Similarity Search

Largely based on a paper joint with
Alexandr Andoni (Columbia), Piotr Indyk (MIT),
Thijs Laarhoven (TU Eindhoven) and Ludwig Schmidt (MIT)

Near Neighbor Search

Near Neighbor Search

- Dataset: n pointsinR9, r>0

Near Neighbor Search

- Dataset: n pointsinR9, r>0

» Goal: a data point within r from a
query

Near Neighbor Search

- Dataset: n pointsinR9, r>0

» Goal: a data point within r from a
query

Near Neighbor Search

- Dataset: n pointsinR9, r>0

» Goal: a data point within r from a
query

Near Neighbor Search

- Dataset: n pointsinR9, r>0

- Goal: a data point within r from a e
query
» Space, query time AN

Near Neighbor Search

- Dataset: n pointsinR9, r>0

» Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

Near Neighbor Search

- Dataset: n pointsinR9, r>0

» Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

Near Neighbor Search

- Dataset: n pointsinR9, r>0

» Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

Near Neighbor Search

- Dataset: n pointsinR9, r>0

» Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

Near Neighbor Search

- Dataset: n pointsinR9, r>0

» Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

* Infeasible for large d:
« Space exponential in the dimension

Near Neighbor Search

- Dataset: n pointsinR9, r>0

» Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

* Infeasible for large d:
« Space exponential in the dimension

« Most of the applications are in
high dimensions

Detour: closest pair in /ow dimensions

Approximate Near Neighbor Search (ANN)

Approximate Near Neighbor Search (ANN)

» Given:
 n points in R
 distance threshold r >0
« approximation ¢ > 1

Approximate Near Neighbor Search (ANN)

» Given:
 n points in R
 distance threshold r >0
« approximation ¢ > 1 ° .

Approximate Near Neighbor Search (ANN)

» Given:
 n points in R
 distance threshold r >0
« approximation ¢ > 1 ° .

* Query: a point within r from a data ‘ o
point

Approximate Near Neighbor Search (ANN)

e Given:
 n points in R
e distance threshold r>0

« approximation ¢ > 1 .. o
* Query: a point within r from a data . by et
point

Approximate Near Neighbor Search (ANN)

e Given:
 n points in R
e distance threshold r>0

« approximation ¢ > 1 e ,.,"'_"
* Query: a point within r from a data ‘ ar ek
point
« Want: a data point within cr from the .

query

Approximate Near Neighbor Search (ANN)

e Given:
 n points in R
e distance threshold r>0

- -
" i

« approximation ¢ > 1 v . :" ,.,"'" “x|

» Query: a point within r from a data y N

point S

» Want: a data point within cr from the . . o
query

Applications

Applications

« Similarity search for: images, audio, video, texts, biological
data etc

Applications

« Similarity search for: images, audio, video, texts, biological
data etc

 Cryptanalysis (the Shortest Vector Problem in lattices)
[Laarhoven 2015]

Applications

« Similarity search for: images, audio, video, texts, biological
data etc

 Cryptanalysis (the Shortest Vector Problem in lattices)
[Laarhoven 2015]

« Optimization: Coordinate Descent [Dhillon, Ravikumar,
Tewari 2011], Stochastic Gradient Descent [Hofmann,
Lucchi, McWilliams 2015] etc

Spherical case

Spherical case

* Focus of this talk:
all points and queries lie on a unit sphere in R4

Spherical case

* Focus of this talk:
all points and queries lie on a unit sphere in R4
* Why interesting?

Spherical case

* Focus of this talk:
all points and queries lie on a unit sphere in R4
* Why interesting?

* In theory: can reduce general case to the spherical case
[Andoni, R 2015]

Spherical case

* Focus of this talk:
all points and queries lie on a unit sphere in R4
* Why interesting?

* In theory: can reduce general case to the spherical case
[Andoni, R 2015]

* In practice:
 Cosine similarity is widely used
« Oftentimes, can pretend that the dataset lies on a sphere

Spherical random case

Spherical random case

- Dataset: n random points on a
sphere

Spherical random case

- Dataset: n random points on a
sphere

* Query: a random query within 45
degrees from a data point

Spherical random case

- Dataset: n random points on a
sphere

* Query: a random query within 45
degrees from a data point

» Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

Spherical random case

250

- Dataset: n random points on a
sphere

* Query: a random query within 45
degrees from a data point

» Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

200

150

—

00

50

0 45 90 135 180

Spherical random case

- Dataset: n random points on a
sphere

* Query: a random query within 45
degrees from a data point

» Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

* Instructive case to think about
 [Andoni, R 2015]: a (delicate)
reduction from general to random

