
Content-Based Communication:

The Network Underneath

Event Processing

Antonio Carzaniga

Faculty of Informatics
University of Lugano

April 2008

http://www.inf.unisi.ch/carzaniga/

c© 2006–2008 Antonio Carzaniga

http://www.inf.unisi.ch/carzaniga/

Traditional Network Service

Traditional networking is centered around two service models
◮ “telephone service”
◮ “postal service”

c© 2006–2008 Antonio Carzaniga

Traditional Network Service

Traditional networking is centered around two service models
◮ “telephone service”
◮ “postal service”

network

app1

app2

app3

123

456

789 app4

c© 2006–2008 Antonio Carzaniga

Traditional Network Service

Traditional networking is centered around two service models
◮ “telephone service”
◮ “postal service”

network

app1

app2

app3

123

456

789 app4

m→ 456

c© 2006–2008 Antonio Carzaniga

Traditional Network Service

Traditional networking is centered around two service models
◮ “telephone service”
◮ “postal service”

network

app1

app2

app3

123

456

789 app4

m→ 456

c© 2006–2008 Antonio Carzaniga

Multicast Service

c© 2006–2008 Antonio Carzaniga

Multicast Service

An address can represent a group of hosts
◮ multiple host may join the same group
◮ a host may join multiple groups

network

app1

app2

app3

123,666

456

789,666,777 app4

c© 2006–2008 Antonio Carzaniga

Multicast Service

An address can represent a group of hosts
◮ multiple host may join the same group
◮ a host may join multiple groups

network

app1

app2

app3

123,666

456

789,666,777 app4

m→ 666

c© 2006–2008 Antonio Carzaniga

Multicast Service

An address can represent a group of hosts
◮ multiple host may join the same group
◮ a host may join multiple groups

network

app1

app2

app3

123,666

456

789,666,777 app4

m→ 666

c© 2006–2008 Antonio Carzaniga

Publish/Subscribe Communication

c© 2006–2008 Antonio Carzaniga

Publish/Subscribe Communication

Receivers decide what they want to receive—they subscribe

c© 2006–2008 Antonio Carzaniga

Publish/Subscribe Communication

Receivers decide what they want to receive—they subscribe

Senders simply send information to the network—they publish

c© 2006–2008 Antonio Carzaniga

Publish/Subscribe Communication

Receivers decide what they want to receive—they subscribe

Senders simply send information to the network—they publish

The system (“broker” or “dispatcher”) does the rest
◮ it delivers every publication to all interested subscribers

c© 2006–2008 Antonio Carzaniga

Publish/Subscribe Communication

Receivers decide what they want to receive—they subscribe

Senders simply send information to the network—they publish

The system (“broker” or “dispatcher”) does the rest
◮ it delivers every publication to all interested subscribers

Publish/subscribe looks like IP multicast
◮ subscribing↔ joining a group
◮ publishing↔ sending

c© 2006–2008 Antonio Carzaniga

Publish/Subscribe Communication

Receivers decide what they want to receive—they subscribe

Senders simply send information to the network—they publish

The system (“broker” or “dispatcher”) does the rest
◮ it delivers every publication to all interested subscribers

Publish/subscribe looks like IP multicast
◮ subscribing↔ joining a group
◮ publishing↔ sending

Publish/subscribe differs from IP multicast
only insofar as it is content-based

c© 2006–2008 Antonio Carzaniga

Content-Based Communication

content-based
network

app1

app2

app3

q

p

p∨q app4

Receivers declare a predicate
◮ Boolean function P : Message→{0,1}
◮ p(m) = 1 means the the receiver is interested in receiving m

c© 2006–2008 Antonio Carzaniga

Content-Based Communication

content-based
network

app1

app2

app3

q

p

p∨q app4
m

Receivers declare a predicate
◮ Boolean function P : Message→{0,1}
◮ p(m) = 1 means the the receiver is interested in receiving m

Senders send messages
(without specifying a destination)

c© 2006–2008 Antonio Carzaniga

Content-Based Communication

content-based
network

app1

app2

app3

q

p

p∨q app4
m

m matches p
but not q

Receivers declare a predicate
◮ Boolean function P : Message→{0,1}
◮ p(m) = 1 means the the receiver is interested in receiving m

Senders send messages
(without specifying a destination)

c© 2006–2008 Antonio Carzaniga

Content-Based Communication

content-based
network

app1

app2

app3

q

p

p∨q app4
m

m matches p
but not q

Receivers declare a predicate
◮ Boolean function P : Message→{0,1}
◮ p(m) = 1 means the the receiver is interested in receiving m

Senders send messages
(without specifying a destination)

Message m goes to all interested receivers

c© 2006–2008 Antonio Carzaniga

Application Domains

Publish/subscribe communication

News distribution

System/network monitoring and management

Intrusion detection

Service discovery and brokering

Peer-to-peer data sharing

Distributed electronic auctions

Multi-player games

Caching systems

. . .

c© 2006–2008 Antonio Carzaniga

Messages

Example: a set of attributes

alert-system = “IT-ANAS”
alert = “conjestion”
cause = “accident”
date = [20/Aug/2006:06:14:40 +0200]
location-road = “A1”
location-km = 231
location-dir = “North”
delay-min = 35
detour-info = “sms:3141592653/5897”
report-to = “sms:2718281828/4590”

c© 2006–2008 Antonio Carzaniga

Predicates

Example: an expression of attribute constraints

alert = “conjestion”
∧ location-road = “A1”
∧ location-dir = “South”

∨ alert = any
∧ cause = “accident”

∨ alert = “weather”
∧ severity > 4

∨ news-topic =regex “sport/soccer/.∗”
∧ team = “Milan”

c© 2006–2008 Antonio Carzaniga

Content-Based Networking

Content-based communication (a.k.a., “pub/sub”) designed and
implemented as a network service

◮ architecture
◮ routing
◮ forwarding
◮ . . .

c© 2006–2008 Antonio Carzaniga

Content-Based Networking

Content-based communication (a.k.a., “pub/sub”) designed and
implemented as a network service

◮ architecture
◮ routing
◮ forwarding
◮ . . .

Host interface

◮ send(m)

◮ set predicate(p)

Type of service

◮ datagram service (i.e., “best effort”)

c© 2006–2008 Antonio Carzaniga

Content-Based Routing

point-to-point link

1

2 3

4

5

6

7

8

9

p

q

m

Where and how to forward m?

Based on which kind of routing information?

c© 2006–2008 Antonio Carzaniga

Content-Based Routing Example

link layer

1

2 3

4

5

6

7

8

9

set predicate(p)

set predicate(q)

c© 2006–2008 Antonio Carzaniga

Content-Based Routing Example

link layer

forwarding info

1

2 3

4

5

6

7

8

9

set predicate(p)

set predicate(q)

i9 p
i7 q

Routing protocol propagates predicates

Forwarding state “attracts” messages towards matching
predicates

c© 2006–2008 Antonio Carzaniga

Content-Based Routing Example

link layer

forwarding info

1

2 3

4

5

6

7

8

9

set predicate(p)

set predicate(q)

send(m)

c© 2006–2008 Antonio Carzaniga

Content-Based Routing Example

link layer

forwarding info

broadcast path

1

2 3

4

5

6

7

8

9

set predicate(p)

set predicate(q)

send(m)

A message m is treated as a broadcast packet

c© 2006–2008 Antonio Carzaniga

Content-Based Routing Example

link layer

forwarding info

broadcast path

forward path

1

2 3

4

5

6

7

8

9

set predicate(p)

set predicate(q)

send(m)

A message m is treated as a broadcast packet

But only forwarded along matching paths

c© 2006–2008 Antonio Carzaniga

Some Research Questions

c© 2006–2008 Antonio Carzaniga

Some Research Questions

How do senders and receivers connect?

◮ you say “soccer,” I say “football”
◮ in a content-based network, this is a problem

c© 2006–2008 Antonio Carzaniga

Some Research Questions

How do senders and receivers connect?

◮ you say “soccer,” I say “football”
◮ in a content-based network, this is a problem

How do we design a routing protocols that allows autonomous
systems to control input, output, and transit traffic?

