
From univariate polynomials to
probabilistically checkable and

error-tolerant proofs
Computer Science Club, St Petersburg

17–18 November 2018

Pe�eri Kaski
Department of Computer Science

Aalto University

I What?

I Why?

I How?

What?

Short synopsis of lectures

I Polynomials in one variable are among the most elementary and most useful
mathematical objects, with broad-ranging applications from signal processing to
error-correcting codes and advanced applications such as probabilistically
checkable proofs and error-tolerant computation

I One of the main reasons why polynomials are useful in a myriad of applications is
that highly e�icient algorithms are known for computing with polynomials

I These lectures introduce you to this near-linear-time toolbox and its select
applications, with some algorithmic ideas dating back millennia, and some introduced
only in the last few years

Lecture 1:
Polynomials in one variable

I We start with elementary computational tasks involving polynomials, such as
polynomial addition, multiplication, division (quotient and remainder), greatest
common divisor, evaluation, and interpolation

I We observe that polynomials admit two natural representations: coe�icient
representation and evaluation representation

I We encounter the more-than-2000-year-old algorithm of Euclid for computing a
greatest common divisor

Lecture 2:
The fast Fourier transform and fast multiplication

I We derive one of the most fundamental and widely deployed algorithms in all of
computing, namely the fast Fourier transform and its inverse

I We explore the consequences of this near-linear-time-computable duality between the
coe�icient and evaluation representations of a polynomial

I A key consequence is that we can multiply two polynomials in near-linear-time

Lecture 3:
�otient and remainder; evaluation and interpolation

I We continue the development of the fast polynomial toolbox with near-linear-time
polynomial division (quotient and remainder)

I We encounter Newton iteration as the key tool for fast division

I We derive near-linear-time algorithms for batch evaluation and interpolation of
polynomials using recursive remaindering along a subproduct tree

Lecture 4:
Extended Euclidean algorithm and interpolation from
erroneous data

I This lecture culminates our development of the near-linear-time toolbox for univariate
polynomials

I First, we develop a divide-and-conquer version of the extended Euclidean algorithm for
polynomials that recursively truncates the inputs to achieve near-linear running time

I Second, we present a near-linear-time polynomial interpolation algorithm that is
robust to errors in the input data up to the information-theoretic maximum number of
errors for correct recovery

I As an application, we encounter Reed–Solomon error-correcting codes together with
near-linear-time encoding and decoding algorithms

Lecture 5:
Identity testing and probabilistically checkable proofs

I We investigate some further applications of the near-linear-time toolbox involving
randomization in algorithm design and proof systems with probabilistic soundness

I We find that the elementary fact that a low-degree nonzero polynomial has only a
small number of roots enables us to (probabilistically) verify the correctness of
intricate computations substantially faster than running the computation from scratch

I Furthermore, we observe that proof preparation intrinsically tolerates errors by virtue
of Reed–Solomon coding

Why?

Motivation (1/3): A showcase of algorithm design techniques

I The toolbox of near-linear-time algorithms for univariate polynomials and large
integers provides a practical showcase of recurrent mathematical ideas in algorithm
design such as
I linearity

I duality

I divide-and-conquer

I dynamic programming

I iteration and invariants

I parameterization

I randomization

Motivation (2/3): Applications

I We gain exposure to a number of classical and recent applications, such as
I secret-sharing

I error-correcting codes

I probabilistically checkable proofs

I error-tolerant computation

Motivation (3/3): Delegating computation

How?

Five lectures and problem sets

I Each lecture (45 minutes + 45 minutes) reviews the key ideas

I Also learning by doing — a problem set of four problems is associated with each
lecture; solving the problems is recommended to reach a detailed understanding

I Lecture slides available online to accompany the lectures

I Model solutions to each problem set available upon request

Lecture schedule

I Today (Saturday):
I 1. Polynomials in one variable

I 2. The fast Fourier transform and fast multiplication

I Tomorrow (Sunday):
I 3. �otient and remainder; evaluation and interpolation

I 4. Extended Euclidean algorithm and interpolation from erroneous data

I 5. Identity testing and probabilistically checkable proofs

1. Polynomials in one variable
Computer Science Club, St Petersburg

17–18 November 2018

Pe�eri Kaski
Department of Computer Science

Aalto University

Key content for Lecture 1

I A boot camp of basic concepts and definitions in algebra

I Polynomials in one variable (univariate polynomials)

