
Largely based on a paper joint with

Alexandr Andoni (Columbia), Piotr Indyk (MIT),

Thijs Laarhoven (TU Eindhoven) and Ludwig Schmidt (MIT)

• Dataset: n points in Rd, r > 0

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Infeasible for large d:
• Space exponential in the dimension

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Infeasible for large d:
• Space exponential in the dimension

• Most of the applications are in
high dimensions

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data
point

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data
point

r

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data
point

• Want: a data point within cr from the
query

r

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data
point

• Want: a data point within cr from the
query

r

cr

• Similarity search for: images, audio, video, texts, biological
data etc

• Similarity search for: images, audio, video, texts, biological
data etc

• Cryptanalysis (the Shortest Vector Problem in lattices)
[Laarhoven 2015]

• Similarity search for: images, audio, video, texts, biological
data etc

• Cryptanalysis (the Shortest Vector Problem in lattices)
[Laarhoven 2015]

• Optimization: Coordinate Descent [Dhillon, Ravikumar,
Tewari 2011], Stochastic Gradient Descent [Hofmann,
Lucchi, McWilliams 2015] etc

• Focus of this talk:

all points and queries lie on a unit sphere in Rd

• Focus of this talk:

all points and queries lie on a unit sphere in Rd

• Why interesting?

• Focus of this talk:

all points and queries lie on a unit sphere in Rd

• Why interesting?

• In theory: can reduce general case to the spherical case
[Andoni, R 2015]

• Focus of this talk:

all points and queries lie on a unit sphere in Rd

• Why interesting?

• In theory: can reduce general case to the spherical case
[Andoni, R 2015]

• In practice:
• Cosine similarity is widely used

• Oftentimes, can pretend that the dataset lies on a sphere

• Dataset: n random points on a
sphere

• Dataset: n random points on a
sphere

• Query: a random query within 45
degrees from a data point

• Dataset: n random points on a
sphere

• Query: a random query within 45
degrees from a data point

• Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

• Dataset: n random points on a
sphere

• Query: a random query within 45
degrees from a data point

• Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

• Dataset: n random points on a
sphere

• Query: a random query within 45
degrees from a data point

• Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

• Instructive case to think about
• [Andoni, R 2015]: a (delicate)

reduction from general to random

• Concentration of angles around 90
degrees happens in practice

• Introduced in [Indyk, Motwani 1998]

• Introduced in [Indyk, Motwani 1998]

• Main idea: random partitions of Rd s.t.
closer pairs of points collide more often

• Introduced in [Indyk, Motwani 1998]

• Main idea: random partitions of Rd s.t.
closer pairs of points collide more often

• Introduced in [Indyk, Motwani 1998]

• Main idea: random partitions of Rd s.t.
closer pairs of points collide more often

• A random partition R is (r, cr, p1, p2)-
sensitive if for every p, q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

• Introduced in [Indyk, Motwani 1998]

• Main idea: random partitions of Rd s.t.
closer pairs of points collide more often

• A random partition R is (r, cr, p1, p2)-
sensitive if for every p, q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

From the definition of ANN

• Introduced in [Indyk, Motwani 1998]

• Main idea: random partitions of Rd s.t.
closer pairs of points collide more often

• A random partition R is (r, cr, p1, p2)-
sensitive if for every p, q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

From the definition of ANN

r cr

p2

p1

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Sample unit r uniformly, hash p into
sgn <r, p>

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Sample unit r uniformly, hash p into
sgn <r, p>

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Sample unit r uniformly, hash p into
sgn <r, p>

• Pr[h(p) = h(q)] = 1 – α / π, where α is
the angle between p and q

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Sample unit r uniformly, hash p into
sgn <r, p>

• Pr[h(p) = h(q)] = 1 – α / π, where α is
the angle between p and q

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Sample unit r uniformly, hash p into
sgn <r, p>

• Pr[h(p) = h(q)] = 1 – α / π, where α is
the angle between p and q

• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• If 0.5K ~ 1/n, then O(1) far points
in a query bin

• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• If 0.5K ~ 1/n, then O(1) far points
in a query bin