◮ a “content-based” firewall?
◮ routing policies

c© 2006–2008 Antonio Carzaniga

Some Research Questions

How do senders and receivers connect?

◮ you say “soccer,” I say “football”
◮ in a content-based network, this is a problem

How do we design a routing protocols that allows autonomous
systems to control input, output, and transit traffic?

◮ a “content-based” firewall?
◮ routing policies

What is the complexity of content-based routing?
◮ theoretical basis for content-based networking
◮ correctness and complexity (memory requirements)
◮ lower bounds

c© 2006–2008 Antonio Carzaniga

Some Research Questions (2)

Routing: any good idea?

◮ peer-to-peer network models and protocols
◮ new old ideas: broadcast (as in link-state routing) and

almost-random walks

c© 2006–2008 Antonio Carzaniga

Some Research Questions (2)

Routing: any good idea?

◮ peer-to-peer network models and protocols
◮ new old ideas: broadcast (as in link-state routing) and

almost-random walks

How do we evaluate our protocols and systems?

◮ we need good models of networks and applications

c© 2006–2008 Antonio Carzaniga

Some Research Questions (2)

Routing: any good idea?

◮ peer-to-peer network models and protocols
◮ new old ideas: broadcast (as in link-state routing) and

almost-random walks

How do we evaluate our protocols and systems?

◮ we need good models of networks and applications

How do we preserve the privacy of receivers?

◮ we want predicates to remain confidential, and at the same time
allow the (untrusted) network to do its job

c© 2006–2008 Antonio Carzaniga

Some Research Questions (2)

Routing: any good idea?

◮ peer-to-peer network models and protocols
◮ new old ideas: broadcast (as in link-state routing) and

almost-random walks

How do we evaluate our protocols and systems?

◮ we need good models of networks and applications

How do we preserve the privacy of receivers?

◮ we want predicates to remain confidential, and at the same time
allow the (untrusted) network to do its job

Is there a content-based middleware?

◮ traditional subscriptions, content directories, etc.
◮ synthesis of predicates, integration with applications, etc.

c© 2006–2008 Antonio Carzaniga

Menu

A concrete routing protocol

A concrete forwarding algorithm

Theory of content-based routing

Security in content-based networking

Conclusions

c© 2006–2008 Antonio Carzaniga

Part I

A Concrete Routing Protocol

c© 2006–2008 Antonio Carzaniga

Content-Based Routing

point-to-point link

1

2 3

4

5

6

7

8

9

set predicate(p)

set predicate(q)

c© 2006–2008 Antonio Carzaniga

Content-Based Routing

point-to-point link

content-based
forwarding state

1

2 3

4

5

6

7

8

9

set predicate(p)

set predicate(q)

i9 p
i7 q

Routing protocol propagates predicates

Forwarding state “attracts” messages towards matching
predicates

c© 2006–2008 Antonio Carzaniga

Content-Based Forwarding

point-to-point link

content-based
forwarding state

1

2 3

4

5

6

7

8

9

set predicate(p)

set predicate(q)

send(m)

c© 2006–2008 Antonio Carzaniga

Content-Based Forwarding

point-to-point link

broadcast path

content-based
forwarding state

1

2 3

4

5

6

7

8

9

set predicate(p)

set predicate(q)

send(m)

Every message m is treated as a broadcast packet

c© 2006–2008 Antonio Carzaniga

Content-Based Forwarding

point-to-point link

broadcast path

content-based
forwarding state

forwarding path

1

2 3

4

5

6

7

8

9

set predicate(p)

set predicate(q)

send(m)

Every message m is treated as a broadcast packet

But only forwarded along “matching paths”

c© 2006–2008 Antonio Carzaniga

CBCB Routing Scheme

Combined Broadcast and Content-Based Routing

A broadcast layer takes care of avoiding loops

A content-based layer forms forwarding state out of predicates

c© 2006–2008 Antonio Carzaniga

CBCB Routing Scheme

Combined Broadcast and Content-Based Routing

A broadcast layer takes care of avoiding loops

A content-based layer forms forwarding state out of predicates

Broadcast Layer

Well-known techniques

A few additional requirements

Content-Based Routing

“Push” propagation of predicates (RA protocol)

“Pull” propagation of predicates (SR/UR protocol)

c© 2006–2008 Antonio Carzaniga

Receiver Advertisements (RA)

Receiver advertisements (RAs) push predicates from receivers
out to all potential senders

c© 2006–2008 Antonio Carzaniga

Receiver Advertisements (RA)

Receiver advertisements (RAs) push predicates from receivers
out to all potential senders

1 2

3 4

5 6 p6

c© 2006–2008 Antonio Carzaniga

Receiver Advertisements (RA)

Receiver advertisements (RAs) push predicates from receivers
out to all potential senders

1 2

3 4

5 6 p6

[6,p
6]

[6
,p 6

]

[6,p6]

[6,p
6]

[6
,p 6

] i6 p6

Forwarding/routing table associates a predicate with each
interface

c© 2006–2008 Antonio Carzaniga

Covering Relation

Covering relation p ≺ q: q covers p when every message
matching p also matches q

p ≺ q
def
= ∀m : p(m)⇒ q(m)

q

p

Represents the content-based subnet address relation

c© 2006–2008 Antonio Carzaniga

Content-Based RA Ingress Filtering

RA propagation stops when a new predicate is covered by an old
one (pRA ≺ p)

c© 2006–2008 Antonio Carzaniga

Content-Based RA Ingress Filtering

RA propagation stops when a new predicate is covered by an old
one (pRA ≺ p)

1 2

3 4

5 6 p6

i4 p6

i6 p6

c© 2006–2008 Antonio Carzaniga

Content-Based RA Ingress Filtering

RA propagation stops when a new predicate is covered by an old
one (pRA ≺ p)

1 2

3 4

5 6 p6

i4 p6

i6 p6

p2

(p2 ≺ p6)

c© 2006–2008 Antonio Carzaniga

Content-Based RA Ingress Filtering

RA propagation stops when a new predicate is covered by an old
one (pRA ≺ p)

1 2

3 4

5 6 p6

i4 p6

i6 p6
i2 p2

p2

(p2 ≺ p6)

[2
,p 2

]

X

Table update in RA protocol: p← p∨pRA

notice that (p∨pRA = p)⇔ (pRA ≺ p)

c© 2006–2008 Antonio Carzaniga

Content-Based Address Inflation

Content-based RA ingress filtering generates an “inflation” of
content-based addresses

c© 2006–2008 Antonio Carzaniga

Content-Based Address Inflation

Content-based RA ingress filtering generates an “inflation” of
content-based addresses

1 2

3 4

5 6

i6 p6
i2 p2

c© 2006–2008 Antonio Carzaniga

Content-Based Address Inflation

Content-based RA ingress filtering generates an “inflation” of
content-based addresses

1 2

3 4

5 6

i6 p6
i2 p2

p′6
(p′6 ≺ p6)

c© 2006–2008 Antonio Carzaniga

Content-Based Address Inflation

Content-based RA ingress filtering generates an “inflation” of
content-based addresses

1 2

3 4

5 6

i6 p6
i2 p2

p′6
(p′6 ≺ p6)

X
[6,p ′

6]

Node 6 could now receive (from node 4) unwanted messages,
i.e., messages that match p6, but not p′6

c© 2006–2008 Antonio Carzaniga

Sender Request/Update Reply

Sender requests and update replies (SR/UR) “pull” routing
information from receivers to senders

c© 2006–2008 Antonio Carzaniga

Sender Request/Update Reply

Sender requests and update replies (SR/UR) “pull” routing
information from receivers to senders

1 2

3 4

5 6

p2

p′6

i4 p6

i3 p6

c© 2006–2008 Antonio Carzaniga

Sender Request/Update Reply

Sender requests and update replies (SR/UR) “pull” routing
information from receivers to senders

1 2

3 4

5 6

p2

p′6

i4 p6

i3 p6

Sender Request

[5
,x

]

[5
,x]

[5,x] [5,x]

[5
,x]

Node 5 uses the URs to update its table

Node 3 does not update its table. . .

c© 2006–2008 Antonio Carzaniga

Sender Request/Update Reply

Sender requests and update replies (SR/UR) “pull” routing
information from receivers to senders

