/3

cubic n
p1/3 -blocks

Matrices A, B, C each gets partitioned into p2/3 square n
p1/2 -blocks AIJ ,

BJK , CIK (0 ≤ I , J,K < p1/3)

Overall, p block products AIJ · BJK = C J
IK

CIK =
∑

0≤J<p1/2 C J
IK for all I , K
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Parallel matrix algorithms
Matrix multiplication

Parallel matrix multiplication (contd.)

C ← 0

For all I , J, K : CIK

+
← C J

IK ← AIJ · BJK

A

B

C
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Parallel matrix algorithms
Matrix multiplication

Parallel matrix multiplication (contd.)

Initialise C ← 0 in external memory

Every processor

is assigned I , J, K

reads blocks AIJ , BJK , and computes C J
IK ← AIJ · BJK

updates CIK

+
← C J

IK in external memory

concurrent writing resolved by operator + (recall concurrent block
writing by array combining)

comp = O
(
n3

p

)
comm = O

(
n2

p2/3

)
sync = O(1)

Slackness required n ≥ p2/3 (as n
p1/3 ≥ p1/3 needed for concurrent write)
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Parallel matrix algorithms
Matrix multiplication
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Parallel matrix algorithms
Matrix multiplication

Parallel matrix multiplication (contd.)
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Parallel matrix algorithms
Matrix multiplication

Theorem. Computing the matrix multiplication dag requires
communication Ω

(
n2

p2/3

)
per processor

Proof: (discrete) volume vs surface area

Let V be the subset of nodes computed by a certain processor

For at least one processor: |V | ≥ n3

p

Let A, B, C be projections of V onto coordinate planes

Arithmetic vs geometric mean: |A|+ |B|+ |C | ≥ 3(|A| · |B| · |C |)1/3

Loomis–Whitney inequality: |A| · |B| · |C | ≥ |V |2

We have comm ≥ |A|+ |B|+ |C | ≥ 3(|A| · |B| · |C |)1/3 ≥ 3|V |2/3 ≥
3
(
n3

p

)2/3
= 3n2

p2/3 , hence comm = Ω
(

n2

p2/3

)
Note that this is not conditioned on comp = O

(
n3

p

)
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Parallel matrix algorithms
Matrix multiplication

The optimality theorem only applies to matrix multiplication by the
specific O(n3)-node dag

Includes e.g. the following forms of matrix multiplication:

numerical, with only operators +, · allowed (not operator −)

Boolean, with only operators ∨, ∧ allowed (not if/then)
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Parallel matrix algorithms
Fast matrix multiplication

2-matrix multiplication: standard circuit

A · B = C A =

[
A00 A01

A10 A11

]
B =

[
B00 B01

B10 B11

]
C =

[
C00 C01

C10 C11

]
C00 = A00 · B00 + A01 · B10

C10 = A10 · B00 + A11 · B10

C01 = A00 · B01 + A01 · B11

C11 = A10 · B01 + A11 · B11

A00, . . . : either ordinary elements or blocks; 8 multiplications

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 186 / 256



Parallel matrix algorithms
Fast matrix multiplication

2-matrix multiplication: Strassen’s circuit

A · B = C A =

[
A00 A01

A10 A11

]
B =

[
B00 B01

B10 B11

]
C =

[
C00 C01

C10 C11

]

Let A, B, C be over a ring: operators +, −, · allowed on elements

D(0) = (A00 + A11) · (B00 + B11)

D(1) = (A10 + A11) · B00

D(3) = A11 · (B10 − B00)

D(5) = (A10 − A00) · (B00 + B01)

D(2) = A00 · (B01 − B11)

D(4) = (A00 + A01) · B11

D(6) = (A01 − A11) · (B10 + B11)

C00 = D(0) + D(3) − D(4) + D(6)

C10 = D(1) + D(3)

C01 = D(2) + D(4)

C11 = D(0) − D(1) + D(2) + D(5)

A00, . . . : either ordinary elements or square blocks; 7 multiplications
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Parallel matrix algorithms
Fast matrix multiplication

N-matrix multiplication: bilinear circuit

certain R linear combinations of elements of A

certain R linear combinations of elements of B

R pairwise products of these combinations

certain N2 linear combinations of these products, each giving an
element of C

Bilinear circuits for matrix multiplication:

standard: N = 2, R = 8, combinations trivial

Strassen: N = 2, R = 7, combinations highly surprising!

sub-Strassen: N > 2, N2 < R < N log2 7 ≈ N2.81

Elements of A, B, C : either ordinary elements or square blocks
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Parallel matrix algorithms
Fast matrix multiplication

Block-recursive matrix multiplication

Given a scheme: bilinear circuit with fixed N, R

Let A, B, C be n-matrices, n ≥ N A · B = C

Partition each of A, B, C into an N × N regular grid of n/N-blocks

Apply the scheme, treating

each ‘+’ as block ‘+’, each ‘−’ as block ‘−’

each ‘·’ as recursive call on blocks

Resulting recursive bilinear circuit:

size O(nω), where ω = logN R < logN N3 = 3

depth ≈ 2 log n

Sequential work O(nω)
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Parallel matrix algorithms
Fast matrix multiplication

Block-recursive matrix multiplication (contd.)