« Concentration of angles around 90
degrees happens in practice

250

200

150

—

00

50

45

90

135

180

Locality-Sensitive Hashing (LLSH)

Locality-Sensitive Hashing (LLSH)

e Introduced in [Indyk, Motwani 1998]

Locality-Sensitive Hashing (LLSH)

e Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

Locality-Sensitive Hashing (LLSH)

e Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

Locality-Sensitive Hashing (LLSH)

e Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

« A random partition R is (r, cr, p,, P,)-
sensitive if for every p, q:
 If llp - qll < r, then Prg[R(p) = R(q)] = p,
 Ifllp - qll = cr, then Prg[R(p) = R(q)] < p,

Locality-Sensitive Hashing (LLSH)

e Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

« A random partition R is (r, cr, p,, P,)-
sensitive if for every p, q:
 If llp - qll < r, then Prg[R(p) = R(q)] = p,
 Iflip - qll = cr, then Prg[R(p) = R(q)] < p,

From the definition of ANN

Locality-Sensitive Hashing (LLSH)

e Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

« A random partition R is (r, cr, p,, P,)-
sensitive if for every p, q:
 If llp - qll < r, then Prg[R(p) = R(q)] = p,
 Iflip - qll = cr, then Prg[R(p) = R(q)] < p,

From the definition of ANN

collision prob.
1.0

p1 0.8

0.6

0.4

pz 0.2

Hyperplane LSH

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

* Prlh(p) =h(g)]=1-a/ 1 where ais
the angle between p and q

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

* Prlh(p) =h(g)]=1-a/ 1 where ais
the angle between p and q

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

* Prlh(p) =h(g)]=1-a/ 1 where ais
the angle between p and q

1.00

0.75

0.50

0.25

90

135

180

Using LSH to solve ANN

Using LSH to solve ANN

» K hash functions at once (hash p
into (hy(p), ..., hy(p)))

Using LSH to solve ANN

» K hash functions at once (hash p
into (hy(p), ..., hy(p)))

1.00

0.75

0.50

0.25

query
point

near far
neighbor points

Using LSH to solve ANN

» K hash functions at once (hash p
into (hy(p), ..., hy(p)))

1.00

0.75

0.50

0.25

query
point

near far
neighbor points

Using LSH to solve ANN

» K hash functions at once (hash p
into (hy(p), ..., hy(p)))

K=3

1.00

0.75

0.50

0.25

query
point

near far
neighbor points

Using LSH to solve ANN

» K hash functions at once (hash p
into (hy(p), ..., hy(p)))

1.00 K = 4
0.75
0.50
0.25
I
query near far

point

neighbor points

Using LSH to solve ANN

» K hash functions at once (hash p
into (hy(p), ..., hy(p)))

1.00

0.75

0.50

0.25

?

query
point

near far
neighbor points

Using LSH to solve ANN

» K hash functions at once (hash p
into (hy(p), ..., hy(p)))

K

6

1.00

0.75

0.50

0.25

|]

query
point

near far
neighbor points

Using LSH to solve ANN

» K hash functions at once (hash p
into (hy(p), ..., hy(p)))

* If 0.5% ~ 1/n, then O(1) far points
in a query bin

K

6

1.00

0.75

0.50

0.25

[J

query
point

near far
neighbor points

Using LSH to solve ANN

» K hash functions at once (hash p
into (hy(p), ..., hi(p)))

* If 0.5% ~ 1/n, then O(1) far points
in a query bin

* Collides with near neighbor with
probability 0.75X ~ 1/n%42

* Thus, need L = O(n%42) tables to
boost the success probability to
0.99

K=6

1.00

0.75

0.50

0.25

|]

query
point

near far
neighbor points

Using LSH to solve ANN

» K hash functions at once (hash p
into (hy(p), ..., hi(p)))

* If 0.5% ~ 1/n, then O(1) far points
in a query bin

* Collides with near neighbor with
probability 0.75X ~ 1/n%42

* Thus, need L = O(n%42) tables to
boost the success probability to
0.99

 Overall: O(n142) space, O(n%42)
query time, K-L hyperplanes

K

6

1.00

0.75

0.50

0.25

|]

query
point

near far
neighbor points

Using LSH to solve ANN (in general)

Using LSH to solve ANN (in general)