1 2

3 4

5 6

p2

p′6

i4 p6

i3 p′6∨p2

Update Reply

[fa
ls

e
]

[p
′

6
∨

p 2
]

[p′6∨p2] [p ′
6]

[p 2
]

Node 5 uses the URs to update its table

Node 3 does not update its table. . .

c© 2006–2008 Antonio Carzaniga

Options and Optimizations

The SR/UR protocol can be expensive
◮ URs can be cached and reused, depending on the network

topology
◮ the SR/UR protocol can be triggered by the amount of false

positives

c© 2006–2008 Antonio Carzaniga

Options and Optimizations

The SR/UR protocol can be expensive
◮ URs can be cached and reused, depending on the network

topology
◮ the SR/UR protocol can be triggered by the amount of false

positives

Both RA and SR/UR manage complex predicates
◮ updates in RAs (p← p∨pRA) and URs (pUR ← p1∨p2∨ . . .∨pk)

can be “simplified”

c© 2006–2008 Antonio Carzaniga

Caching and Reusing URs

1 2

3 4

5 6

p2

p′6

i4 p6 i6 p′6

Update Reply

[false
]

[p ′
6]

[p2]

[p′6]

[p ′
6]

Node 4 may reuse the update reply received from node 6
◮ because the 4–6 link is a bridge

c© 2006–2008 Antonio Carzaniga

CBCB Evaluation

We implemented and tested CBCB within a simulator

Evaluation goals

◮ main functionality: does the protocol deliver messages to nodes
that are interested in them?

◮ traffic filtering: does the protocol prevent unnecessary message
traffic?

◮ protocol scalability: does the protocol produce a reasonable and
stable amount of control traffic?

c© 2006–2008 Antonio Carzaniga

Main Functionality

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

F
al

se
 N

eg
at

iv
es

 (
%

)

Time (s)

50 nodes
100 nodes
200 nodes

RAs propagate predicates very quickly

c© 2006–2008 Antonio Carzaniga

Traffic Filtering

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

F
al

se
 P

os
iti

ve
s

(%
)

Time (h)

15 min.
15 min. w/counts

10 min.

The amount of false positives remains under 10%

c© 2006–2008 Antonio Carzaniga

Control Traffic Stability

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

R
A

 C
on

tr
ol

 T
ra

ffi
c

(%
)

Time (m)

No Change
10 min.

5 min.

total msg
traffic

40
msg/min

The amount of RA traffic is stable and contained

c© 2006–2008 Antonio Carzaniga

Summary of CBCB Routing

Content-based routing protocol

Generic networks (i.e., unrestricted topology)

Idea 1: use a broadcast layer

Idea 2: use a “push/pull” routing protocol

Good behavior for both functionality and stability

Software and documentation available at

http://www.cs.colorado.edu/serl/cbn/

c© 2006–2008 Antonio Carzaniga

http://www.cs.colorado.edu/serl/cbn/

Part II

A Concrete Forwarding Algorithm

c© 2006–2008 Antonio Carzaniga

Content-Based Forwarding

Forwarding table: interface↔ predicate

P1

P2

P3

P4

m

c© 2006–2008 Antonio Carzaniga

Content-Based Forwarding

Forwarding table: interface↔ predicate

Broadcast forwarding (or other constraints)

P1

P2

P3

P4

m

c© 2006–2008 Antonio Carzaniga

Content-Based Forwarding

Forwarding table: interface↔ predicate

Broadcast forwarding (or other constraints)

P1

P2

P3

P4

m

m matches P1, P2, and P4

P1

P2

P4

c© 2006–2008 Antonio Carzaniga

Content-Based Forwarding

Forwarding table: interface↔ predicate

Broadcast forwarding (or other constraints)

Content-based forwarding

P1

P2

P3

P4

m

m matches P1, P2, and P4

P1

P2

P4

c© 2006–2008 Antonio Carzaniga

Predicates and Messages

predicate
dest = “ATL”
price < 500
stock = “DYS”
quantity > 1000
price < 500
dest = “JFK”
price < 200
airline = “UA”
orig = “DEN”
dest = “ATL”

message
airline = “UA”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

c© 2006–2008 Antonio Carzaniga

Predicates and Messages

predicate
dest = “ATL”
price < 500
stock = “DYS”
quantity > 1000
price < 500
dest = “JFK”
price < 200
airline = “UA”
orig = “DEN”
dest = “ATL”

attribute

constraint
filter

message
airline = “UA”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

Predicate: a disjunction of filters

Filter: a conjunction of constraints

Constraint: a condition on the value of an attribute

c© 2006–2008 Antonio Carzaniga

Matching Problem

forwarding table

I1

dest = “ATL”
price < 500
stock = “DYS”
quantity > 1000
price < 500

I2

airline = “UA”
orig = “DEN”
dest = “ATL”
dest = “JFK”
price < 200
orig = “DEN”
airline = “UA”
upgrade = true

I3
stock = “MSFT”
price < 200

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

c© 2006–2008 Antonio Carzaniga

Matching Problem

forwarding table

I1

dest = “ATL”
price < 500
stock = “DYS”
quantity > 1000
price < 500

I2

airline = “UA”
orig = “DEN”
dest = “ATL”
dest = “JFK”
price < 200
orig = “DEN”
airline = “UA”
upgrade = true

I3
stock = “MSFT”
price < 200

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

c© 2006–2008 Antonio Carzaniga

Matching Problem

forwarding table

I1

dest = “ATL”
price < 500
stock = “DYS”
quantity > 1000
price < 500

I2

airline = “UA”
orig = “DEN”
dest = “ATL”
dest = “JFK”
price < 200
orig = “DEN”
airline = “UA”
upgrade = true

I3
stock = “MSFT”
price < 200

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

Target: forwarding table
containing millions of
constraints

c© 2006–2008 Antonio Carzaniga

Matching Strategies

Naı̈ve

◮ evaluate constraints one by one

c© 2006–2008 Antonio Carzaniga

Matching Strategies

Naı̈ve

◮ evaluate constraints one by one

Index-based

◮ build an index structure for the forwarding table

◮ define a look-up algorithm

c© 2006–2008 Antonio Carzaniga

Matching Strategies

Naı̈ve

◮ evaluate constraints one by one

Index-based

◮ build an index structure for the forwarding table

◮ define a look-up algorithm

◮ walk through the index as in a decision diagram
[Gough+:ACSC95, Aguilera+:PODC99, Campailla+:ICSE01]

◮ walk through the message [Yan+:TODS99,
Fabret+:SIGMOD01, Carzaniga&Wolf:SIGCOMM03]

c© 2006–2008 Antonio Carzaniga

Predicate Index

I1

f1.1
dest = “ATL”
price < 500

f1.2

stock = “DYS”
quantity > 1000
price < 500

I2

f2.1

airline = “UA”
orig = “DEN”
dest = “ATL”

f2.2
dest = “JFK”
price < 200

f2.3 orig = “DEN”

f2.4
airline = “UA”
upgrade = true

I3 f3.1
stock = “MSFT”
price < 200

c© 2006–2008 Antonio Carzaniga

Predicate Index

I1

f1.1
dest = “ATL”
price < 500

f1.2

stock = “DYS”
quantity > 1000
price < 500

I2

f2.1

airline = “UA”
orig = “DEN”
dest = “ATL”

f2.2
dest = “JFK”
price < 200

f2.3 orig = “DEN”

f2.4
airline = “UA”
upgrade = true

I3 f3.1
stock = “MSFT”
price < 200

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

constraint index

c© 2006–2008 Antonio Carzaniga

Predicate Index

I1

f1.1
dest = “ATL”
price < 500

f1.2

stock = “DYS”
quantity > 1000
price < 500

I2

f2.1

airline = “UA”
orig = “DEN”
dest = “ATL”

f2.2
dest = “JFK”
price < 200

f2.3 orig = “DEN”

f2.4
airline = “UA”
upgrade = true

I3 f3.1
stock = “MSFT”
price < 200

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

constraint index

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

Boolean network

c© 2006–2008 Antonio Carzaniga

Matching Algorithm

proc counting CBF(Message msg) {
map<Filter,int> counters← /0
set<Interface> exclude← broadcast exclude(msg)
foreach attribute in msg {

