Information Retrieval Online Evaluation

Ilya Markov i.markov@uva.nl

University of Amsterdam

Course overview

This lecture

Online scenario

Yandex		information retrieval X 🚍 Search
Web Images	w	Information retrieval - Wikipedia, the free encyclopedia en.wiki Information retrieval - Information resources relevant to an information resources. Searches can be based on full-
Video Translate		text or summarian set indexing.
More		Incommutation represent encacademic: u.v. dis.nsflemviliki/9176 + 1950: The term "Information retrieval" appears to have been coined by Calvin Mooers. 1951: Philip Bagley conducted the earliest experiment in computerized document retrieval in a
	Ψ	Information retrieval - Psychology Wiki - Wikia psychology wikia.com > wikiInformation_retrieval * Assessment Biopsychology Comparative Cognitive Developmental Language Individual differences Personality Philosophy Social Methods Statistics Clinical Educational Industrial Professional items World psychology .
	ŃĹP	Introduction to Information Retrieval Inp.star Heat JIR-book/ = Alar for netrieval resources is also available. Introduction to Information Retrieval Contents.
	•1)	Information retrieval - Wikiquote en.wikiquote.org > wiki/Information_retrieval * Information retrieval is the activity of obtaining information resources relevant to an information need from a collection of information resources, and the part of information science, within studies of these activity.

Outline

1 Online evaluation

- Online metrics
- Between-subject experiments
- Within-subject experiments
- Summary

Hypothesis testing

Outline

1 Online evaluation

Online metrics

- Between-subject experiments

Which user-generated signals indicate search quality?

Yandex	information retrieval	< =	Search
Web mages Video	W Information retrieval - Wikipedia, the free encyclopedia en.wiki Information retrieval - Information resources relevant to Information resources. Searches can be based text or the search information resources. Searches can be based	an on full-	
Translate Vlore	III Information retrieval en.academic.ru > dic.nsflerwiki/9176 + 1980: The term 'information retrieval' appears to have been coined by Calvin Mooers Philip Bagley conducted the earliest experiment in computerized document retrieval in	. 1951: a	
	Information retrieval - Psychology Wiki - Wikia psychology.wikia.com - wikilinformation_retrieval * Assessment Biopsychology Comparative Cognitive Developmental Language In differences Personality Philosophy Social Methods Statistics Clinical Education Industrial Professional items World psychology .	dividual al	
	Introd tion to Information Retrieval Introd. Yebook * Aild Retrieval resources is also available. Introduction to Information Retrieval		
	Information retrieval - Wikiquote en.wikiquote.org wiki/information_retrieval * Information retrieval is the activity of obtaining information resources relevant to an information need from a collection of information resources, and the part of informat science, which audies of these activity.	ion	

Online metrics

Type of interaction	Metric	Good	Bad
Clicks	Click-through rate Click rank (reciprocal rank) Abandonment	$\begin{array}{c} \uparrow \\ \downarrow \\ \downarrow \end{array}$	$\begin{array}{c} \downarrow \\ \uparrow \\ \uparrow \end{array}$
Time	Dwell time Time to first click Time to last click	$\uparrow \\ \downarrow \\ \uparrow$	$\begin{array}{c} \downarrow \\ \uparrow \\ \downarrow \end{array}$
Queries	Number of reformulations Number of abandoned queries	$\stackrel{\downarrow}{\downarrow}$	↑ ↑

Outline

1 Online evaluation

- Between-subject experiments

2 Q

A/B testing

based

to clie

Control

eed from a collection of information resources. Searches can be ta or on full-text (or other content-based) indexing. Standard B orean model - Category:Information retrieval - Relevance

[PDF] Introduction to Information Retrieval - The Stanford NLP nip stanford edu/IR-book/pdf/01bool.pdf *

Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers),

Information retrieval - Merriam-Webster Online

www.merriam-webster.com/dictionary/information%20retrieval * the techniques of storing and recovering and often disseminating recorded data especially through the use of a computerized system ...

CS533 Information Retrieval www.cs.

nt edu.tr/~david/cs533/cs533.html -22 De on needs! It is thus concerned with the collection. ...