In general [Indyk, Motwani 1998]. can always choose K (# of
functions / table) and L (# of tables) to get space O(n'*P) and
guery time O(nP), where

Using LSH to solve ANN (in general)

In general [Indyk, Motwani 1998]. can always choose K (# of
functions / table) and L (# of tables) to get space O(n'*P) and
guery time O(nP), where

p=In(1/p4) / In(1/p,)

Using LSH to solve ANN (in general)

In general [Indyk, Motwani 1998]. can always choose K (# of
functions / table) and L (# of tables) to get space O(n'*P) and
guery time O(nP), where

p =In(1/p,) / In(1/p,)
Recap:
* p, is collision probability for close pairs
* p, — for far pairs

Better than Hyperplane LSH?

Better than Hyperplane LSH?

« Can one improve upon O(n'4?) space and O(n%4?) query time
for the 45-degree random instance?

Better than Hyperplane LSH?

« Can one improve upon O(n'4?) space and O(n%4?) query time
for the 45-degree random instance?

* Yes!

* [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve
space O(n'18) and query time O(n?8)

Better than Hyperplane LSH?

« Can one improve upon O(n'4?) space and O(n%4?) query time
for the 45-degree random instance?

* Yes!

* [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve
space O(n'18) and query time O(n?8)

* [Andoni, R ??]: tight for hashing-based approaches!

Better than Hyperplane LSH?

« Can one improve upon O(n'4?) space and O(n%4?) query time
for the 45-degree random instance?

* Yes!

* [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve
space O(n'18) and query time O(n?8)

* [Andoni, R ??]: tight for hashing-based approaches!
« Works for the general case of ANN on a sphere

Better than Hyperplane LSH?

« Can one improve upon O(n'4?) space and O(n%4?) query time
for the 45-degree random instance?

* Yes!

* [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve
space O(n'18) and query time O(n?8)

* [Andoni, R ??]: tight for hashing-based approaches!
« Works for the general case of ANN on a sphere

Can we use this (significant) improvement in practice?

Optimal LSH family: Voronoi LSH

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 -+ 87

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 -+ 87
» Hash p into h(p) = argmax,.; +<p. &>

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 -+ 87
» Hash p into h(p) = argmax,.; +<p. &>

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 -+ 87
» Hash p into h(p) = argmax,.; +<p. &>

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 -+ 87
» Hash p into h(p) = argmax,.; +<p. &>

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

811 821 ++r 8T
» Hash p into h(p) = argmax,.; +<p. &>
* T=2issimply Hyperplane LSH

Hyperplane LSH vs. Voronoi LSH

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes 1.00 K=1vs.T=2
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)
0.75
0.50
0.25
query near far

point neighbor points

Hyperplane LSH vs. Voronoi LSH
K=2vs.T=4

 Let us compare K hyperplanes 1.00

vs. Voronoi LSH with T = 2K (in
0.75 \\
0.50

both cases K-bit hashes)
0.25

query near far
point neighbor points

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

K=3vs. T=8

1.00

0.75

\

0.50

K\

0.25

S

query
point

near far
neighbor points

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

K=4vs.T=16

1.00

0.75

\

0.50

\

0.25

N

query
point

near far
neighbor points

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

K=5vs. T=32

1.00

0.75

\

0.50

\

0.25

N

query
point

near far
neighbor points

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

1.00

0.75

0.50

0.25

K=6vs.T=64

\

query

point

near far

neighbor points

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes 1.00 K=6vs.T=064
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes) -
« As T grows, the gap between |
Hyperplane LSH and Voronoi LSH
increases and 0.50
p=In(1/p,) / In(1/p,)
approaches 0.18 0.25
query near far

point neighbor points

Practicality

Practicality

Is Voronoi LSH practical?

Practicality

Is Voronoi LSH practical?

No!

Practicality

Is Voronoi LSH practical?

No!
« Slow convergence to the optimal exponent: ©(1/ log T)
« Large T to notice any improvement

Practicality

Is Voronoi LSH practical?

No!
 Slow convergence to the optimal exponent: ©(1/ log T)

« Large T to notice any improvement
« Takes O(d - T) time (even say T = 64 is bad)

Practicality

Is Voronoi LSH practical?

No!
Slow convergence to the optimal exponent: ©(1/ log T)
Large T to notice any improvement
Takes O(d - T) time (even say T = 64 is bad)
At the same time:
Hyperplane LSH is very useful in practice
« (Can practice benefit from theory?