set<Constraint> C← find matching constraints(attribute)
foreach constraint in C {

foreach filter in constraint.filters {
if filter.interface 6∈ exclude {

if filter 6∈ counters {
counters← counters ∪ 〈filter,0〉 }

counters[filter]← counters[filter] + 1
if counters[filter] = filter.size {

output (msg, filter.interface)
exclude← exclude ∪ {filter.interface}
if |exclude| = total interface count {

return } } } } } } }

c© 2006–2008 Antonio Carzaniga

Matching Algorithm

proc counting CBF(Message msg) {
map<Filter,int> counters← /0
set<Interface> exclude← broadcast exclude(msg)
foreach attribute in msg {

set<Constraint> C← find matching constraints(attribute)
foreach constraint in C {

foreach filter in constraint.filters {
if filter.interface 6∈ exclude {

if filter 6∈ counters {
counters← counters ∪ 〈filter,0〉 }

counters[filter]← counters[filter] + 1
if counters[filter] = filter.size {

output (msg, filter.interface)
exclude← exclude ∪ {filter.interface}
if |exclude| = total interface count {

return } } } } } } }

c© 2006–2008 Antonio Carzaniga

Counting Algorithm

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3}
output = /0

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

Counting Algorithm

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3}
output = /0
counter[f2.1] = 1/3
counter[f2.4] = 1/2

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

Counting Algorithm

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3}
output = /0
counter[f2.1] = 1/3
counter[f2.4] = 1/2

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

Counting Algorithm

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3}
output = /0
counter[f2.1] = 1/3
counter[f2.4] = 1/2
counter[f1.1] = 1/2
counter[f1.2] = 1/3

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

Counting Algorithm

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3, I2}
output = {I2}
counter[f2.1] = 2/3
counter[f2.4] = 1/2
counter[f1.1] = 1/2
counter[f1.2] = 1/3
counter[f2.3] = 1/1

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

Counting Algorithm

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3, I2, I1}
output = {I2, I1}
counter[f2.1] = 2/3
counter[f2.4] = 1/2
counter[f1.1] = 2/2
counter[f1.2] = 1/3
counter[f2.3] = 1/1

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

Counting Algorithm

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3, I2, I1}
output = {I2, I1}
counter[f2.1] = 2/3
counter[f2.4] = 1/2
counter[f1.1] = 2/2
counter[f1.2] = 1/3
counter[f2.3] = 1/1 �

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

Evaluation

C++ implementation

Synthetic workloads

Experiments on a 950Mhz computer with 512Mb

c© 2006–2008 Antonio Carzaniga

Evaluation

C++ implementation

Synthetic workloads

Experiments on a 950Mhz computer with 512Mb

◮ okay, remember that this was done in 2002

◮ much better results today thanks to progress in CPU speeds

c© 2006–2008 Antonio Carzaniga

Workload Parameters

Messages: 5–10 attributes

Filters: 1–6 constraints

Attributes and values: dictionary of 1000 words with Zipf
distribution

Operators
◮ integers: 60% equality, 20% less-than, and 20% greater-than
◮ strings: 35% equality, 15% prefix, 15% suffix, 15% substring, 10%

less-than, and 10% greater-than

Forwarding table: up to 5M constraints, from 2 interfaces to
1M interfaces

c© 2006–2008 Antonio Carzaniga

Main Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
at

ch
in

g
tim

e
(m

s)

total number of constraints (millions)

matching time per message (I=10,20,50,100,200)

I=10
I=20
I=50

I=100
I=200

c© 2006–2008 Antonio Carzaniga

An Improvement

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3}
output = /0

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

An Improvement

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3}
output = /0
counter[f2.1] = 1/3
counter[f2.4] = 1/2

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

An Improvement

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3}
output = /0
counter[f2.1] = 1/3
counter[f2.4] = 1/2

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

An Improvement

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3}
output = /0
counter[f2.1] = 1/3
counter[f2.4] = 1/2
counter[f1.1] = 1/2
counter[f1.2] = 1/3

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

c© 2006–2008 Antonio Carzaniga

An Improvement

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3}
output = /0
counter[f2.1] = 1/3
counter[f2.4] = 1/2
counter[f1.1] = 1/2
counter[f1.2] = 1/3

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

stock = “DYS”
quantity > 1000
price < 500

c© 2006–2008 Antonio Carzaniga

An Improvement

message
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

// local variables
excluded = {I3}
output = /0
counter[f2.1] = 1/3
counter[f2.4] = 1/2
counter[f1.1] = 1/2
counter[f1.2] = 1/3

Useless—the message will never match f1.2

price

quantity

airline

dest

orig

stock

upgrade

< 200

< 500

> 1000

=“UA”

=“ATL”

=“JFK”

=“DEN”

=“DYS”

=“MSFT”

= true

f1.1:2

f1.2:3

f2.1:3

f2.2:2

f2.3:1

f2.4:2

f3.1:2

I1

I2

I3

stock = “DYS”
quantity > 1000
price < 500

c© 2006–2008 Antonio Carzaniga

Idea: Bloom Filters

We can use Bloom filters to represent set of names in a filter f and in
a message m

c© 2006–2008 Antonio Carzaniga

Idea: Bloom Filters

We can use Bloom filters to represent set of names in a filter f and in
a message m

message m filter f
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

stock = “DYS”
quantity > 1000
price < 500

Bm = [0110100011] Bf = [0010010010]

c© 2006–2008 Antonio Carzaniga

Idea: Bloom Filters

We can use Bloom filters to represent set of names in a filter f and in
a message m

message m filter f
airline = “UA”
fare = “T”
price = 248
orig = “DEN”
dest = “ATL”
upgrade = false

stock = “DYS”
quantity > 1000
price < 500

Bm = [0110100011] Bf = [0010010010]

If Bm 6⊇ Bf then we can immediately skip f (i.e., we don’t bother
maintaining a counter for f , and we don’t look up f ’s interface, etc.)

c© 2006–2008 Antonio Carzaniga

Observations on Bloom Filters

Bloom filters for filters (Bf) are computed statically with the
forwarding table

Bm is computed dynamically, but we can use very simple hash
functions

The complexity of checking Bf ⊆ Bm is O(1)
◮ in C: (Bf & Bm) == Bf

False positives do not affect correctness

The idea works with messages with sets of attributes that do not
always “cover” filters

c© 2006–2008 Antonio Carzaniga

Experimental Results

I5000,f2,c10,a20 75%

I500,f20,c10,a20 67%

I50,f200,c10,a20 59%

I5,f2000,c10,a20 46%

I10000,f40,c10,a20 80%

I1000,f400,c10,a20 76%

I100,f4000,c10,a20 46%

I5000,f2,c1,a1 -1%

I500,f20,c1,a1 -2%

I50,f200,c1,a1 -5%

I5,f2000,c1,a1 -7%

I100000,f4,c1,a1 -2%

I10000,f40,c1,a1 -3%

I1000,f400,c1,a1 -8%

I100,f4000,c1,a1 -11%

Performance
improvements
with Bloom filters

c© 2006–2008 Antonio Carzaniga

A Further Improvement

Observation:

By excluding interfaces, we can short-circuit the evaluation of a
message and speed up forwarding

c© 2006–2008 Antonio Carzaniga

A Further Improvement

Observation:

By excluding interfaces, we can short-circuit the evaluation of a
message and speed up forwarding

Idea:

Compute a table of “selective” attributes
◮ an attribute a is selective for an interface i if a must exist in a

message m in order for m to match Pi
◮ i.e., a must appear in every conjunct of the disjunct Pi

Use the selectivity table to exclude interfaces from processing
(selectivity preprocessing)

c© 2006–2008 Antonio Carzaniga

Selectivity Table Example

forwarding table

I1

dest = “ATL”
price < 500
stock = “DYS”
quantity > 1000
price < 500

I2

airline = “UA”
orig = “DEN”
dest = “ATL”
dest = “JFK”
price < 200
orig = “DEN”
airline = “UA”
upgrade = true