Historical improvements in block-recursive matrix multiplication:

N N3 R ω = logN R

standard2 8 8 3
[Strassen: 1969]2 8 7 2.81

3 27 23 2.85 > 2.81
5 125 100 2.86 > 2.81

[Pan: 1978]48 110592 47216 2.78
. . . . . . . . . . . .

[Coppersmith, Winograd: 1987]HUGE HUGE HUGE 2.3755
[Stothers: 2010]HUGE HUGE HUGE 2.3737

[Vassilevska–Williams: 2011]HUGE HUGE HUGE 2.3727
? ? ? ?
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Parallel matrix algorithms
Fast matrix multiplication

Block-recursive matrix multiplication (contd.)

Circuit size is determined by the scheme parameters N, R; the number of
operations in scheme’s linear combinations turns out to be irrelevant

Optimal circuit size unknown: only near-trivial lower bound Ω(n2 log n)
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Parallel matrix algorithms
Fast matrix multiplication

Parallel block-recursive matrix multiplication

At each level of the recursion tree, the R recursive calls are independent,
hence the recursion tree can be computed breadth-first

At recursion level k :

Rk independent block multiplication subproblems

In particular, at level logR p:

p independent block multiplication subproblems, therefore each
subproblem can be solved sequentially on an arbitrary processor
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Parallel matrix algorithms
Fast matrix multiplication

Parallel block-recursive matrix multiplication (contd.)

In recursion levels 0 to logR p, need to compute elementwise linear
combinations on distributed matrices

Assigning matrix elements to processors:

partition A into regular n
p1/ω -blocks

distribute each block evenly and identically across processors

partition B, C analogously (distribution identical across all blocks of
the same matrix, need not be identical across different matrices)

E.g. cyclic distribution

Linear combinations of matrix blocks in recursion levels 0 to logR p can
now be computed without communication
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Parallel matrix algorithms
Fast matrix multiplication

Parallel block-recursive matrix multiplication (contd.)

Each processor inputs its assigned elements of A, B

Downsweep of recursion tree, levels 0 to logR p:

linear combinations of blocks of A, B, no communication

Recursion levels below logR p: p block multiplication subproblems

assign each subproblem to a different processor
a processor collects its subproblem’s two input blocks, solves it sequentially,
then redistributes the subproblem’s output block

Upsweep of recursion tree, levels logR p to 0:

linear combinations giving blocks of C , no communication

Each processor outputs its assigned elements of C

comp = O
(
nω

p

)
comm = O

(
n2

p2/ω

)
sync = O(1)
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Parallel matrix algorithms
Fast matrix multiplication
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Parallel matrix algorithms
Fast matrix multiplication

Theorem. Computing the block-recursive matrix multiplication dag
requires communication Ω

(
n2

p2/ω

)
per processor [Ballard+:2012]

Proof: generalises the Loomis–Whitney inequality using graph expansion
(details omitted)
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Parallel matrix algorithms
Boolean matrix multiplication

Boolean matrix multiplication

Let A, B, C be Boolean n-matrices: ‘∨’, ‘∧’, ‘if/then’ allowed on
elements

A ∧ B = C

Cik =
∨

j Aik ∧ Bjk 0 ≤ i , j , k < n

Overall, n3 elementary products Aij ∧ Bjk

Sequential work O(n3) bit operations

BSP costs in bit operations:

comp = O
(
n3

p

)
comm = O

(
n2

p2/3

)
sync = O(1)
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Parallel matrix algorithms
Boolean matrix multiplication

Fast Boolean matrix multiplication

A ∧ B = C

Convert A, B into integer matrices by treating 0, 1 as integers (requires
if/then on elements)

Compute A · B = C modulo n + 1 using a Strassen-like algorithm

Convert C into a Boolean matrix by evaluating Cjk 6= 0 mod n + 1

Sequential work O(nω)

BSP costs:

comp = O
(
nω

p

)
comm = O

(
n2

p2/ω

)
sync = O(1)
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Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition

The following algorithm is impractical, but of theoretical interest, because
it beats the generic Loomis–Whitney communication lower bound

Regularity Lemma: in a Boolean matrix, the rows and the columns can be
partitioned into K (almost) equal-sized subsets, so that K 2 resulting
submatrices are random-like (of various densities) [Szemerédi: 1978]

K = K (ε), where ε is the “degree of
random-likeness”

Function K (ε) grows enormously as
ε→ 0, but is independent of n

? −→

We shall call this the regular decomposition of a Boolean matrix
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Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition (contd.)

A ∧ B = C

If A, B, C random-like, then either A or B has few 1s, or C has few 0s

Equivalently, at least one of A, B, C has few 1s, i.e. is sparse

Fix ε so that “sparse” means density ≤ 1/p
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Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition (contd.)