Practicality

Is Voronoi LSH practical?

No!
Slow convergence to the optimal exponent: ©(1/ log T)
Large T to notice any improvement
Takes O(d - T) time (even say T = 64 is bad)
At the same time:
Hyperplane LSH is very useful in practice
« (Can practice benefit from theory?

This work: yes!

First idea: Cross-polytope LSH

First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
 To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
 To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
 To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

* Almost the same quality as Voronoi LSH
with T = 2d
* Blessing of dimensionality: exponent improves
as d grows!

First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
 To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

* Almost the same quality as Voronoi LSH
with T = 2d
* Blessing of dimensionality: exponent improves
as d grows!

* Impractical: a random rotation costs O(d?)
time and space

First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
 To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

* Almost the same quality as Voronoi LSH
with T = 2d
* Blessing of dimensionality: exponent improves
as d grows!

* Impractical: a random rotation costs O(d?)
time and space

* The second step is cheap (only O(d) time)

Second idea: pseudo-random rotations

Second idea: pseudo-random rotations

 Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

Second idea: pseudo-random rotations

 Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

* True random rotations are expensive!

Second idea: pseudo-random rotations

 Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

* True random rotations are expensive!

- Hadamard transform: an orthogonal
map that
 “Mixes well”
 Fast: can be computed in time O(d log d)

Second idea: pseudo-random rotations

 Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

* True random rotations are expensive!

- Hadamard transform: an orthogonal
map that
 “Mixes well”
 Fast: can be computed in time O(d log d)

_ 1
W2

HO=

(

Hy 4
Hy_q

1

Hn-1
_Hn—l

Second idea: pseudo-random rotations

. Introduced in [Ailon, Chazelle 2009], P = (P P2r -t P)
used in [Dasgupta, Kumar, Sarlos & Flipsigns

2011], [Ailon, Rauhut 2014], [Ve, p' = (£pq, P, ... P,)
Sarlos, Smola, 2013] etc ‘, Hadamard
* True random rotations are expensive! Hp’
- Hadamard transform: an orthogonal & Repeat (2:3 times)
map that
* “Mixes well”
 Fast: can be computed in time O(d log d) Hy=1
H. = i (Hn—l Hn—l)
" \/2 Hn—l _Hn—l

Overall hashing scheme

Overall hashing scheme

* Perform 2-3 rounds of “flip signs / Hadamard”

Overall hashing scheme

* Perform 2-3 rounds of “flip signs / Hadamard”
* Find the closest vector from {te;} (maximum coordinate)

Overall hashing scheme

* Perform 2-3 rounds of “flip signs / Hadamard”
* Find the closest vector from {te;} (maximum coordinate)
 Evaluation time O(d log d)

Overall hashing scheme

* Perform 2-3 rounds of “flip signs / Hadamard”

* Find the closest vector from {te;} (maximum coordinate)
 Evaluation time O(d log d)

 Equivalent to Voronoi LSH with T = 2d Gaussians

Memory consumption

Memory consumption

« LSH consumes lots of memory: myth or reality?

Memory consumption

« LSH consumes lots of memory: myth or reality?

« For n = 10° random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

Memory consumption

« LSH consumes lots of memory: myth or reality?

« For n = 10° random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

e Can be reduced substantially via Multiprobe LSH [Lv,
Josephson, Wang, Charikar, Li 2007]

Third idea: Multiprobe LSH

Third idea: Multiprobe LSH

* Instead of trying a single bucket, try P buckets, where the
near neighbor is most likely to end up

Third idea: Multiprobe LSH

* Instead of trying a single bucket, try P buckets, where the
near neighbor is most likely to end up

« A single probe: query the bucket
(sgn <q, r,>, sgn <q, r,>, ..., SgN <(, r¢>)

Third idea: Multiprobe LSH

* Instead of trying a single bucket, try P buckets, where the
near neighbor is most likely to end up

« A single probe: query the bucket
(sgn <q, r,>, sgn <q, r,>, ..., SgN <(, r¢>)

 To generate P buckets, flip signs, for which <q, r;> is close to
Zero

Third idea: Multiprobe LSH

* Instead of trying a single bucket, try P buckets, where the
near neighbor is most likely to end up

« A single probe: query the bucket
(sgn <q, r,>, sgn <q, r,>, ..., SgN <(, r¢>)

 To generate P buckets, flip signs, for which <q, r;> is close to
Zero

By increasing P, can reduce L (# of tables)

