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• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Infeasible for large d:
• Space exponential in the dimension

• Most of the applications are in 
high dimensions







• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1



• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1



• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data 
point



• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data 
point

r



• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data 
point

• Want: a data point within cr from the 
query

r



• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data 
point

• Want: a data point within cr from the 
query

r

cr





• Similarity search for: images, audio, video, texts, biological 
data etc



• Similarity search for: images, audio, video, texts, biological 
data etc

• Cryptanalysis (the Shortest Vector Problem in lattices) 
[Laarhoven 2015]



• Similarity search for: images, audio, video, texts, biological 
data etc

• Cryptanalysis (the Shortest Vector Problem in lattices) 
[Laarhoven 2015]

• Optimization: Coordinate Descent [Dhillon, Ravikumar, 
Tewari 2011], Stochastic Gradient Descent [Hofmann, 
Lucchi, McWilliams 2015] etc
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• Focus of this talk:

all points and queries lie on a unit sphere in Rd

• Why interesting?

• In theory: can reduce general case to the spherical case 
[Andoni, R 2015]

• In practice:
• Cosine similarity is widely used

• Oftentimes, can pretend that the dataset lies on a sphere
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• Dataset: n random points on a 
sphere

• Query: a random query within 45
degrees from a data point

• Distribution of angles: near 
neighbor within 45 degrees, 
other data points at ~90 degrees!

• Instructive case to think about
• [Andoni, R 2015]: a (delicate) 

reduction from general to random

• Concentration of angles around 90
degrees happens in practice
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• Main idea: random partitions of Rd s.t. 
closer pairs of points collide more often

• A random partition R is (r, cr, p1, p2)-
sensitive if for every p, q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

From the definition of ANN

r cr

p2

p1
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• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• If 0.5K ~ 1/n, then O(1) far points 
in a query bin

• Collides with near neighbor with 
probability 0.75K ~ 1/n0.42

• Thus, need L = O(n0.42) tables to 
boost the success probability to 
0.99

• Overall: O(n1.42) space, O(n0.42)
query time, K·L hyperplanes
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In general [Indyk, Motwani 1998]: can always choose K (# of 
functions / table) and L (# of tables) to get space O(n1+ρ) and 
query time O(nρ), where

ρ = ln(1/p1) / ln(1/p2)

Recap:

• p1 is collision probability for close pairs

• p2 — for far pairs
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• Can one improve upon O(n1.42) space and O(n0.42) query time 
for the 45-degree random instance?

• Yes!
• [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve 

space O(n1.18) and query time O(n0.18)

• [Andoni, R ??]: tight for hashing-based approaches!

• Works for the general case of ANN on a sphere

Can we use this (significant) improvement in practice?
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• From [Andoni, Indyk, Nguyen, R 2014], 
[Andoni, R 2015]; inspired by [Karger, 
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional 
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• T = 2 is simply Hyperplane LSH
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• Let us compare K hyperplanes 
vs. Voronoi LSH with T = 2K (in 
both cases K-bit hashes)

• As T grows, the gap between 
Hyperplane LSH and Voronoi LSH 
increases and

ρ = ln(1/p1) / ln(1/p2)

approaches 0.18
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Is Voronoi LSH practical?

No!
• Slow convergence to the optimal exponent: Θ(1 / log T)
• Large T to notice any improvement
• Takes O(d · T) time (even say T = 64 is bad)

At the same time:
• Hyperplane LSH is very useful in practice
• Can practice benefit from theory?

This work: yes!
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• Cross-polytope LSH introduced by 
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope 
{±ei} closest to Sp

• Almost the same quality as Voronoi LSH 
with T = 2d
• Blessing of dimensionality: exponent improves 

as d grows!

• Impractical: a random rotation costs O(d2)
time and space

• The second step is cheap (only O(d) time)
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• Introduced in [Ailon, Chazelle 2009], 
used in [Dasgupta, Kumar, Sarlos 
2011], [Ailon, Rauhut 2014], [Ve, 
Sarlos, Smola, 2013] etc

• True random rotations are expensive!

• Hadamard transform: an orthogonal 
map that
• “Mixes well”

• Fast: can be computed in time O(d log d) 𝐻0 = 1

𝐻𝑛 =
1

√2

𝐻𝑛−1 𝐻𝑛−1
𝐻𝑛−1 −𝐻𝑛−1

p = (p1, p2, …, pn)

p’ = (±p1, ±p2, …, ±pn)

Hp’

Flip signs

Hadamard

Repeat (2-3 times)
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• Perform 2–3 rounds of “flip signs / Hadamard”

• Find the closest vector from {±ei} (maximum coordinate)

• Evaluation time O(d log d)

• Equivalent to Voronoi LSH with T = 2d Gaussians
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• LSH consumes lots of memory: myth or reality?

• For n = 106 random points and queries within 45 degrees, 
need 725 tables for success probability 0.9 (if using 
Hyperplane LSH)

• Can be reduced substantially via Multiprobe LSH [Lv, 
Josephson, Wang, Charikar, Li 2007]
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• Instead of trying a single bucket, try P buckets, where the 
near neighbor is most likely to end up

• A single probe: query the bucket

(sgn <q, r1>, sgn <q, r2>, …, sgn <q, rK>)

• To generate P buckets, flip signs, for which <q, ri> is close to 
zero

• By increasing P, can reduce L (# of tables)

• A similar procedure for Cross-polytope LSH (more 
complicated, since the range is non-binary)
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• For s-sparse vectors, Hyperplane LSH 
takes time O(s)

• Can Cross-polytope LSH exploit 
sparsity?