By Regularity Lemma, we have the three-way regular decomposition

A(1) ∧ B(1) = C (1), where A(1) is sparse

A(2) ∧ B(2) = C (2), where B(2) is sparse

A(3) ∧ B(3) = C (3), where C (3) is sparse

C = C (1) ∨ C (2) ∨ C (3)

A(1)

B(1)

C (1)

A(2)

B(2)

C (2)

A(3)

B(3)

C (3)

A(1,2,3), B(1,2,3), C (1,2,3) can be computed “efficiently” from A, B, C
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Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition (contd.)

A ∧ B = C

Partition ijk-cube into a regular grid of p3 = p · p · p cubic n
p -blocks

A, B, C each gets partitioned into p2 square n
p -blocks AIJ , BJK , CIK

0 ≤ I , J,K < p
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Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition (contd.)

Consider J-layers of cubic blocks for a fixed J and all I , K

Every processor

assigned a J-layer for fixed J

reads AIJ , BJK

computes AIJ ∧ BJK = C J
IK by fast Boolean multiplication for all I , K

computes regular decomposition A
(1,2,3)
IJ ∧ B

(1,2,3)
JK = C

J(1,2,3)
IK where

A
(1)
IJ , B

(2)
JK , C

J(3)
IK sparse, for all I , K

0 ≤ I , J,K < p
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Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication by regular decomposition (contd.)

Consider also I -layers for a fixed I and K -layers for a fixed K

Recompute every block product AIJ ∧ BJK = C J
IK by computing

A
(1)
IJ ∧ B

(1)
JK = C

J(1)
IK in K -layers

A
(2)
IJ ∧ B

(2)
JK = C

J(2)
IK in I -layers

A
(3)
IJ ∧ B

(3)
JK = C

J(3)
IK in J-layers

Every layer depends on ≤ n2

p nonzeros of A, B, contributes ≤ n2

p nonzeros

to C due to sparsity

Communication saved by only sending the indices of nonzeros

comp = O
(
nω

p

)
comm = O

(
n2

p

)
sync = O(1) n >>>>> p :-/
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Parallel matrix algorithms
Triangular system solution

Let L be an n-matrix, b, c be n-vectors

L is lower triangular: Lij =

{
0 0 ≤ i < j < n

arbitrary otherwise

L · b = c

The triangular system problem: given
L, c , find b L

· b = c
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Parallel matrix algorithms
Triangular system solution

Forward substitution

L · b = c

L00 · b0 = c0

L10 · b0 + L11 · b1 = c1

L20 · b0 + L21 · b1 + L22 · b2 = c2

. . .∑
j :j≤i Lij · bj = ci

. . .∑
j :j≤n−1 Ln−1,j · bj = cn−1

b0 ← L−1
00 · c0

b1 ← L−1
11 · (c1 − L10 · b0)

b2 ← L−1
22 · (c2 − L20 · b0 − L21 · b1)

. . .

bi ← L−1
ii · (ci −

∑
j :j<i Lij · bj)

. . .

bn−1 ← L−1
n−1,n−1 ·(cn−1−

∑
j :j<n−1 Ln−1,j ·bj)

Sequential work O(n2)

Symmetrically, an upper triangular system solved by back substitution
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Parallel matrix algorithms
Triangular system solution

Parallel forward substitution by 2D grid

Assume L is predistributed as needed, does not count as input

0

0

0

0

0

b0

b1

b2

b3

b4

c0 c1 c2 c3 c4

b0 b1 b2 b3 b4

Pivot node:
ci

si

bi

bi ← L−1
ii · (ci − si )

Update node:
bi

si

bi

si ← si + Lij · bi

comp = O(n2/p) comm = O(n) sync = O(p)
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Parallel matrix algorithms
Triangular system solution

Block-recursive forward substitution

L · b = c[
L00

L10 L11

]
·
[
b0

b1

]
=

[
c0

c1

]
Recursion: two half-sized subproblems

L00 · b0 = c0 by recursion

L11 · b1 = c1 − L10 · b1 by recursion

Sequential work O(n2)
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Parallel matrix algorithms
Triangular system solution

Parallel block-recursive forward substitution

Assume L is predistributed as needed, does not count as input

At each level, the two recursive subproblems are dependent, hence
recursion tree must be computed depth-first

At recursion level k :

sequence of 2k triangular system subproblems, each on n/2k -blocks

In particular, at level log p:

sequence of p triangular system subproblems, each on n/p-blocks

total p · O
(
(n/p)2

)
= O(n2/p) sequential work, therefore each

subproblem can be solved sequentially on an arbitrary processor
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Parallel matrix algorithms
Triangular system solution

Parallel block-recursive forward substitution (contd.)

Recursion levels 0 to log p: block forward substitution using parallel
matrix-vector multiplication

Recursion level log p: a designated processor reads the current task’s
input, performs the task sequentially, and writes back the task’s output

comp = O(n2/p) ·
(
1 + 2 · ( 1

2 )2 + 22 · ( 1
22 )2 + . . .