I Basic tasks and first algorithms for univariate polynomials
I addition

I multiplication

I division (quotient and remainder)

I evaluation

I interpolation

I greatest common divisor

I Evaluation–interpolation -duality of polynomials

I The (traditional) extended Euclidean algorithm and its analysis

A boot camp of basic concepts and definitions in algebra

(von zur Gathen and Gerhard [6],
Sections 2.2–3.2, 25.1–4)

Group

I A group is a nonempty set G with a binary operation · : G × G → G satisfying
1. for all a, b, c ∈ G we have (a · b) · c = a · (b · c), (Associativity)
2. there exists a 1 ∈ G such that a · 1 = 1 · a = a for all a ∈ G, (Identity)
3. for all a ∈ G there exists an a−1 ∈ G with a · a−1 = a−1 · a = 1 (Inverses)

I A group G is commutative if for all a, b ∈ G we have a · b = b · a

I Examples:
• (Z,+, 0) and (Zm,+, 0) for m ∈ Z≥2 are commutative groups

• (Q \ {0}, ·, 1) and (Z×m, ·, 1) for Z×m = {1 ≤ a < m : gcd(a,m) = 1} are commutative groups

(Commutative) ring

I A ring R is a set with two binary operations + : R × R → R and · : R × R → R
satisfying

1. R together with + is a commutative group with identity 0,
2. · is associative,
3. R has an identity element 1 for ·,
4. for all a, b, c ∈ R we have a(b + c) = (ab) + (ac) and (b + c)a = (ba) + (ca)

I A ring R is commutative if · is commutative

I A ring R is nontrivial if 0 , 1

I Unless mentioned otherwise, in what follows we always assume that a ring R is both
commutative and nontrivial

I Examples:
Z, Q, R, C, Zm for m ∈ Z≥2

Example: Z5 (the integers modulo 5)

I One way to represent a (finite) ring is to give the addition and multiplication tables for
the operations operations + and ·

I In the two tables below, the entries at row x column y are x+y and x ·y , respectively

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

(1)

Example: Z6 (the integers modulo 6)

I Below are the addition and multiplication tables for Z6

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

(2)

I Compare the multiplication tables for Z6 (above) and Z5 (see (1))
— what qualitative di�erences can you spot?

Example: Z10 (the integers modulo 10)

I Here is a yet further example, the integers modulo 10

+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

· 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

(3)

I What pa�erns can you identify from the multiplication table?

Field, unit, associate

I A unit in a ring R is an element u ∈ R for which there exists a multiplicative inverse
v ∈ R with uv = 1

I The set R× of all units of R is a group under multiplication

I A ring R is a field if all nonzero elements of R are units

I Examples: (of fields)
Q, R, C, Zp for p prime

I We say that a ∈ R is an associate of b ∈ R and write a ∼ b if there exists a unit u ∈ R
such that a = ub

I ∼ is an equivalence relation on R

Examples / work points

I Study the multiplication table for Z5 in (1)
— how can you identify which elements are units?

I Based on the units that you identify, conclude that Z5 is a field

I By studying the multiplication table for Z6 in (2), conclude that Z6 is not a field by
identifying a nonzero element in Z6 that does not have a multiplicative inverse

I Study (2) and (3). Which elements are units in Z6? How about in Z10?

I Determine the equivalence classes for the associate relation ∼ in Z5, Z6, and Z10

Polynomials over a ring (1/2)

I Let R be a ring and let x be a formal indeterminate

I A polynomial a ∈ R[x] in x over R is a finite sequence (α0,α1, . . . ,αn) of elements of
R (the coe�icients of a) which we write as

a = α0 + α1x + α2x2 + . . . + αn−1xn−1 + αnxn =

n∑
i=0

αix i

I A polynomial a is nonzero if there exists a j = 0, 1, . . . , n with αj , 0

I For nonzero a, we assume that αn , 0 and say that n = deg a is the degree of a; the
coe�icient αn = lc(a) is the leading coe�icient of a

I For zero a, it is convenient to assume that a = (0) and set deg a = −∞

I A nonzero polynomial is monic if lc(a) = 1

Polynomials over a ring (2/2)