I3
stock = “MSFT”
price < 200

c© 2006–2008 Antonio Carzaniga

Selectivity Table Example

forwarding table

I1

dest = “ATL”
price < 500
stock = “DYS”
quantity > 1000
price < 500

I2

airline = “UA”
orig = “DEN”
dest = “ATL”
dest = “JFK”
price < 200
orig = “DEN”
airline = “UA”
upgrade = true

I3
stock = “MSFT”
price < 200

selectivity table
price I1, I3
stock I3

c© 2006–2008 Antonio Carzaniga

Selectivity Preprocessing

map<Name, set<Interface>> selectivity table
int preprocessing rounds

proc preprocess(Message msg, set<Interface> exclude) {
int rounds← preprocessing rounds
foreach 〈attribute,selectivity〉 in selectivity table {

if rounds = 0
return exclude

rounds← rounds − 1
if attribute 6∈ msg {

exclude← exclude ∪ selectivity
if |exclude| = total interface count

return exclude
}
}
return exclude
}

c© 2006–2008 Antonio Carzaniga

Sensitivity to Preprocessing

-40

-20

 0

 20

 40

 60

 0 10 20 30 40 50 60 70 80 90 100

ad
va

nt
ag

e
of

 s
el

ec
tiv

ity
 ta

bl
e

(%
)

number of preprocessing rounds

sensitivity of selectivity table reduction (I=F)

0
C=500k

C=5M

c© 2006–2008 Antonio Carzaniga

Summary of C-B Forwarding

Focus on performance and scalability

Predicate index with lookup based on iteration over the input
message

Novel ideas
◮ short-circuit evaluation of disjunctions
◮ use Bloom filters to exclude conjunctions
◮ use (absence of) selective attributes to exclude entire disjunctions

Experiments show good absolute performance and a synergistic
behavior of our optimizations

Software and documentation available at
http://www.inf.unisi.ch/carzaniga/cbn/

c© 2006–2008 Antonio Carzaniga

http://www.inf.unisi.ch/carzaniga/cbn/

Part III

Theory of Content-Based Routing

c© 2006–2008 Antonio Carzaniga

Content-Based Routing

point-to-point link

1

2 3

4

5

6

7

8

9

p

q

m

Where and how to forward m?

Based on which kind of routing information?

c© 2006–2008 Antonio Carzaniga

Theory of Content-Based Routing

State of the art

◮ a number of concrete routing protocols (including ours)

◮ validation through simulation

◮ focus on the exchange of routing information

c© 2006–2008 Antonio Carzaniga

Theory of Content-Based Routing

State of the art

◮ a number of concrete routing protocols (including ours)

◮ validation through simulation

◮ focus on the exchange of routing information

New research: theoretical foundations of content-based routing

◮ provable properties of a protocol

◮ properties of content-based routing
◮ i.e., properties of any protocol

◮ focus on routing state (i.e., memory complexity)

c© 2006–2008 Antonio Carzaniga

Research Plan

Models

◮ network model

◮ general model of content-based routing (forwarding)

◮ model of routing information and its space complexity

Analysis of specific routing protocols

◮ upper bounds for the space complexity of content-based routing

New improved routing protocols

◮ design of light-weight content-based routing protocols

General analysis

◮ lower bounds

c© 2006–2008 Antonio Carzaniga

Content-Based Network Model

1 2 3 4

5 6 7 8

9 10 11 12

3

3

3

1 2 3 3

1 2 1

1

1

1

3 1

1

13

CBN = (V ,E ,weight,M ,P,pred)
◮ v ∈ V is a processor (host or router)
◮ e ∈ E is a reliable bidirectional communication link
◮ weight : E →R is a link-weight function

c© 2006–2008 Antonio Carzaniga

Content-Based Network Model

1 2 3 4

5 6 7 8

9 10 11 12

3

3

3

1 2 3 3

1 2 1

1

1

1

3 1

1

13

p4 = pred(4)

CBN = (V ,E ,weight,M ,P,pred)
◮ v ∈ V is a processor (host or router)
◮ e ∈ E is a reliable bidirectional communication link
◮ weight : E →R is a link-weight function
◮ M is a set of messages
◮ P is a set of predicates; p ∈P is a function p : M → {0,1}
◮ pred : V →P associates a processor v ∈ V to a predicate p ∈P

c© 2006–2008 Antonio Carzaniga

Content-Based Routing Scheme

Extension of a standard model by Peleg and Upfal [JACM’89]

c© 2006–2008 Antonio Carzaniga

Content-Based Routing Scheme

Extension of a standard model by Peleg and Upfal [JACM’89]

Messages travel in packets

c = 〈m,h〉

◮ m = msg(c) is a message; m ∈M

◮ h = hdr(c) is a header; h ∈H

◮ a scheme defines H , the set of allowable message headers

Packets are forwarded hop-by-hop from source to destinations

c© 2006–2008 Antonio Carzaniga

Content-Based Routing Scheme

Extension of a standard model by Peleg and Upfal [JACM’89]

Messages travel in packets

c = 〈m,h〉

◮ m = msg(c) is a message; m ∈M

◮ h = hdr(c) is a header; h ∈H

◮ a scheme defines H , the set of allowable message headers

Packets are forwarded hop-by-hop from source to destinations

A routing scheme is a distributed algorithm consisting of
per-processor, processor-local routing functions

◮ (re)writing packet headers
◮ deciding where to forward a packet

c© 2006–2008 Antonio Carzaniga

Per-Process Routing Functions

For each processor v

c© 2006–2008 Antonio Carzaniga

Per-Process Routing Functions

For each processor v

Initial header function

Init v : M →H

given a message m originating at v , Init v (m) is m’s initial header,
so v proceeds by forwarding a packet c = 〈Init v (m),m〉

c© 2006–2008 Antonio Carzaniga

Per-Process Routing Functions

For each processor v

Initial header function

Init v : M →H

given a message m originating at v , Init v (m) is m’s initial header,
so v proceeds by forwarding a packet c = 〈Init v (m),m〉

Header (rewriting) function

Hdrv : H →H

given a packet c = 〈h,m〉, v forwards c′ = 〈Hdrv (h),m〉

c© 2006–2008 Antonio Carzaniga

Per-Process Routing Functions

For each processor v

Initial header function

Init v : M →H

given a message m originating at v , Init v (m) is m’s initial header,
so v proceeds by forwarding a packet c = 〈Init v (m),m〉

Header (rewriting) function

Hdrv : H →H

given a packet c = 〈h,m〉, v forwards c′ = 〈Hdrv (h),m〉

Forwarding function

Fwdv : H ×M → P(neighbors(v))

v forwards c = 〈h,m〉 to the subset of its neighbors Fwdv (h,m)
c© 2006–2008 Antonio Carzaniga

Per-Source Forwarding (PSF) Scheme

c© 2006–2008 Antonio Carzaniga

Per-Source Forwarding (PSF) Scheme

Idea

1 2 3 4

5 6 7 8

9 10 11 12

3

3

3

1 2 3
3

1 2 1

1

1

1

3 1

1

13

c© 2006–2008 Antonio Carzaniga

Per-Source Forwarding (PSF) Scheme

Idea
◮ per-source spanning trees Tv

1 2 3 4

5 6 7 8

9 10 11 12

3

3

3

1 2 3
3

1 2 1

1

1

1

3 1

1

13

c© 2006–2008 Antonio Carzaniga

Per-Source Forwarding (PSF) Scheme

Idea
◮ per-source spanning trees Tv

◮ annotate edges e = (u,w) in Tv with the disjunction of the
predicates of processor w and all its descendents in Tv

◮ processor-local functions F store edge annotations

1 2 3 4

5 6 7 8

9 10 11 12

3

3

3

1 2 3
3

1 2 1

1

1

1

3 1

1

13
F6: annotations for processor 6
source,next-hop→ predicate

. . .
1,1 7→ /0
1,2 7→ p2∨p3
1,7 7→ p4∨p7∨p8∨p11∨p12
1,9 7→ /0
. . .

c© 2006–2008 Antonio Carzaniga

PSF Scheme

Headers are used to store the source of a message

H = V

Init v (·) = v

Hdru(v) = v

c© 2006–2008 Antonio Carzaniga

PSF Scheme

Headers are used to store the source of a message

H = V

Init v (·) = v

Hdru(v) = v

Processor u forwards c = 〈v ,m〉 using Fu

Fwdu(v ,m) = {w |m ∈ Fu(v ,w)}

notation extension: if p is a predicate, m ∈ p means p(m) = 1

c© 2006–2008 Antonio Carzaniga

Analysis of PSF

It is easy to prove that PSF is correct
◮ correctness not yet defined, but quite straightforward

c© 2006–2008 Antonio Carzaniga

Analysis of PSF

It is easy to prove that PSF is correct
◮ correctness not yet defined, but quite straightforward

How “expensive” is PSF?