)
+ O

(
(n/p)2

)
· p =

O(n2/p) + O(n2/p) = O(n2/p)

comm = O(n/p1/2) ·
(
1 + 2 · 1

2 + 22 · 1
22 + . . .

)
+ O(n/p) · p =

O(n/p1/2) · log p + O(n) = O(n)

comp = O(n2/p) comm = O(n) sync = O(p)
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Parallel matrix algorithms
Triangular system solution
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Parallel matrix algorithms
Generic Gaussian elimination

Let A, L, U be n-matrices

LU decomposition of A: A = L · U

A =
L

·
U

L is unit lower triangular: Lij =


0 0 ≤ i < j < n

1 0 ≤ i = j < n

arbitrary otherwise

U is upper triangular: Uij =

{
0 0 ≤ j < i < n

arbitrary otherwise

The LU decomposition problem: given A, find L, U
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Parallel matrix algorithms
Generic Gaussian elimination

Application: solving a linear system

Ax = b

If LU decomposition of A is known: Ax = LUx = b

Solve triangular systems Ly = b then Ux = y , obtaining x

LU decomposition of A can be reused for multiple right-hand sides b
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Parallel matrix algorithms
Generic Gaussian elimination

Block generic Gaussian elimination

LU decomposition: A = L · U, also returns L−1, U−1[
A00 A01

A10 A11

]
=

[
L00

L10 L11

][
U00 U01

U11

]

Compute A00 = L00 · U00, also L−1
00 , U−1

00

L10 ← A10 · U−1
00 U01 ← L−1

00 · A01

Ā11 = A11 − L10 · U01 = A11 − A10A
−1
00 A01 (Schur complement of A11)[

A00 A01

A10 A11

]
=

[
L00

L10 Ā11

][
U00 U01

I

]
Compute Ā11 = L11 · U11, also L−1

11 , U−1
11 , then return L−1, U−1:

L−1 ←
[

L−1
00

−L−1
11 L10L

−1
00 L−1

11

]
U−1 ←

[
U−1

00 −U−1
00 U10U

−1
11

U−1
11

]
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Parallel matrix algorithms
Generic Gaussian elimination

Block generic Gaussian elimination (contd.)

A00, . . . : either ordinary elements or blocks, can be applied recursively

Recursion base: 1× 1 matrix A = 1 · A
Assumption: pivot elements nonzero (respectively pivot blocks
nonsingular):

A00 6= 0 (respectively detA00 6= 0)

Ā11 6= 0 (respectively det Ā11 6= 0)

Hence no pivoting required

In practice, pivots must be sufficiently large. Holds for some special classes
of matrices: diagonally dominant; symmetric positive definite.
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Parallel matrix algorithms
Generic Gaussian elimination

Iterative generic Gaussian elimination

Let A be an n × n matrix

A =

[ (1) (n−1)

(1) A00 A01

(n−1) A10 A11

]
A = LU by block generic Gaussian elimination on A, then on Ā11

Sequential work O(n3)
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Parallel matrix algorithms
Generic Gaussian elimination

Recursive generic Gaussian elimination

Let A be an n × n matrix

A =

[ (n/2) (n/2)

(n/2) A00 A01

(n/2) A10 A11

]
A = LU by block generic Gaussian elimination on A, treating

each ‘+’ (‘−’, ‘·’) as block ‘+’ (‘−’, ‘·’)
each LU decomposition as recursive call on blocks

Sequential work:

O(n3) using standard matrix multiplication

O(nω) using fast (Strassen-like) matrix multiplication
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Parallel matrix algorithms
Generic Gaussian elimination

Parallel recursive generic Gaussian elimination

At each level, the two recursive subproblems are dependent, hence
recursion tree must be computed depth-first

At recursion level k :

sequence of 2k LU decomposition subproblems, each on n
2k

-blocks

In particular, at level 1
2 · log p:

sequence of p1/2 LU decomposition subproblems, each on n
p1/2 -blocks

total p1/2 · O
(
( n
p1/2 )3

)
= O(n

3

p ) sequential work, therefore each

subproblem can be solved sequentially on an arbitrary processor
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Parallel matrix algorithms
Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)

Level 1
2 · log p: threshold to switch from parallel to sequential computation

Recursion levels 0 to 1
2 · log p:

block generic LU decomposition using parallel matrix multiplication

Threshold recursion level 1
2 · log p:

a designated processor reads the subproblem’s input block, solves it
sequentially, and writes the output blocks

comp = O(n3/p) comm = O(n2/p1/2) sync = O(p1/2)
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Parallel matrix algorithms
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Parallel matrix algorithms
Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)

More generally: threshold level α log p, 1/2 ≤ α ≤ 2/3

Recursion levels 0 to α log p:

block generic LU decomposition using parallel matrix multiplication

Threshold recursion level α log p:

a designated processor reads the subproblem’s input block, solves it
sequentially, and writes the output blocks

comp = O(n3/p) comm = O(n2/pα) sync = O(pα)
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Parallel matrix algorithms
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Parallel matrix algorithms
Generic Gaussian elimination

Parallel recursive generic Gaussian elimination (contd.)