Information retrieval - Wikiquote

en.wikiguote.org/wiki/Information_retrieval -Information retrieval is the activity of obtaining information resources relevant to an information need from a collection of information resources, and the part of

Images Maps News More - Search tools

About 16,000,000 results (0.52 seconds)

inform

Information retrieval - Wikipedia, the free encyclopedia

What is information retrieval? - Yahoo Answers

https://answers.vahoo.com/question/index?gid=1006041603723 + Resolved · 4 posts · 3 total answers 16/04/2006 - Information retrieval is the activity of obtaining information resources relevant to an information need from a collection of information resources ...

Information Retrieval definition of Information Retrieval ...

encyclopedia2.thefreedictionary.com/information+retrieval information retrieval [in-farmā-shan ri,trē-val] (computer science) The technique and process of searching, recovering, and interpreting information ...

What Is Data Retrieval? | eHow - eHow | How to - Discover ...

www.ehow.com > Internet > On the Web > Online Research + 28/08/2014 · What Is Data Retrieval?. "Data retrieval" refers to various processes, including recovery of lost information, gathering information on an unknown ...

Introduction to Information Retrieval - Stanford University

nlp.stanford.edu/IR-book -

Introduction to Information Retrieval. This is the companion website for the following book, Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze ...

Inform en.wikip Inford an infe based o

Standa (PDF) In

nio star Inform nature ((usually

Infor

the tech especia

CS53 www.cs 22 Del

to clien

Inform en.wikid Inform informa

- Set the current search system as control
- 2 Set an alternative search system as treatment
- 3 Assign 0.5%-1.0% of users to each of these systems
- ④ Record user interactions with these systems during time period T
- 5 Compare the systems using online metrics
- 6 Choose a winner based on one or several metrics

A/B testing discussion

- Pros
 - Can evaluate anything
 - Using any online metric
- Cons
 - High variance between users
 - Not very sensitive
 - Needs lots of observations

Outline

1 Online evaluation

- Between-subject experiments
- Within-subject experiments

Interleaving

- Given a user's query, produce two rankings (current and alternative)
- 2 Merge the rankings into a single ranking using a mixing policy
- ③ Present the merged ranking to a user and collect interactions (see online metrics)
- Choose a winning ranking using a scoring rule
- S Repeat steps 1–4 until a clear winner is identified

Team draft interleaving

Google A

^{party} Search Engines that Learn from Implicit Feedback - Depar... www.cs.ag.nl-reelcourses/Trint/Jachime Search-Engines.pd * by T Jachtre- Caleby 1961 - Retained tricks Aug 2, 2007 - search engines present results ben/ty bases a user's. Search engine toos provide a - this enginese the search their compare instead for.

5 Alternative Search Engines That Respect Your Privacy - Ho... www.howtopexic.com/...5-alternative-search-engines that respect your p...* May 8, 2012 - Google, Bing, Yahoo - all the major search engines track your search ... you, and it desards user agents and IP addresses from its server log. Compare the set of the set o

A Search Engine that Learn from Implicit Feedback striver joachims.org¹ Examples of implicit feedback are the links a user clicks on in the ranked results, the The ability to learn enables a search engine to advantationly ideal (IS ...

Google B Goo

5 Alternative Search Engines That Respect Your Privacy - Ho... www.howlopek.com.../s-alternative-search-engines-trait-respect-your o...* May 9, 2012 - Google, Bing, Yahoo - at the major search engines track your search ... you, and it diseards user agents and IP addresses from its server logs.

(Per) Search Engines that Learn from Implicit Feedback - Depar... www.cs.ug.nlineoetourses/Crint/Joachins-Search-Engines.pdf * by T-Joachins - Cled by 161 - Related articles Aug 2, 2007 - search regimes present results heavily biases a user's. Search engine and present regimes and present articles.