• Collides with near neighbor with
probability 0.75K ~ 1/n0.42

• Thus, need L = O(n0.42) tables to
boost the success probability to
0.99

• K hash functions at once (hash p
into (h1(p), …, hK(p)))

• If 0.5K ~ 1/n, then O(1) far points
in a query bin

• Collides with near neighbor with
probability 0.75K ~ 1/n0.42

• Thus, need L = O(n0.42) tables to
boost the success probability to
0.99

• Overall: O(n1.42) space, O(n0.42)
query time, K·L hyperplanes

In general [Indyk, Motwani 1998]: can always choose K (# of
functions / table) and L (# of tables) to get space O(n1+ρ) and
query time O(nρ), where

In general [Indyk, Motwani 1998]: can always choose K (# of
functions / table) and L (# of tables) to get space O(n1+ρ) and
query time O(nρ), where

ρ = ln(1/p1) / ln(1/p2)

In general [Indyk, Motwani 1998]: can always choose K (# of
functions / table) and L (# of tables) to get space O(n1+ρ) and
query time O(nρ), where

ρ = ln(1/p1) / ln(1/p2)

Recap:

• p1 is collision probability for close pairs

• p2 — for far pairs

• Can one improve upon O(n1.42) space and O(n0.42) query time
for the 45-degree random instance?

• Can one improve upon O(n1.42) space and O(n0.42) query time
for the 45-degree random instance?

• Yes!
• [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve

space O(n1.18) and query time O(n0.18)

• Can one improve upon O(n1.42) space and O(n0.42) query time
for the 45-degree random instance?

• Yes!
• [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve

space O(n1.18) and query time O(n0.18)

• [Andoni, R ??]: tight for hashing-based approaches!

• Can one improve upon O(n1.42) space and O(n0.42) query time
for the 45-degree random instance?

• Yes!
• [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve

space O(n1.18) and query time O(n0.18)

• [Andoni, R ??]: tight for hashing-based approaches!

• Works for the general case of ANN on a sphere

• Can one improve upon O(n1.42) space and O(n0.42) query time
for the 45-degree random instance?

• Yes!
• [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve

space O(n1.18) and query time O(n0.18)

• [Andoni, R ??]: tight for hashing-based approaches!

• Works for the general case of ANN on a sphere

Can we use this (significant) improvement in practice?

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• T = 2 is simply Hyperplane LSH

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• As T grows, the gap between
Hyperplane LSH and Voronoi LSH
increases and

ρ = ln(1/p1) / ln(1/p2)

approaches 0.18

Is Voronoi LSH practical?

Is Voronoi LSH practical?

No!

Is Voronoi LSH practical?

No!
• Slow convergence to the optimal exponent: Θ(1 / log T)
• Large T to notice any improvement

Is Voronoi LSH practical?

No!
• Slow convergence to the optimal exponent: Θ(1 / log T)
• Large T to notice any improvement
• Takes O(d · T) time (even say T = 64 is bad)

Is Voronoi LSH practical?

No!
• Slow convergence to the optimal exponent: Θ(1 / log T)
• Large T to notice any improvement
• Takes O(d · T) time (even say T = 64 is bad)

At the same time:
• Hyperplane LSH is very useful in practice
• Can practice benefit from theory?

Is Voronoi LSH practical?

No!
• Slow convergence to the optimal exponent: Θ(1 / log T)
• Large T to notice any improvement
• Takes O(d · T) time (even say T = 64 is bad)

At the same time:
• Hyperplane LSH is very useful in practice
• Can practice benefit from theory?

This work: yes!

• Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope
{±ei} closest to Sp

• Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope
{±ei} closest to Sp

• Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope
{±ei} closest to Sp

• Almost the same quality as Voronoi LSH
with T = 2d
• Blessing of dimensionality: exponent improves

as d grows!

• Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope
{±ei} closest to Sp

• Almost the same quality as Voronoi LSH
with T = 2d
• Blessing of dimensionality: exponent improves

as d grows!

• Impractical: a random rotation costs O(d2)
time and space

• Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope
{±ei} closest to Sp

• Almost the same quality as Voronoi LSH
with T = 2d
• Blessing of dimensionality: exponent improves

as d grows!