Continuous tradeoff between comm and sync

Controlled by parameter α, 1/2 ≤ α ≤ 2/3

α = 1/2: comm and sync as for 3D grid

comp = O(n3/p) comm = O(n2/p1/2) sync = O(p1/2)

α = 2/3:

comm goes down to that of matrix multiplication

sync goes up accordingly

comp = O(n3/p) comm = O(n2/p2/3) sync = O(p2/3)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 219 / 256



Parallel matrix algorithms
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Parallel matrix algorithms
Gaussian elimination with pivoting

Pivoting permutes rows/columns of input matrix to remove the
assumptions of generic Gaussian elimination, ensuring that:

pivot elements are always nonzero

pivot blocks are always nonsingular
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Parallel matrix algorithms
Gaussian elimination with pivoting

Let A, P, L, U be n-matrices

PLU decomposition of A: P · A = L · U

P · A =
L

·
U

P is a permutation matrix:

all elements 0 or 1

exactly one 1 in every row and column

L is unit lower triangular, U is upper triangular

The PLU decomposition problem: given A, find P, L, U
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Parallel matrix algorithms
Gaussian elimination with pivoting

Block Gaussian elimination with column pivoting

Generalise PLU decomposition to “tall” rectangular matrices

Let A be an m × n matrix, m ≥ n

A =

[ (n)

(n) A00

(m−n) A10

]
P ·
[
A00

A10

]
=

[
L00

L10

]
·
[
U00

·

]
P is an m ×m permutation matrix

L00 is n × n unit lower triangular, U00 is n × n upper triangular
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Parallel matrix algorithms
Gaussian elimination with pivoting

Block Gaussian elimination with column pivoting (contd.)[
P00 P01

P10 P11

][
A00 A01

A10 A11

]
=

[
L00

L10 L11

][
U00 U01

U11

]
Compute

[
P00 P01

P ′10 P ′11

][
A00

A10

]
=

[
L00

L′10

][
U00

·

]
U01 ← L−1

00 (P00A01 + P01A11)

Ā′11 ← P ′10A01 + P ′11A11 − L′10U01[
P00 P01

P ′10 P ′11

][
A00 A01

A01 A11

]
=

[
L00

L′10 Ā′11

][
U00 U01

· I

]
Compute P ′′11Ā

′
11 = L11U11[

P00 P01

P ′′11P
′
10 P ′′11P

′
11

][
A00 A01

A01 A11

]
=

[
L00

P ′′11L
′
10 L11

][
U00 U01

· U11

]
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Parallel matrix algorithms
Gaussian elimination with pivoting

Block Gaussian elimination with column pivoting (contd.)

A00, . . . : either ordinary elements or blocks, can be applied recursively

Recursion base: m × 1 matrix

A =

[ (1)

(1) A0

(m−1) A1

]
P

[
A0

A1

]
=

[
A′0
A′1

]
=

[
1
L1

][
A′0
·

]
P is a permutation such that |A′0| is largest across A
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Parallel matrix algorithms
Gaussian elimination with pivoting

Iterative Gaussian elimination with column pivoting

Let A be an n × n matrix

A =

[ (1) (n−1)

(1) A00 A01

(n−1) A10 A11

]
PA = LU by block Gaussian elimination with column pivoting on A, then
on Ā′11

Sequential work O(n3)
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Parallel matrix algorithms
Gaussian elimination with pivoting

Recursive Gaussian elimination with column pivoting

Let A be an n × n matrix

A =

[ (n/2) (n/2)

(n/2) A00 A01

(n/2) A10 A11

]
PA = LU by block Gaussian elimination with column pivoting on A,
treating

each ‘+’ (‘−’, ‘·’) as block ‘+’ (‘−’, ‘·’)
each PLU decomposition as recursive call on blocks

Sequential work:

O(n3) using standard matrix multiplication

O(nω) using fast (Strassen-like) matrix multiplication
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Parallel matrix algorithms
Gaussian elimination with pivoting

Parallel recursive Gaussian elimination with column pivoting

At each level, the two recursive subproblems are dependent, hence
recursion tree must be computed depth-first

At recursion level k :

sequence of 2k PLU decomposition subproblems, each on n
2k
× n

blocks

In particular, at level log p:

sequence of p PLU decomposition subproblems, each on n
p × n blocks

total p · O
(
n3

p2

)
= O

(
n3

p

)
sequential work, therefore each subproblem

can be solved sequentially on an arbitrary processor
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Parallel matrix algorithms
Gaussian elimination with pivoting

Parallel recursive Gaussian elimination with column pivoting (contd.)