Third idea: Multiprobe LSH

* Instead of trying a single bucket, try P buckets, where the
near neighbor is most likely to end up

« A single probe: query the bucket
(sgn <q, r,>, sgn <q, r,>, ..., SgN <(, r¢>)

 To generate P buckets, flip signs, for which <q, r;> is close to
Zero

By increasing P, can reduce L (# of tables)

A similar procedure for Cross-polytope LSH (more
complicated, since the range is non-binary)

Fourth idea: Hashing Trick

Fourth idea: Hashing Trick

* For s-sparse vectors, Hyperplane LSH
takes time O(s)

Fourth idea: Hashing Trick

* For s-sparse vectors, Hyperplane LSH
takes time O(s)

« Can Cross-polytope LSH exploit
sparsity?

Fourth idea: Hashing Trick

* For s-sparse vectors, Hyperplane LSH
takes time O(s)

« Can Cross-polytope LSH exploit
sparsity?

« Hashing trick (a.k.a. Count-Sketch)

Fourth idea: Hashing Trick

* For s-sparse vectors, Hyperplane LSH
takes time O(s)

« Can Cross-polytope LSH exploit d v

sparsity?
« Hashing trick (a.k.a. Count-Sketch)

Fourth idea: Hashing Trick

* For s-sparse vectors, Hyperplane LSH
takes time O(s)

« Can Cross-polytope LSH exploit d

sparsity?
« Hashing trick (a.k.a. Count-Sketch)

* For target dimension F yields time
O(s + F log F)

Fourth idea: Hashing Trick

* For s-sparse vectors, Hyperplane LSH
takes time O(s)

« Can Cross-polytope LSH exploit d

sparsity?
« Hashing trick (a.k.a. Count-Sketch)

* For target dimension F yields time
O(s + F log F)

 Equivalent to Voronoi LSH with T = 2F.

F

Choosing parameters in practice

Choosing parameters in practice

« Aim at finding the exact nearest neighbor

Choosing parameters in practice

« Aim at finding the exact nearest neighbor
 Probability of success (0.9)

Choosing parameters in practice

« Aim at finding the exact nearest neighbor
 Probability of success (0.9)

* Intermediate dimension F (~1000; as large as possible, while
not slowing hashing down)

Choosing parameters in practice

« Aim at finding the exact nearest neighbor
 Probability of success (0.9)

* Intermediate dimension F (~1000; as large as possible, while
not slowing hashing down)

« # of tables L (depending on RAM budget, even ~10 would do)

Choosing parameters in practice

« Aim at finding the exact nearest neighbor
 Probability of success (0.9)

* Intermediate dimension F (~1000; as large as possible, while
not slowing hashing down)

« # of tables L (depending on RAM budget, even ~10 would do)

« # of hash functions / table K (few data points in most of the
buckets)

Choosing parameters in practice

« Aim at finding the exact nearest neighbor
 Probability of success (0.9)

* Intermediate dimension F (~1000; as large as possible, while
not slowing hashing down)

« # of tables L (depending on RAM budget, even ~10 would do)

« # of hash functions / table K (few data points in most of the
buckets)

« Determine # of probes P that gives the desired probability of
success (on sample queries)

Implementation details

Implementation details

« An actual implementation of Multiprobe Hyperplane and
Cross-polytope LSH in C++11, 11k LOC, template-based

Implementation details

« An actual implementation of Multiprobe Hyperplane and
Cross-polytope LSH in C++11, 11k LOC, template-based

» Supports dense and sparse data

Implementation details

« An actual implementation of Multiprobe Hyperplane and
Cross-polytope LSH in C++11, 11k LOC, template-based

» Supports dense and sparse data

* Very polished (w.r.t. performance)
« Uses Eigen to speed-up hash and distance computations

 Vectorized Hadamard transform (using AVX), several times faster
than FFTW (surprise!)

Implementation details

« An actual implementation of Multiprobe Hyperplane and
Cross-polytope LSH in C++11, 11k LOC, template-based

» Supports dense and sparse data

* Very polished (w.r.t. performance)
« Uses Eigen to speed-up hash and distance computations

 Vectorized Hadamard transform (using AVX), several times faster
than FFTW (surprise!)