• Impractical: a random rotation costs O(d2)
time and space

• The second step is cheap (only O(d) time)

• Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

• Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

• True random rotations are expensive!

• Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

• True random rotations are expensive!

• Hadamard transform: an orthogonal
map that
• “Mixes well”

• Fast: can be computed in time O(d log d)

• Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

• True random rotations are expensive!

• Hadamard transform: an orthogonal
map that
• “Mixes well”

• Fast: can be computed in time O(d log d) 𝐻0 = 1

𝐻𝑛 =
1

√2

𝐻𝑛−1 𝐻𝑛−1
𝐻𝑛−1 −𝐻𝑛−1

• Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

• True random rotations are expensive!

• Hadamard transform: an orthogonal
map that
• “Mixes well”

• Fast: can be computed in time O(d log d) 𝐻0 = 1

𝐻𝑛 =
1

√2

𝐻𝑛−1 𝐻𝑛−1
𝐻𝑛−1 −𝐻𝑛−1

p = (p1, p2, …, pn)

p’ = (±p1, ±p2, …, ±pn)

Hp’

Flip signs

Hadamard

Repeat (2-3 times)

• Perform 2–3 rounds of “flip signs / Hadamard”

• Perform 2–3 rounds of “flip signs / Hadamard”

• Find the closest vector from {±ei} (maximum coordinate)

• Perform 2–3 rounds of “flip signs / Hadamard”

• Find the closest vector from {±ei} (maximum coordinate)

• Evaluation time O(d log d)

• Perform 2–3 rounds of “flip signs / Hadamard”

• Find the closest vector from {±ei} (maximum coordinate)

• Evaluation time O(d log d)

• Equivalent to Voronoi LSH with T = 2d Gaussians

• LSH consumes lots of memory: myth or reality?

• LSH consumes lots of memory: myth or reality?

• For n = 106 random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

• LSH consumes lots of memory: myth or reality?

• For n = 106 random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

• Can be reduced substantially via Multiprobe LSH [Lv,
Josephson, Wang, Charikar, Li 2007]

• Instead of trying a single bucket, try P buckets, where the
near neighbor is most likely to end up

• Instead of trying a single bucket, try P buckets, where the
near neighbor is most likely to end up

• A single probe: query the bucket

(sgn <q, r1>, sgn <q, r2>, …, sgn <q, rK>)

• Instead of trying a single bucket, try P buckets, where the
near neighbor is most likely to end up

• A single probe: query the bucket

(sgn <q, r1>, sgn <q, r2>, …, sgn <q, rK>)

• To generate P buckets, flip signs, for which <q, ri> is close to
zero

• Instead of trying a single bucket, try P buckets, where the
near neighbor is most likely to end up

• A single probe: query the bucket

(sgn <q, r1>, sgn <q, r2>, …, sgn <q, rK>)

• To generate P buckets, flip signs, for which <q, ri> is close to
zero

• By increasing P, can reduce L (# of tables)

• Instead of trying a single bucket, try P buckets, where the
near neighbor is most likely to end up

• A single probe: query the bucket

(sgn <q, r1>, sgn <q, r2>, …, sgn <q, rK>)

• To generate P buckets, flip signs, for which <q, ri> is close to
zero

• By increasing P, can reduce L (# of tables)

• A similar procedure for Cross-polytope LSH (more
complicated, since the range is non-binary)

• For s-sparse vectors, Hyperplane LSH
takes time O(s)

• For s-sparse vectors, Hyperplane LSH
takes time O(s)

• Can Cross-polytope LSH exploit
sparsity?

• For s-sparse vectors, Hyperplane LSH
takes time O(s)

• Can Cross-polytope LSH exploit
sparsity?

• Hashing trick (a.k.a. Count-Sketch)

• For s-sparse vectors, Hyperplane LSH
takes time O(s)

• Can Cross-polytope LSH exploit
sparsity?

• Hashing trick (a.k.a. Count-Sketch)

• For s-sparse vectors, Hyperplane LSH
takes time O(s)

• Can Cross-polytope LSH exploit
sparsity?

• Hashing trick (a.k.a. Count-Sketch)

• For target dimension F yields time
O(s + F log F)

• For s-sparse vectors, Hyperplane LSH
takes time O(s)

• Can Cross-polytope LSH exploit
sparsity?