Aug 2, 2007 - search engines present results heavily biases a user's. Search engi logs provide a ... that employees who search their company intranet for. Search Engines that www.anneschuft.ni/besis Search Engines that Learn Their Users, Search Engin

Port Search Engines www.cs.rug.nil-roelcourse by T Joschims - Oled by 16 Aug 2, 2007 - search engin loss provide a ... that employ

A Search Engine that striver joachims.org/ * Examples of implicit feedbac

5 Alternative Search www.howtogeek.com/../5-May 9, 2012 - Google, Bing, you, and it discards user ag

Ilya Markov

i.markov@uva.nl

Information Retrieval

Team draft interleaving

- **Mixing policy:** each ranker selects its highest ranked document that is not yet in the combined list
- Scoring rule: a ranker is preferred if its results get more clicks

Other interleaving methods

- Probabilistic interleaving
- Optimized interleaving
- Multileaving

Interleaving discussion

- Pros
 - No variance due to different users
 - Highly sensitive
 - $\, \bullet \,$ Needs much fewer observations compared to A/B testing
- Cons
 - Can only use clicks

Outline

1 Online evaluation

- Between-subject experiments
- Summary

Online evaluation summary

- Online metrics
 - Clicks
 - Time
 - Queries
- Between-subject experiments A/B testing
- Within-subject experiments interleaving

What are the advantages of online evaluation?

- Based on real users
- Cheap as it uses a running search system

What are the disadvantages of online evaluation?

- Online metrics are difficult to interpret
- May disturb users
- Cannot run too many experiments in parallel
- User search interactions are biased

Click models

MORGAN & CLAYPOOL PUBLISHERS
Click Models for Web Search
Aleksandr Chuklin Ilya Markov Maarten de Riike
Synthesis Lectures on Information
Gary Marchionini, Series Editor

http://clickmodels.weebly.com/the-book.html

Ilya Markov

K. Hofmann, L. Li, F. Radlinski **Online Evaluation for Information Retrieval** Foundations and Trends in Information Retrieval, 2016

Online evaluation

Hypothesis testing

Which evaluation paradigm should we use?

Both

Evaluating efficiency

Metric name	Description
Elapsed indexing time	Measures the amount of time necessary to build a
	document index on a particular system.
Indexing processor time	Measures the CPU seconds used in building a docu-
	ment index. This is similar to elapsed time, but does
	not count time waiting for I/O or speed gains from
	parallelism.
Query throughput	Number of queries processed per second.
Query latency	The amount of time a user must wait after issuing a
	query before receiving a response, measured in mil-
	liseconds. This can be measured using the mean, but
	is often more instructive when used with the median
	or a percentile bound.
Indexing temporary space	Amount of temporary disk space used while creating
	an index.
Index size	Amount of storage necessary to store the index files.

Croft et al., "Search Engines, Information Retrieval in Practice"

1 Online evaluation

2 Hypothesis testing

- Basics
- Hypothesis testing in IR

Example

Query	А	В	B-A
1	25	35	10
2	43	84	41
3	39	15	-24
4	75	75	0
5	43	68	25
6	15	85	70
7	20	80	60
8	52	50	-2
9	49	58	9
10	50	75	25

- How can we be sure that B is better than A?
- Test statistical significance (hypothesis testing)

Croft et al., "Search Engines, Information Retrieval in Practice"

Hypothesis testing Basics

• Hypothesis testing in IR

Test procedure

- (1) Set null hypothesis H_0
- 2 Set alternative hypothesis H_1
- 3 Collect sample data $\mathbf{X} = \{X_1, \dots, X_n\}$
 - **X** is **unlikely** under $H_0 \implies$ reject H_0 in favor of H_1
 - **X** is **not unlikely** under $H_0 \Longrightarrow$ no evidence against H_0
 - ... but this is not an evidence in favor of H_0 !

Example

- 1) $H_0: p_{head} = 0.8$
- 2 $H_1: p_{head} \neq 0.8$
- 3 Perform 10 tosses, observe 4 heads

$$\frac{n!}{h!(n-h)!}p^{h}(1-p)^{n-h} = \frac{10!}{4!6!}0.8^{4}0.2^{6} = 0.005$$

Perform 10 tosses, observe 7 heads

$$\frac{10!}{7!3!}0.8^70.2^3 = 0.201$$

Test procedure (cont'd)

- Consider a statistical model
- 2 Set H_0 and H_1
- 3 Choose a test statistics $T(X_1, \ldots, X_n)$
- ④ Choose a critical region C (discussed next)
- 5 Decision rule
 - $T \in C \implies$ reject H_0 in favor of H_1
 - $T \notin C \Longrightarrow$ fail to reject H_0