Level log p: threshold to switch from parallel to sequential computation

Recursion levels 0 to log p:

block PLU decomposition using parallel matrix multiplication

Threshold recursion level log p:

a designated processor reads the subproblem’s input block, solves it
sequentially, and writes the output blocks

comp = O(n3/p) comm = O(n2) sync = O(p)
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Parallel matrix algorithms
Gaussian elimination with pivoting

Parallel recursive Gaussian elimination with column pivoting (contd.)

Alternative: no switching to sequential computation

Level log p: threshold to switch to fine-grained parallel computation

Recursion levels 0 to log p:

block PLU decomposition using parallel matrix multiplication

Recursion levels log p to log n:

block PLU decomposition on partitioned matrix, using broadcast of
pivot subrows and p instances of sequential matrix multiplication

Recursion base at level log n:

column PLU decomposition; pivot selected by balanced binary tree

comp = O(n3/p) comm = O(n2/p2/3) sync = O(n)
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Parallel matrix algorithms
Gaussian elimination with pivoting

Parallel recursive Gaussian elimination with column pivoting (contd.)

Discontinuous tradeoff between comm and sync

Coarse-grained algorithm: comm and sync as for 2D grid with work and
data size O(n) per node

comp = O(n3/p) comm = O(n2) sync = O(p)

Fine-grained algorithm: comm as for matrix multiplication; sync becomes
a function of n

comp = O(n3/p) comm = O(n2/p2/3) sync = O(n)
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Parallel graph algorithms
Algebraic path problem

Semiring: a set S with addition � and multiplication �

� commutative, associative, has identity 0�

a � b = b � a a � (b � c) = (a � b) � c a � 0�= 0�� a = a

� associative, has annihilator 0� and identity 1�

a � (b � c) = (a � b) � c a � 0�= 0�� a = 0� a � 1�= 1�� a = a

� distributes over �

a � (b � c) = a � b � a � c (a � b) � c = a � c � b � c

In general, no subtraction or division!

We will occasionally write ab for a � b, a2 for a � a, etc.
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Parallel graph algorithms
Algebraic path problem

Some specific semirings:

S � 0� � 1�
real R + 0 · 1
Boolean {0, 1} ∨ 0 ∧ 1
tropical R+ min +∞ + 0

R+ = R≥0 ∪ {+∞}

Given a semiring S , square matrices of size n over S also form a semiring:

� given by matrix addition; 0� by the zero matrix

� given by matrix multiplication; 1� by the identity matrix
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Parallel graph algorithms
Algebraic path problem

The closure of a: a∗ = 1�� a � a2 � a3 � · · ·

Examples

real: a∗ = 1 + a + a2 + a3 + · · · =

{
1

1−a if |a| < 1

undefined otherwise

Boolean: a∗ = 1 ∨ a ∨ a ∨ a ∨ . . . = 1

tropical: a∗ = min(0, a, 2a, 3a, . . .) = 0

In matrix semirings, closures are more interesting
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Parallel graph algorithms
Algebraic path problem

A semiring is closed, if

infinite a1 � a2 � a3 � · · · (e.g. a closure) always defined

infinite � commutative, associative

� distributive over infinite �

In a closed semiring, every element and every square matrix have a closure

Examples

real semiring not closed: infinite + can be divergent

Boolean semiring closed: infinite ∨ is ∃
tropical semiring closed: infinite min is inf (greatest lower bound)
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Parallel graph algorithms
Algebraic path problem

Matrix closure problem, aka algebraic path problem

Given A: n × n matrix over a semiring

Compute A∗ = I ⊕ A⊕ A2 ⊕ A3 ⊕ · · ·

real: A∗ = I + A + A2 + · · · = (I − A)−1, if nonsingular

Weighted digraph on n nodes: define matrix as

Aij =


1�= 0 if i = j

length of edge i → j if edge exists

0�= +∞ otherwise

Boolean: A∗ gives transitive closure

tropical: A∗ gives all-pairs shortest paths
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Parallel graph algorithms
Algebraic path problem

A =


0 5 10 ∞ 10
∞ 0 3 2 9
∞ 2 0 ∞ 1
7 ∞ ∞ 0 6
∞ ∞ ∞ 4 0

 1

2

3

4

5

5

10
10

3

2

9
2

1

7

6 4

A∗ =


0 5 8 7 9
9 0 3 2 4

11 2 0 4 1
7 12 15 0 6

11 16 19 4 0
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Parallel graph algorithms
Algebraic path problem

Floyd–Warshall algorithm [Floyd, Warshall: 1962]

A: n × n matrix over closed semiring

First step of elimination: pivot A00 = 1�

A′11 ← A11 ⊕ A10 � A01

(E.g. replace Aij with Ai0 + A0j , if it gives a
shortcut)

Continue elimination on reduced matrix A′11

Generic Gaussian elimination in disguise

Works for any closed semiring

Sequential work O(n3)

1�

A10

A01

A11
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Parallel graph algorithms
Algebraic path problem

Block Floyd–Warshall algorithm

A =

[
A00 A01

A10 A11

]
A∗ =

[
A′′00 A′′01

A′′10 A′′11

]