How much memory does it require?
◮ focus on the total memory requirement

c© 2006–2008 Antonio Carzaniga

Analysis of PSF

It is easy to prove that PSF is correct
◮ correctness not yet defined, but quite straightforward

How “expensive” is PSF?

How much memory does it require?
◮ focus on the total memory requirement

Preliminary additional definitions
◮ M(X) denotes the memory requirements of a function or set X

◮ e.g., processor v uses M(Hdrv) bits to represent its Hdr function

◮ n = |V |, therefore M(v) = O(logn)

◮ S ⊆ V is a given set of senders, with s = |S|

◮ R ⊆ V ,R = {u ∈ V |pred(u) 6= /0}, is the set of receivers, r = |R|

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF

M(PSF) = ∑
u∈V

(

M(Init u)+M(Hdru)+M(Fwdu)
)

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF

M(PSF) = ∑
u∈V

(

M(Init u)+M(Hdru)+M(Fwdu)
)

Init v must store v , so

M(Init u) = O(logn)

Hdr has zero memory requirements

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF

M(PSF) = ∑
u∈V

(

M(Init u)+M(Hdru)+M(Fwdu)
)

Init v must store v , so

M(Init u) = O(logn)

Hdr has zero memory requirements

The memory requirement of Fwd boils down to that of F

M(Fwdu) = M(Fu)

The total memory requirement of Fwd is the sum of the memory
requirements of each per-source tree

∑
u∈V

M(Fu) = ∑
v∈S

M(Tv)

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF (2)

Memory requirement of a source-rooted tree Tv

M(Tv) = ∑
u∈V

M(Fu(v , ·))

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF (2)

Memory requirement of a source-rooted tree Tv

M(Tv) = ∑
u∈V

M(Fu(v , ·))

1 2 3 4

5 6 7 8

9 10 11 12

. .
.∨

p 7
∨
. .
.

. . .∨p7∨ . . .

notation:
p7 = pred(7)

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF (2)

Memory requirement of a source-rooted tree Tv

M(Tv) = ∑
u∈V

M(Fu(v , ·))

1 2 3 4

5 6 7 8

9 10 11 12

. .
.∨

p 7
∨
. .
.

. . .∨p7∨ . . .

notation:
p7 = pred(7)

M(Tv) = ∑
x∈R

M(pred(x))distance(v ,x)

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF (3)

Total memory requirement for PSF

M(PSF) = ∑
v∈S

(

logn + ∑
x∈R

M(pred(x))distance(v ,x)
)

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF (3)

Total memory requirement for PSF

M(PSF) = ∑
v∈S

(

logn + ∑
x∈R

M(pred(x))distance(v ,x)
)

A couple of uniformity assumptions
◮ ∀u ∈ R : M(pred(u)) = Mp

◮ senders and receivers are uniformly distributed
◮ Let d be the average distance between two processors

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF (3)

Total memory requirement for PSF

M(PSF) = ∑
v∈S

(

logn + ∑
x∈R

M(pred(x))distance(v ,x)
)

A couple of uniformity assumptions
◮ ∀u ∈ R : M(pred(u)) = Mp

◮ senders and receivers are uniformly distributed
◮ Let d be the average distance between two processors

M(PSF) = s logn +srMpd

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF (3)

Total memory requirement for PSF

M(PSF) = ∑
v∈S

(

logn + ∑
x∈R

M(pred(x))distance(v ,x)
)

A couple of uniformity assumptions
◮ ∀u ∈ R : M(pred(u)) = Mp

◮ senders and receivers are uniformly distributed
◮ Let d be the average distance between two processors

M(PSF) = s logn +srMpd

Obviously d = O(V)

◮ but in power-law random graphs d = O(log logn) is very likely

c© 2006–2008 Antonio Carzaniga

Memory Requirements of PSF (3)

Total memory requirement for PSF

M(PSF) = ∑
v∈S

(

logn + ∑
x∈R

M(pred(x))distance(v ,x)
)

A couple of uniformity assumptions
◮ ∀u ∈ R : M(pred(u)) = Mp

◮ senders and receivers are uniformly distributed
◮ Let d be the average distance between two processors

M(PSF) = s logn +srMpd

Obviously d = O(V)

◮ but in power-law random graphs d = O(log logn) is very likely

M(PSF) = O(n2 loglogn)

c© 2006–2008 Antonio Carzaniga

Assumptions on M(Fu)

1 2 3 4

5 6 7 8

9 10 11 12

3

3

3

1 2 3
3

1 2 1

1

1

1

3 1

1

13
F6: annotations for proc. 6
source,next-hop→ predicate

. . .
1,1 7→ /0
1,2 7→ p2∨p3
1,7 7→ p4∨p7∨p8∨p11∨p12
1,9 7→ /0
. . .

c© 2006–2008 Antonio Carzaniga

Assumptions on M(Fu)

1 2 3 4

5 6 7 8

9 10 11 12

3

3

3

1 2 3
3

1 2 1

1

1

1

3 1

1

13
F6: annotations for proc. 6
source,next-hop→ predicate

. . .
1,1 7→ /0
1,2 7→ p2∨p3
1,7 7→ p4∨p7∨p8∨p11∨p12
1,9 7→ /0
. . .

The previous analysis and results assume that, e.g.,
M(p2∨p3) = M(p2)+M(p3)

c© 2006–2008 Antonio Carzaniga

Assumptions on M(Fu)

1 2 3 4

5 6 7 8

9 10 11 12

3

3

3

1 2 3
3

1 2 1

1

1

1

3 1

1

13
F6: annotations for proc. 6
source,next-hop→ predicate

. . .
1,1 7→ /0
1,2 7→ p2∨p3
1,7 7→ p4∨p7∨p8∨p11∨p12
1,9 7→ /0
. . .

The previous analysis and results assume that, e.g.,
M(p2∨p3) = M(p2)+M(p3)

In general, M(p2∨p3)≤M(p2)+M(p3)

c© 2006–2008 Antonio Carzaniga

Assumptions on M(Fu)

1 2 3 4

5 6 7 8

9 10 11 12

3

3

3

1 2 3
3

1 2 1

1

1

1

3 1

1

13
F6: annotations for proc. 6
source,next-hop→ predicate

. . .
1,1 7→ /0
1,2 7→ p2∨p3
1,7 7→ p4∨p7∨p8∨p11∨p12
1,9 7→ /0
. . .

The previous analysis and results assume that, e.g.,
M(p2∨p3) = M(p2)+M(p3)

In general, M(p2∨p3)≤M(p2)+M(p3)
◮ e.g., p2 = (port > 1000)∧ (port < 3000) and

p3 = (port > 2000)∧ (port < 4000) can be combined in the
disjunction p2∨p3 = (port > 1000)∧ (port < 4000)

c© 2006–2008 Antonio Carzaniga

Disjunction Advantage

Given a set of predicates P = {p1,p2, . . . ,pn}, we define the
disjunction advantage

α(P) =
M(p1∨p2∨ . . .∨pn)

M(p1)+M(p2) · · ·+M(pn)

c© 2006–2008 Antonio Carzaniga

Disjunction Advantage

Given a set of predicates P = {p1,p2, . . . ,pn}, we define the
disjunction advantage

α(P) =
M(p1∨p2∨ . . .∨pn)

M(p1)+M(p2) · · ·+M(pn)

In the case M(p1)≈M(p2)≈ . . .≈M(pn)≈Mp, we define

α(k) =
M(p1∨p2∨ . . .∨pk)

kMp

c© 2006–2008 Antonio Carzaniga

Disjunction Advantage

Given a set of predicates P = {p1,p2, . . . ,pn}, we define the
disjunction advantage

α(P) =
M(p1∨p2∨ . . .∨pn)

M(p1)+M(p2) · · ·+M(pn)

In the case M(p1)≈M(p2)≈ . . .≈M(pn)≈Mp, we define

α(k) =
M(p1∨p2∨ . . .∨pk)

kMp

How does α affect the space complexity of a given scheme?