I The set R[x] equipped with the usual notions of addition and multiplication of
polynomials (recalled in what follows) is a ring with additive identity (0) and
multiplicative identity (1) for 0, 1 ∈ R

I As a notational convention when working with polynomials, we use symbols x, y, z,w
late in the Roman alphabet for formal indeterminates, and symbols a, b, c, . . . , s, t
early in the Roman alphabet for polynomials

I We use symbols α , β,γ , . . . ,ω in the Greek alphabet for elements in R

Complexity of an algorithm

I When studying algorithms that compute with given elements of R[x], we adopt the
convention of counting the number of arithmetic operations in R as a measure of
the "running time" of an algorithm

I Arithmetic operations in R include addition, subtraction, multiplication and taking a
multiplicative inverse (of a unit)

I We focus on worst-case running time (worst-case number of arithmetic operations
in R) as a function of the degree(s) of the input polynomial(s) in R[x]

I To avoid degenerate cases, we tacitly assume that all degrees are at least 1 for
purposes of running time analysis

I We will work with asymptotic notation O() and Õ()

Addition of polynomials

I Let a =
∑

i αix i, b =
∑

i βix i ∈ R[x] be given as input with deg a = n and deg b = m

I The sum c = a + b =
∑

i γix i ∈ R[x] is the polynomial with deg c ≤ max(n,m) defined
for all i = 0, 1, . . . ,max(n,m) by

γi = αi + βi ∈ R

I Given a, b as input, it is immediate that we can compute c in O(max(n,m)) operations
in R

I Subtraction and multiplication with a given element of R are defined analogously

Multiplication of polynomials

I Let a =
∑

i αix i, b =
∑

i βix i ∈ R[x] be given as input with deg a = n and deg b = m

I The product c = ab =
∑

i γix i ∈ R[x] is the polynomial with deg c ≤ n +m defined for
all i = 0, 1, . . . , n +m by

γi =

i∑
j=0

αjβi−j ∈ R

I Given a, b as input, it is immediate that we can compute c in O((n +m)2) operations
in R

I ... but could we do be�er? The output consists of only O(n +m) elements of R ...

Polynomial division (quotient and remainder)

I Let a =
∑

i αix i, b =
∑

i βix i ∈ R[x] be given as input with deg a = n, deg b = m,
n ≥ m ≥ 0, and suppose that βm ∈ R is a unit

I We want to compute q, r ∈ R[x] with a = qb + r and deg r < m

I The classical division algorithm:
1. r ← a, µ ← β−1

m
2. for i = n −m, n −m − 1, . . . , 0 do
3. if deg r = m + i then ηi ← lc(r)µ, r ← r − ηix ib

else ηi ← 0
4. return q =

∑n−m
i=0 ηix i and r

I We leave checking that a = qb + r and deg r < m as an exercise; given a, b as input, it
is immediate that we can compute q, r in O((n +m)2) operations in R

I ... but could we do be�er? The output consists of only O(n +m) elements of R ...

Example (quotient and remainder)

I a = x4 + x3 + x2 + 1 ∈ Z2[x], b = x2 + 1 ∈ Z2[x]

I n = 4, m = 2

I µ = β−1
m = 1−1 = 1 ∈ Z2

I Tracing the for-loop for i = n −m, n −m − 1, . . . , 0, we have

i ηi r
x4 + x3 + x2 + 1

2 1 x3 + 1
1 1 x + 1
0 0 x + 1

I q = η2x2 + η1x + η0 = x2 + x , r = x + 1

Evaluation (at a single point)

I Let a =
∑

i αix i ∈ R[x] and ξ ∈ R be given as input with deg a = n

I We want to compute a(ξ) =
∑n

i=0 αiξ
i ∈ R

I Horner’s rule:

a(ξ) = (· · · (((αnξ + αn−1)ξ + αn−2)ξ + αn−3)ξ + · · ·α1)ξ + α0

I Using Horner’s rule, it takes O(n) operations in R to compute a(ξ)

Batch evaluation (at m points)

I Let a =
∑

i αix i ∈ R[x] and ξ1, ξ2, . . . , ξm ∈ R be given as input with deg a = n

I We want to compute a(ξ1), a(ξ2), . . . , a(ξm) ∈ R

I Repeated application of Horner’s rule achieves this in O(mn) operations in R

I ... but could we do be�er yet again? ...