• Hashing trick (a.k.a. Count-Sketch)

• For target dimension F yields time
O(s + F log F)

• Equivalent to Voronoi LSH with T = 2F.

• Aim at finding the exact nearest neighbor

• Aim at finding the exact nearest neighbor

• Probability of success (0.9)

• Aim at finding the exact nearest neighbor

• Probability of success (0.9)

• Intermediate dimension F (~1000; as large as possible, while
not slowing hashing down)

• Aim at finding the exact nearest neighbor

• Probability of success (0.9)

• Intermediate dimension F (~1000; as large as possible, while
not slowing hashing down)

• # of tables L (depending on RAM budget, even ~10 would do)

• Aim at finding the exact nearest neighbor

• Probability of success (0.9)

• Intermediate dimension F (~1000; as large as possible, while
not slowing hashing down)

• # of tables L (depending on RAM budget, even ~10 would do)

• # of hash functions / table K (few data points in most of the
buckets)

• Aim at finding the exact nearest neighbor

• Probability of success (0.9)

• Intermediate dimension F (~1000; as large as possible, while
not slowing hashing down)

• # of tables L (depending on RAM budget, even ~10 would do)

• # of hash functions / table K (few data points in most of the
buckets)

• Determine # of probes P that gives the desired probability of
success (on sample queries)

• An actual implementation of Multiprobe Hyperplane and
Cross-polytope LSH in C++11, 11k LOC, template-based

• An actual implementation of Multiprobe Hyperplane and
Cross-polytope LSH in C++11, 11k LOC, template-based

• Supports dense and sparse data

• An actual implementation of Multiprobe Hyperplane and
Cross-polytope LSH in C++11, 11k LOC, template-based

• Supports dense and sparse data

• Very polished (w.r.t. performance)
• Uses Eigen to speed-up hash and distance computations

• Vectorized Hadamard transform (using AVX), several times faster
than FFTW (surprise!)

• An actual implementation of Multiprobe Hyperplane and
Cross-polytope LSH in C++11, 11k LOC, template-based

• Supports dense and sparse data

• Very polished (w.r.t. performance)
• Uses Eigen to speed-up hash and distance computations

• Vectorized Hadamard transform (using AVX), several times faster
than FFTW (surprise!)

• Available at http://falconn-lib.org together with Python
bindings
• http://github.com/falconn-lib/ffht for FHT

• Success probability 0.9 for finding exact nearest neighbors

• Success probability 0.9 for finding exact nearest neighbors

• Choose L s.t. space for tables ≈ space for a dataset (except
one instance)

• Success probability 0.9 for finding exact nearest neighbors

• Choose L s.t. space for tables ≈ space for a dataset (except
one instance)

• (Optimized) linear scan vs. Hyperplane vs. Cross-polytope

• SIFT features for a dataset of images

• SIFT features for a dataset of images

• n = 1M, d = 128

• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• Hyperplane: 3.7ms, Cross-polytope: 3.1ms

• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• Hyperplane: 3.7ms, Cross-polytope: 3.1ms

• Clustering and re-centering helps
• Hyperplane: 2.75ms

• Cross-polytope: 1.75ms

• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• Hyperplane: 3.7ms, Cross-polytope: 3.1ms

• Clustering and re-centering helps
• Hyperplane: 2.75ms

• Cross-polytope: 1.75ms

• Adding more memory helps

• Bag of words dataset of Pubmed abstracts

• Bag of words dataset of Pubmed abstracts

• TF-IDF vectors with cosine similarity

• Bag of words dataset of Pubmed abstracts

• TF-IDF vectors with cosine similarity

• n = 8.2M, d = 140k, average sparsity 90

• Bag of words dataset of Pubmed abstracts

• TF-IDF vectors with cosine similarity

• n = 8.2M, d = 140k, average sparsity 90

• Need the hashing trick (down to 2048 dimensions)

• Bag of words dataset of Pubmed abstracts

• TF-IDF vectors with cosine similarity

• n = 8.2M, d = 140k, average sparsity 90

• Need the hashing trick (down to 2048 dimensions)