Recursion: two half-sized subproblems

A′00 ← A∗00 by recursion

A′01 ← A′00A01 A′10 ← A10A′00 A′11 ← A11 ⊕ A10A′00A01

A′′11 ← (A′11)∗ by recursion

A′′10 ← A′′11A
′
10 A′′01 ← A′01A

′′
11 A′′00 ← A′00 ⊕ A′01A

′′
11A
′
10

A10

A01

Block generic Gaussian elimination in disguise

Sequential work O(n3)
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Parallel graph algorithms
Algebraic path problem

Parallel algebraic path computation

Similar to LU decomposition by block generic Gaussian elimination

Recursion tree is unfolded depth-first

Recursion levels 0 to α log p: block Floyd–Warshall using parallel matrix
multiplication

Recursion level α log p: on each visit, a designated processor reads the
current task’s input, performs the task sequentially, and writes back the
task’s output

Threshold level controlled by parameter α: 1/2 ≤ α ≤ 2/3

comp = O(n3/p) comm = O(n2/pα) sync = O(pα)
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Parallel graph algorithms
Algebraic path problem

Parallel algebraic path computation (contd.)

In particular:

α = 1/2

comp = O(n3/p) comm = O(n2/p1/2) sync = O(p1/2)

Cf. 2D grid

α = 2/3

comp = O(n3/p) comm = O(n2/p2/3) sync = O(p2/3)

Cf. matrix multiplication

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 241 / 256



Parallel graph algorithms
Algebraic path problem

Parallel algebraic path computation (contd.)

In particular:

α = 1/2

comp = O(n3/p) comm = O(n2/p1/2) sync = O(p1/2)

Cf. 2D grid

α = 2/3

comp = O(n3/p) comm = O(n2/p2/3) sync = O(p2/3)

Cf. matrix multiplication

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 241 / 256



Parallel graph algorithms
All-pairs shortest paths

All-pairs shortest paths (APSP) problem: matrix closure (algebraic path)
problem over tropical semiring

S � 0� � 1�
tropical R≥0 ∪ {+∞} min +∞ + 0

We continue to use the generic notation: � for min, � for +

Can be solved by Floyd–Warshall algorithm (ordinary or block)

Also works with negative weights, but no negative cycles

To improve on Floyd–Warshall, we must exploit the tropical semiring’s
idempotence: a � a = min(a, a) = a

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 242 / 256



Parallel graph algorithms
All-pairs shortest paths

All-pairs shortest paths (APSP) problem: matrix closure (algebraic path)
problem over tropical semiring

S � 0� � 1�
tropical R≥0 ∪ {+∞} min +∞ + 0

We continue to use the generic notation: � for min, � for +

Can be solved by Floyd–Warshall algorithm (ordinary or block)

Also works with negative weights, but no negative cycles

To improve on Floyd–Warshall, we must exploit the tropical semiring’s
idempotence: a � a = min(a, a) = a

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 242 / 256



Parallel graph algorithms
All-pairs shortest paths

A: n × n matrix over the tropical semiring, defining a weighted digraph

Path length: sum (�-product) of all its edge lengths

Path size: its total number of edges

(Ak)ij = length of shortest path i  j among those of size ≤ k

(A∗)ij = length of the shortest path i  j of any size

The APSP problem:

A∗ = I ⊕ A⊕ A2 ⊕ · · · = I ⊕ A⊕ A2 ⊕ · · · ⊕ An = (I ⊕ A)n = An
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Parallel graph algorithms
All-pairs shortest paths

APSP by multi-Dijkstra

Dijkstra’s algorithm [Dijkstra: 1959]

Computes single-source shortest paths from fixed source (say, node 0)

Ranks all nodes by distance from node 0: nearest, second nearest, etc.

Every time a node i has been ranked:
A0j ← A0j ⊕ A0i � Aij for all j not yet ranked

Assign the next rank to the unranked node closest to node 0 and repeat

It is essential that the edge lengths are nonnegative

Sequential work O(n2)

APSP: run Dijkstra’s algorithm independently from every node as a
source, sequential work O(n3)
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Parallel graph algorithms
All-pairs shortest paths

Parallel APSP by multi-Dijkstra

Every processor

reads matrix A and is assigned a subset of n/p nodes

runs n/p independent instances of Dijkstra’s algorithm from its
assigned nodes

writes back the resulting n2/p shortest distances

comp = O(n3/p) comm = O(n2) sync = O(1)
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Parallel graph algorithms
All-pairs shortest paths

Parallel APSP: summary so far

comp = O(n3/p)

Floyd–Warshall, α = 2/3 comm = O(n2/p2/3) sync = O(p2/3)

Floyd–Warshall, α = 1/2 comm = O(n2/p1/2) sync = O(p1/2)

Multi-Dijkstra comm = O(n2) sync = O(1)

Coming next comm = O(n2/p2/3) sync = O(log p)
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Parallel graph algorithms
All-pairs shortest paths

Path doubling

Compute A, A2, A4 = (A2)2, A8 = (A4)2, . . . , An = A∗

Overall, log n rounds of matrix �-multiplication: looks promising. . .