Interpolation

I Let F be a field

I Let distinct ξ0, ξ1, . . . , ξn ∈ F and η0,η1, . . . ,ηn ∈ F be given as input

I We want to compute the unique polynomial f ∈ F [x] of degree at most n that satisfies

f (ξ0) = η0, f (ξ1) = η1, . . . , f (ξn) = ηn

I A classical algorithm (with complexity bounded by a polynomial in n) for this task will
be studied in the exercises

I ... but could we do be�er yet again? ...

Integral domain

I An element a ∈ R in a ring R is a zero divisor if there exists a nonzero b ∈ R with
ab = 0

I A ring D is an integral domain if there are no nonzero zero divisors

I Examples: (of integral domains)
Z, any field (exercise: units are not zero divisors), F [x] for a field F

I Work point:
Using (1), (2), and (3), determine all zero divisors in Z5, Z6, and Z10, respectively

Greatest common divisor

I Let R be a ring and let a, b ∈ R

I We say that a divides b and write a|b if there exists a q ∈ R with aq = b

I For a, b, c ∈ R we say that c is a greatest common divisor (or gcd) of a and b if
1. c |a and c |b,
2. for all d ∈ R if d |a and d |b, then d |c

I A greatest common divisor need not exist, and need not be unique

I In an integral domain, any two greatest common divisors are associates

Euclidean domain

I An integral domain E together with a function d : E → Z≥0 ∪ {−∞} is a Euclidean
domain if for all a, b ∈ E with b , 0 there exist q, r ∈ E with a = qb + r and
d (r) < d (b)

I We say that q = a quo b is a quotient and r = a rem b a remainder in the division of
a by b

I We assume that we have available as a subroutine a division algorithm that for
given a, b ∈ E with b , 0 computes q, r ∈ E with a = qb + r and d (r) < d (b)

I Examples: (of Euclidean domains)
I Z with d (a) = |a| ∈ Z≥0

I �otient and remainder can be determined with a division algorithm for integers

I F [x] for a field F with d (a) = deg a
I �otient and remainder can be determined with a division algorithm for polynomials

Traditional Euclidean algorithm

I Let E be an Euclidean domain

I Let f , g ∈ E be given as input

I We seek to compute a greatest common divisor of f and g
I Since E is an integral domain, any two greatest common divisors of f and g are related to

each other by multiplication with a unit

I The Euclidean algorithm both (a) shows that greatest common divisors exist and
(b) gives a way of computing a greatest common divisor by iterative remainders

I Traditional Euclidean algorithm:
1. r0 ← f , r1 ← g
2. i ← 1,

while ri , 0 do ri+1 ← ri−1 rem ri , i ← i + 1
3. return ri−1 (a greatest common divisor)

I Why does this algorithm always stop? (Hint: d (ri+1) < d (ri))

Traditional extended Euclidean algorithm

I Let f , g ∈ E be given as input from an Euclidean domain E

I Traditional extended Euclidean algorithm:
1. r0 ← f , s0 ← 1, t0 ← 0,

r1 ← g, s1 ← 0, t1 ← 1
2. i ← 1,

while ri , 0 do
qi ← ri−1 quo ri

ri+1 ← ri−1 − qiri

si+1 ← si−1 − qisi

ti+1 ← ti−1 − qiti

i ← i + 1
3. ` ← i − 1

return `, ri, si, ti for i = 0, 1, . . . , ` + 1, and qi for i = 1, 2, . . . , `

Example (over Z2[x])

I Let f = x5 + x4 + x3 + x2 + x + 1 ∈ Z2[x] and g = x5 + x4 + 1 ∈ Z2[x]

I We obtain

i ri si ti qi

0 x5 + x4 + x3 + x2 + x + 1 1 0
1 x5 + x4 + 1 0 1 1
2 x3 + x2 + x 1 1 x2 + 1
3 x2 + x + 1 x2 + 1 x2 x
4 0 x3 + x + 1 x3 + 1

I In particular ` = 3 and r` = x2 + x + 1 is a greatest common divisor of
x5 + x4 + x3 + x2 + x + 1 and x5 + x4 + 1

Analysis using invariants (in the problem set)

I Suppose on input f , g ∈ E we obtain the output `, ri, si, ti for i = 0, 1, . . . , ` + 1, and qi

for i = 1, 2, . . . , `

I Introduce the matrices

R0 =

[
s0 t0

s1 t1

]
∈ E2×2 , Qi =

[
0 1
1 −qi

]
∈ E2×2 for i = 1, 2, . . . , `,

and Ri = QiQi−1 · · ·Q1R0 ∈ E2×2 for i = 0, 1, . . . , `

I The following invariants hold for all i = 0, 1, . . . , `:

1. Ri

[
f
g

]
=

[
ri

ri+1

]
.