• Filter “interesting” queries

• Bag of words dataset of Pubmed abstracts

• TF-IDF vectors with cosine similarity

• n = 8.2M, d = 140k, average sparsity 90

• Need the hashing trick (down to 2048 dimensions)

• Filter “interesting” queries

• Linear scan: 3.6s

• Bag of words dataset of Pubmed abstracts

• TF-IDF vectors with cosine similarity

• n = 8.2M, d = 140k, average sparsity 90

• Need the hashing trick (down to 2048 dimensions)

• Filter “interesting” queries

• Linear scan: 3.6s

• Hyperplane: 857ms, Cross-polytope: 213ms

• Bag of words dataset of Pubmed abstracts

• TF-IDF vectors with cosine similarity

• n = 8.2M, d = 140k, average sparsity 90

• Need the hashing trick (down to 2048 dimensions)

• Filter “interesting” queries

• Linear scan: 3.6s

• Hyperplane: 857ms, Cross-polytope: 213ms

• Adding more memory helps

[Pennington, Socher, Manning 2014] n = 1.2M, d = 100, aim
at 10 nearest neighbors

[Pennington, Socher, Manning 2014] n = 1.2M, d = 100, aim
at 10 nearest neighbors

[Pennington, Socher, Manning 2014] n = 1.2M, d = 100, aim
at 10 nearest neighbors

• 16-bit hashes
• 1…1400 tables
• Single probe
• Accuracy 0.016…0.99
• 10μs to 8.5ms query
• From 5 Mb to 7 Gb

• Centering
• Hierarchical centering?

• Centering
• Hierarchical centering?

• “Compressed” index

• Centering
• Hierarchical centering?

• “Compressed” index

• Data prefetching

• Centering
• Hierarchical centering?

• “Compressed” index

• Data prefetching

• Sorting is expensive

• The convergence to the optimal exponent is Θ(1 / log T)

• The convergence to the optimal exponent is Θ(1 / log T)

• Tight for any LSH!

• The convergence to the optimal exponent is Θ(1 / log T)

• Tight for any LSH!

• Any LSH family with range of size S must be at least Ω(1 / log
S) off the optimum

• The convergence to the optimal exponent is Θ(1 / log T)

• Tight for any LSH!

• Any LSH family with range of size S must be at least Ω(1 / log
S) off the optimum

• For 45-degree random instance:
• The best exponent is 0.18

• To get below 0.2, need S ≥ 1012

• The convergence to the optimal exponent is Θ(1 / log T)

• Tight for any LSH!

• Any LSH family with range of size S must be at least Ω(1 / log
S) off the optimum

• For 45-degree random instance:
• The best exponent is 0.18

• To get below 0.2, need S ≥ 1012

• For the further progress, need evaluation time sublinear in
the range size!
• Complexity of “decoding” for almost-orthogonal vectors

32

• Alice and Bob each hold a point from a
metric space (say x and y)

32

Alice Bob

Charlie

x y

• Alice and Bob each hold a point from a
metric space (say x and y)

• Both send s-bit sketches to Charlie

sketch(x) sketch(y)

32

Alice Bob

Charlie

x y

• Alice and Bob each hold a point from a
metric space (say x and y)

• Both send s-bit sketches to Charlie

• For r > 0 and D > 1 distinguish
• d(x, y) ≤ r

• d(x, y) ≥ Dr

sketch(x) sketch(y)

d(x, y) ≤ r or d(x, y) ≥ Dr?

32

Alice Bob

Charlie

x y

• Alice and Bob each hold a point from a
metric space (say x and y)

• Both send s-bit sketches to Charlie

• For r > 0 and D > 1 distinguish
• d(x, y) ≤ r

• d(x, y) ≥ Dr

• Shared randomness, allow 1%
probability of error

sketch(x) sketch(y)

d(x, y) ≤ r or d(x, y) ≥ Dr?

0 1 1 0 … 1

32

Alice Bob

Charlie

x y

• Alice and Bob each hold a point from a
metric space (say x and y)

• Both send s-bit sketches to Charlie

• For r > 0 and D > 1 distinguish
• d(x, y) ≤ r

• d(x, y) ≥ Dr

• Shared randomness, allow 1%
probability of error

• Trade-off between s and D

sketch(x) sketch(y)

d(x, y) ≤ r or d(x, y) ≥ Dr?