Example (cont'd)

- $H_0: p_{head} = 0.8$
- $H_1: p_{head} \neq 0.8$
- Sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- For large enough n $\overline{X} \mid H_0 \sim \mathcal{N}(0.8, \sigma^2/n)$
- Test statistics $T = \frac{\overline{X} - 0.8}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$
- Critical region

 $C = (-\infty, -z_c] \cup [z_c, \infty)$

Picture taken from http://2012books.lardbucket.org/books/beginning-statistics/ s09-04-areas-of-tails-of-distribution.html

Example (cont'd)

Reject H_0 if

•
$$T \leq -z_{\alpha/2}, T \geq z_{\alpha/2}$$

• $\overline{X} \leq -z_{\alpha/2} \cdot \sigma/\sqrt{n} + 0.8, \overline{X} \geq z_{\alpha/2} \cdot \sigma/\sqrt{n} + 0.8$

Alternatively, reject H_0 if

•
$$p = P(|T| > T_{obs} | H_0) \le \alpha$$

p-value

Test statistics and *p*-value can be calculated using any statistical software, e.g., R

	H_0 is false	<i>H</i> ₀ is true
Reject <i>H</i> 0 Not reject <i>H</i> 0	power type II error	type I error ($lpha$)

Hypothesis testing

- Hypothesis testing in IR

T-test

- (1) Get measurements for systems A and B $M(A) \sim \mathcal{N}(\mu_A, \sigma^2), \ M(B) \sim \mathcal{N}(\mu_B, \sigma^2)$
- **2** $H_0: \mu_A = \mu_B$

- **(5)** Use standard hypothesis testing procedure with $\alpha \in \{0.01, 0.05\}$

Picture taken from https://en.wikipedia.org/wiki/Student%27s_t-distribution

T-test example

Query	А	В	B-A
1	25	35	10
2	43	84	41
3	39	15	-24
4	75	75	0
5	43	68	25
6	15	85	70
7	20	80	60
8	52	50	-2
9	49	58	9
10	50	75	25

•
$$\overline{B} - \overline{A} = 21.4$$

• $\hat{\sigma} = 29.1$
• $T = \frac{21.4}{29.1/\sqrt{10}} = 2.33$
• $p = P(|T| > 2.33 | H_0) = 0.02$
• If $\alpha = 0.05$, reject H_0
• If $\alpha = 0.01$, do not reject H_0

Croft et al., "Search Engines, Information Retrieval in Practice"

Wilcoxon signed-ranks test

- Get measurements for systems A and B
- 2 For each item *i*, compute $|m_{A,i} m_{B,i}|$ and $sgn(m_{A,i} m_{B,i})$
- 3 Exclude items with $|m_{A,i} m_{B,i}| = 0$
- **④** Order the remaining N_{nz} items based on $|m_{A,i} m_{B,i}|$
- **5** Assign ranks R_i from smallest to largest
- 6 Compute the test statistics

$$W = \sum_{i=1}^{N_{nz}} [sgn(m_{A,i} - m_{B,i}) \cdot R_i]$$

- Tor large N_{nz} , $W \sim \mathcal{N}$
- **(a)** Use standard hypothesis testing procedure with $\alpha \in \{0.05, 0.01\}$

Wilcoxon test example

Query	А	В	B-A
1	25	35	10
2	43	84	41
3	39	15	-24
4	75	75	0
5	43	68	25
6	15	85	70
7	20	80	60
8	52	50	-2
9	49	58	9
10	50	75	25

Ranked non-zero differences

9, 10, 24, 25, 25, 41, 60, 70

Signed ranks

+2, +3, -4, +5.5, +5.5, +7, +8, +9

W = 35
p = P(|W| > 35 | H₀) = 0.025
If α = 0.05, reject H₀
If α = 0.01, do not reject H₀

Croft et al., "Search Engines, Information Retrieval in Practice"

Hypothesis testing summary

- IR must use statistical testing
- The most common and one of the most powerful is the **paired t-test**

M. Smucker, J. Allan, B. Carterette A Comparison of Statistical Significance Tests for Information Retrieval Evaluation Proceedings of CIKM, pages 623–632, 2007

Course overview

See you tomorrow at 11:15