Can we quantify α?

c© 2006–2008 Antonio Carzaniga

α in a Generic Predicate Model

A predicate p ∈P is a subset of a finite universe of messages
M , therefore M(p) = p log |M |

c© 2006–2008 Antonio Carzaniga

α in a Generic Predicate Model

A predicate p ∈P is a subset of a finite universe of messages
M , therefore M(p) = p log |M |

Assuming a uniform distribution of predicates p of size |p|= h

E(α) =
E(|P|)

nh
E(|P|) is the expected size of the union of n random sets of size h

c© 2006–2008 Antonio Carzaniga

α in a Generic Predicate Model

A predicate p ∈P is a subset of a finite universe of messages
M , therefore M(p) = p log |M |

Assuming a uniform distribution of predicates p of size |p|= h

E(α) =
E(|P|)

nh
E(|P|) is the expected size of the union of n random sets of size h

Pr[m ∈ P] = 1−
(

1−
h
|M |

)n

≈ 1−e−
nh
|M |

expected size of P and then the expected disjunction advantage

E(α) =
|M |

nh

(

1−
(

1−
h
|M |

)n)

≈
|M |

nh

(

1−e−
nh
|M |

)

c© 2006–2008 Antonio Carzaniga

α in a Generic Predicate Model (2)

Monte Carlo simulation

Uniform vs. Zipf distribution for messages

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

α

nk/|M |

Uniform
Zipf, |M |= 104

Zipf, |M |= 105

Zipf, |M |= 106

c© 2006–2008 Antonio Carzaniga

α in a Specific Predicate Model (1)

Monte Carlo simulation

Disjunctive normal form of attribute constraints

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 106

α

conjunctions combined in one disjunction

Zipf distribution of attribute names, |A|= 500

c© 2006–2008 Antonio Carzaniga

α in a Specific Predicate Model (2)

Monte Carlo simulation

Disjunctive normal form of attribute constraints

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 106

α

conjunctions combined in one disjunction

Zipf distribution of attribute names, |A|= 5000

c© 2006–2008 Antonio Carzaniga

α in a Specific Predicate Model (3)

Monte Carlo simulation

Disjunctive normal form of attribute constraints

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 106

α

conjunctions combined in one disjunction

Uniform distribution of attribute names, |A|= 50

c© 2006–2008 Antonio Carzaniga

α in a Specific Predicate Model (4)

Monte Carlo simulation

Disjunctive normal form of attribute constraints

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 106

α

conjunctions combined in one disjunction

Uniform distribution of attribute names, |A|= 500

c© 2006–2008 Antonio Carzaniga

Summary

Goal: theoretical foundations of content-based routing

c© 2006–2008 Antonio Carzaniga

Summary

Goal: theoretical foundations of content-based routing

Analysis of 4 routing protocols (3 existing, 1 new and improved)

scheme space complexity delivery function

PSF srMpd +s logn correct, minimal
iPS nrMpα(r

∆
). . . correct, minimal

PIF n2rMpα(r
∆

)+M(broadcast) correct, non-minimal
DRP rsMp +M(unicast) correct, non-minimal

c© 2006–2008 Antonio Carzaniga

Summary

Goal: theoretical foundations of content-based routing

Analysis of 4 routing protocols (3 existing, 1 new and improved)

scheme space complexity delivery function

PSF srMpd +s logn correct, minimal
iPS nrMpα(r

∆
). . . correct, minimal

PIF n2rMpα(r
∆

)+M(broadcast) correct, non-minimal
DRP rsMp +M(unicast) correct, non-minimal

Definition and characterization of the α reduction factor
◮ general model (analytical characterization)
◮ common concrete model (Monte Carlo simulations)

c© 2006–2008 Antonio Carzaniga

Summary

Goal: theoretical foundations of content-based routing

Analysis of 4 routing protocols (3 existing, 1 new and improved)

scheme space complexity delivery function

PSF srMpd +s logn correct, minimal
iPS nrMpα(r

∆
). . . correct, minimal

PIF n2rMpα(r
∆

)+M(broadcast) correct, non-minimal
DRP rsMp +M(unicast) correct, non-minimal

Definition and characterization of the α reduction factor
◮ general model (analytical characterization)
◮ common concrete model (Monte Carlo simulations)

Future work
◮ more protocols and perhaps lower bounds

[menu]
c© 2006–2008 Antonio Carzaniga

Part IV

Security in Content-Based Networking

c© 2006–2008 Antonio Carzaniga

Security

c© 2006–2008 Antonio Carzaniga

Security

Easy part
◮ authentication
◮ privacy with a trusted network

◮ e.g., traditional e-mail or web security

Difficult part
◮ privacy in the presence of an untrusted network

◮ we want the network to route information on the basis of message
content and receiver interests. But we do not want the network to
learn anything about message content and receiver interests.

c© 2006–2008 Antonio Carzaniga

Security Model

Simplified content-based communication scenario

Alice CBN Bob
m p

m

c© 2006–2008 Antonio Carzaniga

Security Model

Simplified content-based communication scenario

Alice CBN Bob
m p

m

Objectives

AliceK CBN BobK

c© 2006–2008 Antonio Carzaniga

Security Model

Simplified content-based communication scenario

Alice CBN Bob
m p

m

Objectives

AliceK CBN BobK

p

c© 2006–2008 Antonio Carzaniga

Security Model

Simplified content-based communication scenario

Alice CBN Bob
m p

m

Objectives

AliceK CBN BobK

pm

c© 2006–2008 Antonio Carzaniga

Security Model

Simplified content-based communication scenario

Alice CBN Bob
m p

m

Objectives

AliceK CBN BobK

pm

m

c© 2006–2008 Antonio Carzaniga

Approximate Solutions

Goup anonymity
◮ receivers “hide” behind a trusted proxy
◮ limited security

Overly generic predicates
◮ Bob declares a p′ covering p
◮ limited security (similar to group anonymity)

Obfuscation
◮ p is given as an “obfuscated” executable
◮ incompatible with efficient routing protocols
◮ limited security (dubious security for p, no security for m)

Computing over encrypted data
◮ either very inefficient or very limited

c© 2006–2008 Antonio Carzaniga

Approach

Encode p and m with some K -dependent function(s)

m p

m′ p′

XK YK

c© 2006–2008 Antonio Carzaniga

Approach

Encode p and m with some K -dependent function(s)

m p

m′ p′

XK YK

◮ such that p(m)⇔ p′(m′)

c© 2006–2008 Antonio Carzaniga

Approach

Encode p and m with some K -dependent function(s)

m p

m′ p′

XK YK

◮ such that p(m)⇔ p′(m′)

◮ and such that p′ and m′ do not reveal anything about p and m

c© 2006–2008 Antonio Carzaniga

Approach

Encode p and m with some K -dependent function(s)

m p

m′ p′

XK YK

◮ such that p(m)⇔ p′(m′)

◮ and such that p′ and m′ do not reveal anything about p and m

Method: encoding using Bloom filters

c© 2006–2008 Antonio Carzaniga

Bloom Filters

Compact data structure

Efficient set membership test

Probabilistic result
◮ false positives are possible
◮ although (hopefully) improbable

c© 2006–2008 Antonio Carzaniga

Bloom Filters

Compact data structure

Efficient set membership test

Probabilistic result
◮ false positives are possible
◮ although (hopefully) improbable

One-way information compression through hash functions

c© 2006–2008 Antonio Carzaniga

Definitions

U = {x1,x2, . . .} is the universe of values we intend to represent

A Bloom set over U is defined by
◮ a bit vector B of size m
◮ k distinct hash functions h1,h2, . . . ,hk with signature