0 1 1 0 … 1

32

Alice Bob

Charlie

x y

33

• Near Neighbor Search (NNS):
• Given n-point dataset P

• A query q within r from some data point

• Return any data point within Dr from q

33

• Near Neighbor Search (NNS):
• Given n-point dataset P

• A query q within r from some data point

• Return any data point within Dr from q

• Sketches of size s imply NNS with
space nO(s) and a 1-probe query

33

• Near Neighbor Search (NNS):
• Given n-point dataset P

• A query q within r from some data point

• Return any data point within Dr from q

• Sketches of size s imply NNS with
space nO(s) and a 1-probe query

• Proof idea: amplify probability of
error to 1/n by increasing the size to
O(s log n); sketch of q determines the
answer

33

• Near Neighbor Search (NNS):
• Given n-point dataset P

• A query q within r from some data point

• Return any data point within Dr from q

• Sketches of size s imply NNS with
space nO(s) and a 1-probe query

• Proof idea: amplify probability of
error to 1/n by increasing the size to
O(s log n); sketch of q determines the
answer

• For many metrics: the only approach
33

ℓ

34

ℓ

• (Indyk 2000): can sketch ℓp for 0 < p ≤ 2 via random projections using
p-stable distributions
• For D = 1 + ε one gets s = O(1 / ε2)

• Tight by (Woodruff 2004)

34

ℓ

• (Indyk 2000): can sketch ℓp for 0 < p ≤ 2 via random projections using
p-stable distributions
• For D = 1 + ε one gets s = O(1 / ε2)

• Tight by (Woodruff 2004)

• For p > 2 sketching ℓp is somewhat hard (Bar-Yossef, Jayram, Kumar,
Sivakumar 2002), (Indyk, Woodruff 2005)
• To achieve D = O(1) one needs sketch size to be s = Θ~(d1-2/p)

34

35

• Distinguish |x – y| ≤ 1 vs.
|x – y| ≥ 1 + ε

x y

35

• Distinguish |x – y| ≤ 1 vs.
|x – y| ≥ 1 + ε

• Randomly shifted pieces of
size w = 1 + ε/2

x y

0 01

35

• Distinguish |x – y| ≤ 1 vs.
|x – y| ≥ 1 + ε

• Randomly shifted pieces of
size w = 1 + ε/2

• Repeat O(1 / ε2) times x y

0 01

35

• Distinguish |x – y| ≤ 1 vs.
|x – y| ≥ 1 + ε

• Randomly shifted pieces of
size w = 1 + ε/2

• Repeat O(1 / ε2) times

• Overall:
• D = 1 + ε

• s = O(1 / ε2)

x y

0 01

35

ℓ

36

ℓ

• (Indyk 2000): can reduce sketching of ℓp with 0 < p ≤ 2 to sketching
reals via random projections

36

ℓ

• (Indyk 2000): can reduce sketching of ℓp with 0 < p ≤ 2 to sketching
reals via random projections

• If (G1, G2, …, Gd) are i.i.d. N(0, 1)’s, then ∑i xiGi – ∑i yiGi is distributed as
‖x - y‖2 • N(0, 1)

36

ℓ

• (Indyk 2000): can reduce sketching of ℓp with 0 < p ≤ 2 to sketching
reals via random projections

• If (G1, G2, …, Gd) are i.i.d. N(0, 1)’s, then ∑i xiGi – ∑i yiGi is distributed as
‖x - y‖2 • N(0, 1)

• For 0 < p < 2 use p-stable distributions instead

36

ℓ

• (Indyk 2000): can reduce sketching of ℓp with 0 < p ≤ 2 to sketching
reals via random projections

• If (G1, G2, …, Gd) are i.i.d. N(0, 1)’s, then ∑i xiGi – ∑i yiGi is distributed as
‖x - y‖2 • N(0, 1)

• For 0 < p < 2 use p-stable distributions instead

• Again, get D = 1 + ε with s = O(1 / ε2)

36

• Space: nO(1/ε^2)

• Query time: poly(log n / ε)