* Available at http://falconn-lib.org together with Python
bindings
 http://github.com/falconn-lib/ffht for FHT

Experiments: the set-up

Experiments: the set-up

e Success probability 0.9 for finding exact nearest neighbors

Experiments: the set-up

e Success probability 0.9 for finding exact nearest neighbors

* Choose L s.t. space for tables = space for a dataset (except
one instance)

Experiments: the set-up

e Success probability 0.9 for finding exact nearest neighbors

* Choose L s.t. space for tables = space for a dataset (except
one instance)

* (Optimized) linear scan vs. Hyperplane vs. Cross-polytope

Experiments: random data (d = 128)

Experiments: random data (d = 128)

10°*
10°
g
() /
010
£
=]
o
@10
=
o /
0 method i
10 linear scan
-o- hyperplane
cross-polytope
|
220 222 224 226 228

dataset size

Experiments: ANN_SIFT1M

Experiments: ANN_SIFT1M

« SIFT features for a dataset of images

Experiments: ANN_SIFT1M

« SIFT features for a dataset of images
‘n=1M,d =128

Experiments: ANN_SIFT1M

« SIFT features for a dataset of images
‘n=1M,d =128
 Linear scan: 38ms

Experiments: ANN_SIFT1M

« SIFT features for a dataset of images
‘n=1M, d =128

* Linear scan: 38ms

« Hyperplane: 3.7ms, Cross-polytope: 3.1ms

Experiments: ANN_SIFT1M

« SIFT features for a dataset of images
‘n=1M, d =128

* Linear scan: 38ms

« Hyperplane: 3.7ms, Cross-polytope: 3.1ms

* Clustering and re-centering helps
« Hyperplane: 2.75ms
« Cross-polytope: 1.75ms

Experiments: ANN_SIFT1M

« SIFT features for a dataset of images
‘n=1M, d =128

* Linear scan: 38ms

« Hyperplane: 3.7ms, Cross-polytope: 3.1ms

* Clustering and re-centering helps
« Hyperplane: 2.75ms
« Cross-polytope: 1.75ms

« Adding more memory helps

Experiments: Pubmed

Experiments: Pubmed

« Bag of words dataset of Pubmed abstracts

Experiments: Pubmed

« Bag of words dataset of Pubmed abstracts
* TF-IDF vectors with cosine similarity

Experiments: Pubmed

« Bag of words dataset of Pubmed abstracts
* TF-IDF vectors with cosine similarity
- n=8.2M, d = 140k, average sparsity 90

Experiments: Pubmed

« Bag of words dataset of Pubmed abstracts

* TF-IDF vectors with cosine similarity

- n=8.2M, d = 140k, average sparsity 90

* Need the hashing trick (down to 2048 dimensions)

Experiments: Pubmed

« Bag of words dataset of Pubmed abstracts

* TF-IDF vectors with cosine similarity

- n=8.2M, d = 140k, average sparsity 90

* Need the hashing trick (down to 2048 dimensions)
* Filter “interesting” queries

Experiments: Pubmed

« Bag of words dataset of Pubmed abstracts

* TF-IDF vectors with cosine similarity

- n=8.2M, d = 140k, average sparsity 90

* Need the hashing trick (down to 2048 dimensions)
* Filter “interesting” queries

* Linear scan: 3.6s

Experiments: Pubmed

« Bag of words dataset of Pubmed abstracts

* TF-IDF vectors with cosine similarity

- n=8.2M, d = 140k, average sparsity 90

* Need the hashing trick (down to 2048 dimensions)
* Filter “interesting” queries

* Linear scan: 3.6s

« Hyperplane: 857ms, Cross-polytope: 213ms

Experiments: Pubmed

« Bag of words dataset of Pubmed abstracts

* TF-IDF vectors with cosine similarity

- n=8.2M, d = 140k, average sparsity 90

* Need the hashing trick (down to 2048 dimensions)
* Filter “interesting” queries

* Linear scan: 3.6s

« Hyperplane: 857ms, Cross-polytope: 213ms

« Adding more memory helps

Experiments: GloVe

Experiments: GloVe

[Pennington, Socher, Manning 2014] n=1.2M, d =100, aim
at 10 nearest neighbors

Experiments: GloVe

[Pennington, Socher, Manning 2014] n = 1.2M, d = 100, aim

at 10 nearest neighbors

Pr%j-,sion-Per'formance tradeoff - up and to the right is better

BallTree(nmslib)
SW-graph(nmslib)
annoy

ball

bruteforce
bruteforce0(nmslib)
bruteforcel(nmslib)
falconn

flann

kd

kgraph

Ishf

nearpy

panns

rpforest

H—(
5 .
107
g X
D LY 1|
PR ’—“
) 4
= 10TRL e
Q xé‘\g.\ . ‘fw.\ "‘:-’..‘M
S * x i oy
R T e U
T‘ A = "l'h:_‘;x\. — \—‘\ - — **-M
3 Y e . e . W) i
> X\ \““___—H\x___”___ S TN N”%
c 2 e
o 10 \‘-‘ Rl K
o — — Y
[a}] S e %K
» — T~
()] 1 T 4
(o 10 |
wn
Qo
—
g |
0
O 10 = _E —_—
—
10’1 1 | | | 1
0.0 0.2 0.4 0.6 0.8 1.0