2. Ri =

[
si ti

si+1 ti+1

]
.

3. r` is a greatest common divisor of ri and ri+1.
4. sif + tig = ri .

Recap of key content in Lecture 1

I A boot camp of basic concepts and definitions in algebra

I Polynomials in one variable (univariate polynomials)

I Basic tasks and first algorithms for univariate polynomials
I addition

I multiplication

I division (quotient and remainder)

I evaluation

I interpolation (exercise)

I greatest common divisor

I Evaluation–interpolation -duality of polynomials (exercise)

I Analysis of the extended Euclidean algorithm via invariants (exercise)

Problem Set 1 – I

1. Warmup with univariate polynomials over Z2 = {0, 1}.
(a) Multiply x + x2 ∈ Z2[x] and 1 + x + x3 ∈ Z2[x].
(b) Divide a = 1 + x2 + x3 + x4 + x6 ∈ Z2[x] by b = 1 + x3 + x4 ∈ Z2[x]. Present a quotient

q ∈ Z2[x] and a remainder r ∈ Z2[x] such that a = qb + r and deg r < deg b.

Hints: Recall that arithmetic in Z2 is super-easy. We have 0 + 0 = 1 + 1 = 0,
0 + 1 = 1 + 0 = 1, 0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1, and 1−1 = 1. If you want, you can
rely on a computer algebra system, or perhaps implement the algorithms from the
lecture slides yourself. Make sure that your solutions are correct and the coe�icients
are reduced to {0, 1}.

Problem Set 1 – II

2. The traditional extended Euclidean algorithm. Present the complete output of the
algorithm (as defined in the lecture slides) in the following two cases.
(a) Find a greatest common divisor of f = 1234567 and g = 123 in Z. Using the output of the

algorithm, find g−1 ∈ Zf .
(b) Find a greatest common divisor of f = 1 + x + x3 + x4 and g = 1 + x4 in Z2[x].

Hints: You may want to use a computer algebra system to avoid error-prone manual
calculations. Make sure to present the complete output of the algorithm. Refer to
Problem 4(d) for the second part of 2(a).

Problem Set 1 – III

3. Let ξ0, ξ1, . . . , ξd ∈ F be distinct elements in a field F . Show that the Vandermonde
matrix

Ξ =

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

∈ F (d+1)×(d+1)

is invertible.
Hints: For i = 0, 1, . . . , d , define the Lagrange polynomial `i ∈ F [x] by

`i =

d∏
j=0
j,i

x − ξj

ξi − ξj
=

d∑
k=0

λikxk .

Observe that the polynomial `i has degree d and is well defined because the values
ξ0, ξ1, . . . , ξd are distinct. What happens if you evaluate `i at x = ξj ? Arrange the
coe�icients λik into a matrix. Show that this matrix is the inverse of Ξ.

Problem Set 1 – IV

4. Analysis of the traditional extended Euclidean algorithm. Suppose we run the
algorithm on input f , g ∈ E in an Euclidean domain E , and obtain the output `, ri, si, ti

for i = 0, 1, . . . , ` + 1, and qi for i = 1, 2, . . . , `. Introduce the matrices

R0 =

[
s0 t0

s1 t1

]
∈ E2×2 , Qi =

[
0 1
1 −qi

]
∈ E2×2 for i = 1, 2, . . . , `,

and Ri = QiQi−1 · · ·Q1R0 ∈ E2×2 for i = 0, 1, . . . , `.
Show that each of the following invariants holds for all i = 0, 1, . . . , `:

(a) Ri

[
f
g

]
=

[
ri

ri+1

]
.

(b) Ri =

[
si ti

si+1 ti+1

]
.

(c) r` is a greatest common divisor of ri and ri+1.
(d) sif + tig = ri .