H : U →{0,1, . . . ,m−1}

B(x) is computed as follows B← /0

for i ← 1 . . .k
B[hi(x)]← 1

c© 2006–2008 Antonio Carzaniga

Using Bloom Filters

Given a set of n elements S = {x1,x2, . . .xn}

B(S)← B(x1)∪B(x2)∪ . . .B(xn)

i.e.,
B← /0
foreach x ∈ S

for i ← 1 . . .k
B[hi(x)]← 1

Testing x ∈ S amounts to testing B(x)⊆ B(S)

i.e., (assuming B is implemented as an integer)

x ∈ S⇔ (Bx & BS) == Bx

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

S = {“ciao”, “foo”, “bar”}

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

1 1

S = {“ciao”, “foo”, “bar”}

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

1 11

S = {“ciao”, “foo”, “bar”}

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

1 111 1

S = {“ciao”, “foo”, “bar”}

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

1 111 1

S = {“ciao”, “foo”, “bar”}

Test:

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

1 111 1

S = {“ciao”, “foo”, “bar”}

Test: “foo”

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

1 111 1

S = {“ciao”, “foo”, “bar”}

Test: “foo”: yes

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

1 111 1

S = {“ciao”, “foo”, “bar”}

Test: “foo”: yes, “abc”

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

1 111 1

S = {“ciao”, “foo”, “bar”}

Test: “foo”: yes, “abc”: no

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

1 111 1

S = {“ciao”, “foo”, “bar”}

Test: “foo”: yes, “abc”: no, “xyz”

c© 2006–2008 Antonio Carzaniga

Example

U is the universe of character strings; k = 2; m = 10

0 1 2 3 4 5 6 7 8 9

h1

h2

1 111 1

S = {“ciao”, “foo”, “bar”}

Test: “foo”: yes, “abc”: no, “xyz”: yes (false positive)

c© 2006–2008 Antonio Carzaniga

Idea

m p
p(m)

c© 2006–2008 Antonio Carzaniga

Idea

m p
p(m)

Sm Sp

XS XP
Sm ⊇ Sp

1. Reduce p and m into sets of strings, Sp and Sm, such that
p(m)⇒ Sp ⊆ Sm

c© 2006–2008 Antonio Carzaniga

Idea

m p
p(m)

Sm Sp

XS XP
Sm ⊇ Sp

BK
m BK

p

BK BK

Bm ⊇ Bp

1. Reduce p and m into sets of strings, Sp and Sm, such that
p(m)⇒ Sp ⊆ Sm

2. Represent Sp and Sm with Bloom filters, BK
p and BK

m
(the K superscript means that the Bloom filters use keyed
cryptographic hash functions, with key K)

c© 2006–2008 Antonio Carzaniga

Predicate Encoding

1. Constraint encoding
name=value (equality constraint)
name= any (existence constraint)

e.g., idmef version>2→ “∃idmef version”, idmef version=2→
“idmef version=2”

c© 2006–2008 Antonio Carzaniga

Predicate Encoding

1. Constraint encoding
name=value (equality constraint)
name= any (existence constraint)

e.g., idmef version>2→ “∃idmef version”, idmef version=2→
“idmef version=2”

2. A filter f is encoded with a set Sf = S=

f ∪S∃f , representing the
union of equality and existence constraints

c© 2006–2008 Antonio Carzaniga

Predicate Encoding

1. Constraint encoding
name=value (equality constraint)
name= any (existence constraint)

e.g., idmef version>2→ “∃idmef version”, idmef version=2→
“idmef version=2”

2. A filter f is encoded with a set Sf = S=

f ∪S∃f , representing the
union of equality and existence constraints

3. A predicate P = f1∨ f2∨ . . .∨ fF P is encoded with a list of sets
SP = {S1,S2, . . . ,SF}

c© 2006–2008 Antonio Carzaniga

Message Encoding

1. Every attribute name=value is encoded with two strings
s= =“name=value” and s∃ =“name”

idmef version=2→

{

s= =“idmef version=2”

s∃ =“∃idmef version”

c© 2006–2008 Antonio Carzaniga

Message Encoding

1. Every attribute name=value is encoded with two strings
s= =“name=value” and s∃ =“name”

idmef version=2→

{

s= =“idmef version=2”

s∃ =“∃idmef version”

2. A message m = {a1,a2, . . . ,an} is therefore encoded with a set
Sm = S=

m ∪S∃m

c© 2006–2008 Antonio Carzaniga

“Encoded” Matching

Given P ’s encoding BP = {Bf1 ,Bf2 , . . .}, and m’s encoding Bm, we
define the Bloom-encoded matching relation m ≺B P as follows:

m ≺B P⇔∃f ∈ P : Bf ⊆ Bm

Observations

Matching an encoded message m with an encoded filter f
amounts to testing inclusion of two Bloom filters

◮ in C, this may be done with (Bm & Bf) == Bf

The covering relation f ≺ g works exactly the same way
◮ (Bf & Bg) == Bg

c© 2006–2008 Antonio Carzaniga

Summary

Authentication and Integrity
◮ traditional methods

Privacy in the presence of an untrusted network
◮ approach: encoding messages and filters
◮ method: Bloom filters

Ongoing research
◮ efficient representation and processing of large sets of Bloom

filters
◮ ideas: BDDs

c© 2006–2008 Antonio Carzaniga

Summary

Authentication and Integrity
◮ traditional methods

Privacy in the presence of an untrusted network
◮ approach: encoding messages and filters
◮ method: Bloom filters

Ongoing research
◮ efficient representation and processing of large sets of Bloom

filters
◮ ideas: BDDs

http://www.inf.unisi.ch/carzaniga/cbn/

[menu]

c© 2006–2008 Antonio Carzaniga

http://www.inf.unisi.ch/carzaniga/cbn/

Part V

Conclusions

c© 2006–2008 Antonio Carzaniga

Conclusions

Content-based communication is an exciting research area

c© 2006–2008 Antonio Carzaniga

Conclusions

Content-based communication is an exciting research area

Several interesting open problems

◮ routing
◮ service interface
◮ theoretical framework
◮ middleware design
◮ design and engineering of applications
◮ security and privacy
◮ sensor networks
◮ . . .

c© 2006–2008 Antonio Carzaniga

Conclusions

Content-based communication is an exciting research area

Several interesting open problems

◮ routing
◮ service interface
◮ theoretical framework
◮ middleware design
◮ design and engineering of applications
◮ security and privacy
◮ sensor networks
◮ . . .

Several disciplines

◮ networking
◮ algorithms
◮ systems
◮ software

c© 2006–2008 Antonio Carzaniga

Content-Based Communication:

The Network Underneath

Event Processing

Antonio Carzaniga

Faculty of Informatics
University of Lugano

April 2008

http://www.inf.unisi.ch/carzaniga/

c© 2006–2008 Antonio Carzaniga

http://www.inf.unisi.ch/carzaniga/

References

A. Carzaniga and A. L. Wolf. “Content-Based Networking: A New
Communication Infrastructure.” In NSF Workshop on an
Infrastructure for Mobile and Wireless Systems, LNCS 2538,
Scottsdale, Arizona, Oct. 2001. Springer-Verlag.

A. Carzaniga and A. L. Wolf. “Forwarding in a Content-Based
Network.” In Proceedings of ACM SIGCOMM 2003, Karlsruhe,
Germany, Aug. 2003.

A. Carzaniga, M. J. Rutherford, and A. L. Wolf. “A Routing Scheme
for Content-Based Networking.” In Proceedings of IEEE INFOCOM
2004, Hong Kong, China, Mar. 2004.

A. Carzaniga, A. J. Rembert, and A. L. Wolf. “Understanding
Content-Based Routing Schemes.” Technical Report 2006-05,
Faculty of Informatics, University of Lugano, Sep., 2006.

C. P. Hall, A. Carzaniga, and A. L. Wolf. “DV/DRP: A Content-Based
Networking Protocol For Sensor Networks.” Technical Report
2006-04, Faculty of Informatics, University of Lugano, Sep., 2006.

c© 2006–2008 Antonio Carzaniga

	A Concrete Routing Protocol
	A Concrete Forwarding Algorithm
	Theory of Content-Based Routing
	Security in Content-Based Networking
	Conclusions