• Hashing trick (a.k.a. Count-Sketch)

• For target dimension F yields time
O(s + F log F)

• Equivalent to Voronoi LSH with T = 2F.
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• Aim at finding the exact nearest neighbor

• Probability of success (0.9)

• Intermediate dimension F (~1000; as large as possible, while 
not slowing hashing down)

• # of tables L (depending on RAM budget, even ~10 would do)

• # of hash functions / table K (few data points in most of the 
buckets)

• Determine # of probes P that gives the desired probability of 
success (on sample queries)
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• An actual implementation of Multiprobe Hyperplane and 
Cross-polytope LSH in C++11, 11k LOC, template-based

• Supports dense and sparse data

• Very polished (w.r.t. performance)
• Uses Eigen to speed-up hash and distance computations

• Vectorized Hadamard transform (using AVX), several times faster 
than FFTW (surprise!)

• Available at http://falconn-lib.org together with Python 
bindings
• http://github.com/falconn-lib/ffht for FHT
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• Success probability 0.9 for finding exact nearest neighbors

• Choose L s.t. space for tables ≈ space for a dataset (except 
one instance)

• (Optimized) linear scan vs. Hyperplane vs. Cross-polytope









• SIFT features for a dataset of images



• SIFT features for a dataset of images

• n = 1M, d = 128



• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms



• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• Hyperplane: 3.7ms, Cross-polytope: 3.1ms



• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• Hyperplane: 3.7ms, Cross-polytope: 3.1ms

• Clustering and re-centering helps
• Hyperplane: 2.75ms

• Cross-polytope: 1.75ms



• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• Hyperplane: 3.7ms, Cross-polytope: 3.1ms

• Clustering and re-centering helps
• Hyperplane: 2.75ms

• Cross-polytope: 1.75ms

• Adding more memory helps
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[Pennington, Socher, Manning 2014] n = 1.2M, d = 100, aim 
at 10 nearest neighbors

• 16-bit hashes
• 1…1400 tables
• Single probe
• Accuracy 0.016…0.99
• 10μs to 8.5ms query
• From 5 Mb to 7 Gb
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• Centering
• Hierarchical centering?

• “Compressed” index

• Data prefetching

• Sorting is expensive
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• The convergence to the optimal exponent is Θ(1 / log T)

• Tight for any LSH!

• Any LSH family with range of size S must be at least Ω(1 / log 
S) off the optimum

• For 45-degree random instance:
• The best exponent is 0.18

• To get below 0.2, need S ≥ 1012

• For the further progress, need evaluation time sublinear in 
the range size!
• Complexity of “decoding” for almost-orthogonal vectors
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• For r > 0 and D > 1 distinguish
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• d(x, y) ≥ Dr

• Shared randomness, allow 1%
probability of error
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• Alice and Bob each hold a point from a 
metric space (say x and y)

• Both send s-bit sketches to Charlie

• For r > 0 and D > 1 distinguish
• d(x, y) ≤ r

• d(x, y) ≥ Dr

• Shared randomness, allow 1%
probability of error

• Trade-off between s and D

sketch(x) sketch(y)

d(x, y) ≤ r or d(x, y) ≥ Dr? 

0 1 1 0 … 1

32
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Charlie
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• Given n-point dataset P

• A query q within r from some data point

• Return any data point within Dr from q
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• Near Neighbor Search (NNS):
• Given n-point dataset P

• A query q within r from some data point

• Return any data point within Dr from q

• Sketches of size s imply NNS with 
space nO(s) and a 1-probe query

• Proof idea: amplify probability of 
error to 1/n by increasing the size to 
O(s log n); sketch of q determines the 
answer

• For many metrics: the only approach
33
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• (Indyk 2000): can sketch ℓp for 0 < p ≤ 2 via random projections using 
p-stable distributions
• For D = 1 + ε one gets s = O(1 / ε2)

• Tight by (Woodruff 2004) 
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• (Indyk 2000): can sketch ℓp for 0 < p ≤ 2 via random projections using 
p-stable distributions
• For D = 1 + ε one gets s = O(1 / ε2)

• Tight by (Woodruff 2004) 

• For p > 2 sketching ℓp is somewhat hard (Bar-Yossef, Jayram, Kumar, 
Sivakumar 2002), (Indyk, Woodruff 2005)
• To achieve D = O(1) one needs sketch size to be s = Θ~(d1-2/p)
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• Distinguish |x – y| ≤ 1 vs. 
|x – y| ≥ 1 + ε
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• Distinguish |x – y| ≤ 1 vs. 
|x – y| ≥ 1 + ε

• Randomly shifted pieces of 
size w = 1 + ε/2

• Repeat O(1 / ε2) times

• Overall:
• D = 1 + ε

• s = O(1 / ε2)

x y

0 01
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• (Indyk 2000): can reduce sketching of ℓp with 0 < p ≤ 2 to sketching 
reals via random projections

• If (G1, G2, …, Gd) are i.i.d. N(0, 1)’s, then ∑i xiGi – ∑i yiGi is distributed as 
‖x - y‖2 • N(0, 1)

• For 0 < p < 2 use p-stable distributions instead

• Again, get D = 1 + ε with s = O(1 / ε2)
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• Space: nO(1/ε^2)

• Query time: poly(log n / ε)