Problem Set 1 – V

Hints: Study the steps of the algorithm as presented in the lecture slides. For (a) and
(b), use induction on i. Do not forget to verify the base case. For (c), use (a), r`+1 = 0,

and the fact that Qi is invertible with Q−1
i =

[
qi 1
1 0

]
. For (d), study (a) and (b). It is

a good idea to solve Problem 2 first and review that the invariants hold in practice.

2. The fast Fourier transform
and fast multiplication

Computer Science Club, St Petersburg
17–18 November 2018

Pe�eri Kaski
Department of Computer Science

Aalto University

Recap of last lecture

I A boot camp of basic concepts and definitions in algebra

I Polynomials in one variable (univariate polynomials)

I Basic tasks and first algorithms for univariate polynomials
I addition

I multiplication

I division (quotient and remainder)

I evaluation

I interpolation

I greatest common divisor

I Evaluation–interpolation -duality of polynomials

I Analysis of the extended Euclidean algorithm via invariants

Goal: Near-linear-time toolbox for univariate polynomials

I Multiplication (this lecture)

I Division (quotient and remainder)

I Batch evaluation

I Interpolation

I Extended Euclidean algorithm (gcd)

I Interpolation from partly erroneous
data

Further motivation for this lecture

I The fast Fourier transform (FFT) is one of the most widely deployed and useful
algorithms in all of computing

I �ick demo (o�line):
FFT and fast polynomial multiplication (fast convolution) over C in signal processing

I In the exercises we will
(a) derive an FFT over a ring R endowed with a primitive root of unity ω of order a power of

2, and

(b) prove a version of the convolution theorem

Key content for Lecture 2

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution (Schönhage–Strassen algorithm)

Fast multiplication

(von zur Gathen and Gerhard [6],
Sections 8.2 and 8.3)

Coe�icient and evaluation representations

I Let F be a field and let ξ0, ξ1, . . . , ξd ∈ F be distinct

I Let a = α0 + α1x + . . . + αd−1xd−1 + αdxd ∈ F [x] be a polynomial of degree at most d

I We can represent a as a list (α0,α1, . . . ,αd) ∈ F d+1 of d + 1 coe�icients

I Alternatively, we can represent a as a list of d + 1 values
(a(ξ0), a(ξ1), . . . , a(ξd)) ∈ F d+1

I Indeed, we have

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

α0
α1
...
αd

=

a(ξ0)
a(ξ1)
...

a(ξd)

and the le�-hand side Vandermonde matrix is invertible over F
(recall exercise from last problem set)

Evaluation and interpolation
I To evaluate a polynomial (α0,α1, . . . ,αd) ∈ F d+1 at distinct points ξ0, ξ1, . . . , ξd ∈ F ,

we multiply from the le� with the Vandermonde matrix:

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

α0
α1
...
αd

=

a(ξ0)
a(ξ1)
...

a(ξd)

I To interpolate the coe�icients of a polynomial with values
(a(ξ0), a(ξ1), . . . , a(ξd)) ∈ F d+1 at distinct ξ0, ξ1, . . . , ξd ∈ F , we multiply from the le�
with the inverse of the Vandermonde matrix:

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

−1

a(ξ0)
a(ξ1)
...

a(ξd)

=

α0
α1
...
αd

Example (evaluation)

I Let us evaluate a = 1 + 2x + 3x2 + 4x3 + 5x4 ∈ Z13 at ξ0 = 0, ξ1 = 1, ξ2 = 2, ξ3 = 3,
ξ4 = 4 in Z13

I We have

1 0 0 0 0
1 1 1 1 1
1 2 4 8 3
1 3 9 1 3
1 4 3 12 9

1
2
3
4
5

=

1
2
12
1
7

and hence a(0) = 1, a(1) = 2, a(3) = 12, a(4) = 1, a(5) = 7

Example (interpolation)

I Let us interpolate the coe�icients of the unique polynomial a ∈ Z13 of degree at most
4 with values a(ξ0) = 1, a(ξ1) = 2, a(ξ2) = 12, a(ξ3) = 1, a(ξ4) = 7 at ξ0 = 0, ξ1 = 1,
ξ2 = 2, ξ3 = 3, ξ4 = 4 in Z13