10-NN precision - larger is better

Experiments: GloVe

[Pennington, Socher, Manning 2014] n=1.2M, d =100, aim
at 10 nearest neighbors

Pr%j-,sion-Per'formance tradeoff - up and to the right is better

- larger is better

Queries per second (s

=
o

=
o

=
o

5 =9
N
4 21 xx i
. ~ VN]
3| %\ ""%z_\:‘\}&‘- i
: o e]
\ e N e W)]
X ___—H\x___,‘___ e TN T |
2 | ! \\ ’:-)\‘ N N, ’,& i
— N
— T h\Y 3
T— e e]
T M]
T Xk
l - —
0 -
l 1 | 1 | 1
0.0 0.2 0.4 0.6 0.8 1.0

(.

3

——3¢

N

BallTree(nmslib)
SW-graph(nmslib)
annoy

ball

bruteforce
bruteforce0(nmslib)
bruteforcel(nmslib)
falconn

flann

kd

kgraph

Ishf

nearpy

panns

rpforest

10-NN precision - larger is better

16-bit hashes
1...1400 tables
Single probe
Accuracy 0.016...0.99
10ps to 8.5ms query
From 5 Mb to 7 Gb

Additional tricks

Additional tricks

» Centering
 Hierarchical centering?

Additional tricks

» Centering
 Hierarchical centering?

« “Compressed” index

Additional tricks

» Centering
 Hierarchical centering?

« “Compressed” index
 Data prefetching

Additional tricks

» Centering
 Hierarchical centering?

« “Compressed” index
 Data prefetching
* Sorting is expensive

LLower bound

LLower bound

* The convergence to the optimal exponentis ©(1/ logT)

LLower bound

* The convergence to the optimal exponentis ©(1/ logT)
* Tight for any LSH!

LLower bound

* The convergence to the optimal exponentis ©(1/ logT)
* Tight for any LSH!

« Any LSH family with range of size S must be at least Q(1 / log
S) off the optimum

LLower bound

* The convergence to the optimal exponentis ©(1/ logT)
* Tight for any LSH!

« Any LSH family with range of size S must be at least Q(1 / log
S) off the optimum

 For 45-degree random instance:
* The best exponentis 0.18
« To get below 0.2, need S = 1072

LLower bound

* The convergence to the optimal exponentis ©(1/ logT)
* Tight for any LSH!

« Any LSH family with range of size S must be at least Q(1 / log
S) off the optimum

 For 45-degree random instance:
* The best exponentis 0.18
« To get below 0.2, need S = 1072

 For the further progress, need evaluation time sublinear in
the range size!
« Complexity of “decoding” for almost-orthogonal vectors

ANN with fast query time via sketches

Sketching metrics

Sketching metrics

* Alice and Bob each hold a point from a Alice x v Bob
metric space (say x and y)

Charlie

Sketching metrics

* Alice and Bob each hold a point from a Alice x v Bob
metric space (say x and y)

 Both send s-bit sketches to Charlie
sketch(x) sketch(y)

Charlie

Sketching metrics

* Alice and Bob each hold a point from a Alice x v Bob
metric space (say x and y)

 Both send s-bit sketches to Charlie

e For r >0 and D > 1 distinguish sketch(x) sketch(y)
e d(x,y)<r
* d(x,y)=Dr

Charlie

d(x,y) £rord(x,y) > Dr?

32

Sketching metrics

0/11/11]0]...]1
* Alice and Bob each hold a point from a Alice x v Bob
metric space (say x and y)
* Both send s-bit sketches to Charlie
e For r >0 and D > 1 distinguish sketch(x) sketch(y)
e d(x,y)<r
*dlxy)2Dr Charlie

e Shared randomness, allow 1%

probability of error dix, y)<rord(x,y) 2 Dr?