. . . but not work-optimal: sequential time O(n3 log n)
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Parallel graph algorithms
All-pairs shortest paths

Sparsified path doubling [Alon+: 1997]

Idea: remove redundancy in path doubling by keeping track of path sizes

Lex-tropical semiring (aka lexicographic semiring)

elements are pairs (a, k) a ∈ R+ k ∈ Z+

� is lexicographic min 0�= (+∞,+∞)

� is numerical + 1�= (0, 0)

Weighted digraph on n nodes: define matrix as

Aij =


1�= (0, 0) if i = j

(length of edge i → j , 1) if edge exists

0�= (+∞,+∞) otherwise
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Parallel graph algorithms
All-pairs shortest paths

Sparsified path doubling (contd.)

Ak
ij = length of shortest path i  j among those of size ≤ k

Let (a, k)|t =

{
(a, k) if k = t

0� otherwise

Ak
ij |` =

{
Ak
ij if realised by a path of size exactly ` ≤ k

0� otherwise

Ak |` contains all lengths of shortest paths of size exactly `. May also
contain some non-shortest path lengths (where the shortest path is of size
≥ k), but that does no harm.
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Parallel graph algorithms
All-pairs shortest paths

Sparsified path doubling (contd.)

We have Ak = Ak |0 ⊕ · · · ⊕ Ak | k
2
⊕ · · · ⊕ Ak |k

Consider matrices in ⊕-sum Ak | k
2
⊕ · · · ⊕ Ak |k

Total density of these k
2 matrices is ≤ 1. This is ≤ 2

k per matrix on

average, and hence also for some specific Ak | k
2

+`, 0 ≤ ` ≤ k
2

We have (I ⊕ Ak | k
2

+`)� Ak = A
3k
2

+`

This is because a shortest path of size ≤ 3k
2 + ` is either

of size ≤ k , or(
shortest path of size exactly k

2 + `
)
� (one of size ≤ k)

Sparse-by-dense matrix �-product: ≤ 2n2

k · n = 2n3

k elementary �-products

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 250 / 256



Parallel graph algorithms
All-pairs shortest paths

Sparsified path doubling (contd.)

Compute matrices A, A
3
2

+`, A( 3
2

)2+`′ , . . . , An = A∗

Overall, ≤ log3/2 n rounds of sparsified path doubling

Sequential work O(n3) ·
(

1 +
(

3
2

)−1
+
(

3
2

)−2
+ · · ·

)
= O(n3)
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Parallel graph algorithms
All-pairs shortest paths

Parallel APSP by sparsified path doubling

All processors collectively

compute B = Ap+` by ≤ log3/2 p rounds of sparsified path doubling

select B|p from B

B|p is dense, but can be decomposed into a �-product of sparse matrices

B|p = B|q � B|p−q 0 ≤ q ≤ p
2

Consider matrix pair B|q, B|p−q for each q

Total density of these p
2 pairs is ≤ 1. This is ≤ 2

p per pair on average,
and hence also for some specific pair with a fixed q

Such a q is found sequentially by a designated processor
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Parallel graph algorithms
All-pairs shortest paths

Parallel APSP by sparsified path doubling (contd.)

Every processor

selects and writes its shares of B|q, B|p−q from B

reads whole B|q, B|p−q and combines them to B|p = B|q � B|p−q

All processors collectively

compute (B|p)∗ by parallel multi-Dijkstra

compute (B|p)∗ � B = A∗ by parallel matrix �-multiplication

Use of multi-Dijkstra requires that all edge lengths in A are nonnegative

comp = O(n3/p) comm = O(n2/p2/3) sync = O(log p)
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Parallel graph algorithms
All-pairs shortest paths

Parallel APSP by sparsified path doubling (contd.)

Now let A have arbitrary (nonnegative or negative) edge lengths. We still
assume there are no negative-length cycles.

All processors collectively

compute B = Ap2+` by ≤ 2 log3/2 p rounds of sparsified path doubling

Let P = {p, 2p, . . . , p2}, P − q = {p − q, 2p − q, . . . , p2 − q} for any q

B|P = B|p ⊕ B|2p ⊕ · · · ⊕ B|p2

All processors collectively

select B|P from B
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Parallel graph algorithms
All-pairs shortest paths

Parallel APSP by sparsified path doubling (contd.)

Every processor

selects and writes its shares of B|q, B|P−q from B

reads whole B|q, B|P−q and combines them to B|P = B|q � B|P−q
computes (B|P)∗ by ≤ log3/2 n rounds of sparsified path doubling
(with path sizes multiples of p)

All processors collectively

compute (B|P)∗ � B = A∗ by parallel matrix �-multiplication

comp = O(n3/p) comm = O(n2/p2/3) sync = O(log p)
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