I We have

1 0 0 0 0
1 1 1 1 1
1 2 4 8 3
1 3 9 1 3
1 4 3 12 9

−1

1
2
12
1
7

=

1 0 0 0 0
12 4 10 10 3
2 0 8 2 1
5 8 11 12 3
6 2 10 2 6

1
2
12
1
7

=

1
2
3
4
5

and hence α0 = 1, α1 = 2, α2 = 3, α3 = 4, α4 = 5

I The inverse of the Vandermonde matrix can be computed e.g. by Gaussian elimination
or by using Lagrange polynomials (recall exercise in last problem set)

Evaluation–interpolation duality

I Evaluation–interpolation constitutes and example of two dual representations
(coe�icient and value representations of a polynomial)

I Both representations uniquely identify the object (the polynomial) under
consideration

I In many cases one can make use of duality in algorithm design. O�en a problem has
a corresponding dual problem that is obtainable from the original (the primal)
problem by means of an easy transformation. The primal and dual control each other,
enabling an algorithm designer to use the interplay between the two representations

Evaluation–interpolation duality

I O�en a problem has a corresponding dual problem that is obtainable from the original
(the primal) problem by means of an easy transformation

I Polynomial multiplication (primal):
Given coe�icients of a and b as input, output coe�icients of ab

I Polynomial multiplication (dual):
Given evaluations of a and b as input, output evaluations of ab

I Transformation:
Evaluation (primal→ dual), interpolation (dual→ primal)

I The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations ...

Multiplication is easy in the dual

I Polynomial multiplication (dual):
Given evaluations of a and b as input, output evaluations of ab

I Suppose deg a ≤ n and deg b ≤ m

I Then deg ab ≤ n + m and n +m + 1 evaluations of ab su�ice to uniquely determine ab

I So suppose ξ0, ξ1, . . . , ξn+m ∈ F are distinct and we have the evaluations
a(ξ0), a(ξ1), . . . , a(ξn+m) ∈ F and b(ξ0), b(ξ1), . . . , b(ξn+m) ∈ F

I Then, ab(ξ0) = a(ξ0)b(ξ0),

ab(ξ1) = a(ξ1)b(ξ1),

...

ab(ξn+m) = a(ξn+m)b(ξn+m) ∈ F

I Thus, O(n +m) multiplications su�ice to determine ab, assuming we are in the dual

Multiplication in primal representation

I Polynomial multiplication (primal):
Given coe�icients of a and b as input, output coe�icients of ab

I For deg a ≤ d and deg b ≤ d , the classical algorithm uses O(d2) operations

I The primal and dual control each other, enabling and algorithm designer to use the
interplay between the two representations ...

I Idea:
1. Transform the inputs a and b into dual representation
2. Multiply in the dual
3. Transform the product ab back to primal representation

I Needed:
Fast transformation between primal and dual representations

Fast evaluation and interpolation?
I To evaluate a polynomial (α0,α1, . . . ,αd) ∈ F d+1 at distinct points ξ0, ξ1, . . . , ξd ∈ F ,

we multiply from the le� with the Vandermonde matrix:

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

α0
α1
...
αd

=

a(ξ0)
a(ξ1)
...

a(ξd)

I To interpolate the coe�icients of a polynomial with values
(a(ξ0), a(ξ1), . . . , a(ξd)) ∈ F d+1 at distinct ξ0, ξ1, . . . , ξd ∈ F , we multiply from the le�
with the inverse of the Vandermonde matrix:

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

−1

a(ξ0)
a(ξ1)
...

a(ξd)

=

α0
α1
...
αd

Fast evaluation and interpolation?

I It is too expensive to construct the Vandermonde matrix (or its inverse) in explicit form

I Indeed, the matrix has (d + 1)2 elements in F , so working with the matrix in explicit
form yields no be�er algorithms than classical multiplication in the primal
representation

I For multiplication, both the input and the output use only O(d) elements of F

I We have the freedom to choose any distinct ξ0, ξ1, . . . , ξd ∈ F

I Perhaps a good choice enables evaluation and interpolation in Õ(d) operations
without constructing the Vandermonde matrix explicitly ...

Fast evaluation and interpolation?

I Idea:
Choose

ξ0 = ω
0, ξ1 = ω

1, ξ2 = ω
2, . . . , ξd = ω

d

for a carefully chosen element ω ∈ F (whose existence depends on F)

I Intuition:
With such a choice, the Vandermonde matrix should have a great deal of useful
algebraic structure that maybe enables the use of, say, divide-and-conquer for
matrix–vector multiplication, without even explicitly constructing the matrix ...