Sketching metrics

0/11/11]0]...]1
* Alice and Bob each hold a point from a Alice x v Bob
metric space (say x and y)
* Both send s-bit sketches to Charlie
e For r >0 and D > 1 distinguish sketch(x) sketch(y)
e d(x,y)<r
*dlxy)2Dr Charlie

e Shared randomness, allow 1%

probability of error dix, y)<rord(x,y) 2 Dr?

* Trade-off between sand D

Near Neighbor Search via sketches

Near Neighbor Search via sketches

* Near Neighbor Search (NNS):
* Given n-point dataset P
* A query q within r from some data point
e Return any data point within Dr from ¢

Near Neighbor Search via sketches

* Near Neighbor Search (NNS):
* Given n-point dataset P
* A query q within r from some data point
e Return any data point within Dr from ¢

* Sketches of size s imply NNS with
space n°®) and a 1-probe query O

Near Neighbor Search via sketches

* Near Neighbor Search (NNS):
* Given n-point dataset P
* A query q within r from some data point °
e Return any data point within Dr from ¢

* Sketches of size s imply NNS with
space n°®) and a 1-probe query O

* Proof idea: amplify probability of
error to 1/n by increasing the size to
O(s log n); sketch of q determines the
answer

Near Neighbor Search via sketches

* Near Neighbor Search (NNS):
* Given n-point dataset P
* A query q within r from some data point °
e Return any data point within Dr from ¢

* Sketches of size s imply NNS with
space n°®) and a 1-probe query O

* Proof idea: amplify probability of
error to 1/n by increasing the size to
O(s log n); sketch of q determines the
answer

* For many metrics: the only approach

Sketching {) norms

Sketching {) norms

* (Indyk 2000): can sketch £ for O < p < 2 via random projections using
p-stable distributions
e ForD=1+conegetss=0(1/¢?)
e Tight by (Woodruff 2004)

34

Sketching {) norms

* (Indyk 2000): can sketch £ for O < p < 2 via random projections using
p-stable distributions
e ForD=1+conegetss=0(1/¢?)
e Tight by (Woodruff 2004)

* For p > 2 sketching Bp is somewhat hard (Bar-Yossef, Jayram, Kumar,
Sivakumar 2002), (Indyk, Woodruff 2005)

* To achieve D = O(1) one needs sketch size to be s = @~(d%/?)

34

Sketching real line

Sketching real line

* Distinguish |x—vy| <1 vs.
Ix—y|=>1+¢€

Sketching real line

* Distinguish |x—vy| <1 vs.
Ix—y|=>1+¢€

 Randomly shifted pieces of
sizew=1+¢g/2

<< 0 =

35

Sketching real line

* Distinguish |x—vy| <1 vs.
Ix—y|=>1+¢€

 Randomly shifted pieces of
sizew=1+¢g/2

* Repeat O(1 / €?) times

<< 0 =

35

Sketching real line

* Distinguish |x—vy| <1 vs.
Ix—y|=>1+¢€
 Randomly shifted pieces of
sizew=1+¢g/2
* Repeat O(1 / €?) times
e Overall:
*D=1+¢
e s=0(1/ €?)

< 0O =

35

Sketching { for 0 <p <2

Sketching { for 0 <p <2

* (Indyk 2000): can reduce sketching of £ with 0 < p <2 to sketching
reals via random projections

36

Sketching { for 0 <p <2

* (Indyk 2000): can reduce sketching of £ with 0 < p <2 to sketching
reals via random projections

* If (G, G,, ..., G,) arei.i.d. N(O, 1)’s, then > . x.G.— >.y.G, is distributed as
Ix - yll, * N(O, 1)

36

Sketching { for 0 <p <2

* (Indyk 2000): can reduce sketching of £ with 0 < p <2 to sketching
reals via random projections

* If (G, G,, ..., G,) arei.i.d. N(O, 1)’s, then > . x.G.— >.y.G, is distributed as
Ix - yll, * N(O, 1)

* For O < p < 2 use p-stable distributions instead

36

Sketching { for 0 <p <2

* (Indyk 2000): can reduce sketching of £ with 0 < p <2 to sketching
reals via random projections

* If (G, G,, ..., G,) arei.i.d. N(O, 1)’s, then > . x.G.— >.y.G, is distributed as
Ix - yll, * N(O, 1)

* For O < p < 2 use p-stable distributions instead
e Again, getD =1+ e withs=0(1/ €?)

36

Summary

 Space: nO(1/&"2)
* Query time: poly(log n / €)