Key content (revisited)

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution (Schönhage–Strassen algorithm)

Roots of unity

I Let R be a ring (recall that we tacitly assume that R is commutative with 0 , 1)

I For n ∈ Z≥1 and ω ∈ R, we say that ω is a root of unity of order n in R if ωn = 1

The discrete Fourier transform (DFT)

I Let ω be a root of unity of order n in R and let

f = φ0 + φ1x + φ2x2 + . . . + φn−1xn−1 ∈ R[x]

I The n-point discrete Fourier transform of f at ω is the vector of evaluations

DFTω (f) = f̂ = (f (ω0), f (ω1), . . . , f (ωn−1)) ∈ Rn .

I Equivalently, we may view DFTω : f 7→ f̂ as the R-linear map that takes the vector of
coe�icients f = (φ0,φ1, . . . ,φn−1) ∈ Rn to the vector f̂ = (φ̂0, φ̂1, . . . , φ̂n−1) ∈ Rn

defined for all i = 0, 1, . . . , n − 1 by

φ̂i =

n−1∑
j=0

φjω
ij

Towards a first FFT: Spli�ing into even and odd parts

I Suppose that n ∈ Z≥2 is even and let f =
∑n−1

i=0 φix i ∈ R[x]

I Introduce the two polynomials

feven =

n/2−2∑
i=0

φ2ix i ∈ R[x] , fodd =

n/2−2∑
i=0

φ2i+1x i ∈ R[x]

I We observe that

f (x) = feven (x2) + x · fodd (x2)

I Here f has degree at most n − 1,
whereas feven and fodd have degree at most n/2 − 1

Towards a first FFT: Evaluating at a root of unity of order n

I Let n ∈ Z≥2 be even and f =
∑n−1

i=0 φix i , feven =
∑n/2−2

i=0 φ2ix i , fodd =
∑n/2−2

i=0 φ2i+1x i

I We recall that

f (x) = feven (x2) + x · fodd (x2) (4)

I Let ω ∈ R be a root of unity of order n; that is, ωn = 1

I We want to compute f (ω0), f (ω1), . . . , f (ωn−1); that is, DFTω (f)

I From (4) and ωn = 1 we have that it su�ices to first compute

feven (ω
0), feven (ω

2), . . . , feven (ω
2n−2) ∼ feven (ω

0), feven (ω
2), . . . , feven (ω

n−2)

fodd (ω
0), fodd (ω

2), . . . , fodd (ω
2n−2) ∼ fodd (ω

0), fodd (ω
2), . . . , fodd (ω

n−2)︸ ︷︷ ︸
That is, DFTω2 (feven) and DFTω2 (fodd)

and then do O(n) arithmetic operations in R

A first FFT: Recursion and analysis

I We just saw that to compute the n-point DFTω (f), it su�ices to
1. split f into the even part feven and the odd part fodd
2. compute the n/2-point DFTω2 (feven),
3. compute the n/2-point DFTω2 (fodd), and
4. do O(n) further arithmetic operations in R to recover DFTω (f)

I That is, the total number of arithmetic operations is T (n) ≤ 2 · T (n/2) + O(n)

I This is T (n) = O(n log2 n) when n = 2k for k ∈ Z≥1 and we apply recursion

Primitive root of unity

I A root of unity ω ∈ R of order n is primitive if for any prime divisor t of n it holds
that ωn/t − 1 is not a zero divisor in R

I Examples:
• ωn = exp(2π i/n) is a primitive root of unity of order n in C

• 2 is a primitive root of unity of order 12 in Z13

• For
k 29 71 75 95 108 123
ω 21 287 149 55 64 493

we have that p = k · 257 + 1 is a prime and ω ∈ Zp is the least primitive root of unity of
order 257 in Zp

Properties of primitive roots of unity

Lemma 1
Let ω be a primitive root of unity of order n in R.
Then, for all integers s not divisible by n it holds that

(i) ωs − 1 is not a zero divisor in R, and

(ii)
∑n−1

i=0 ω
is = 0

Lemma 2
Let ω be a primitive root of unity of order n in R.
Then, ωa is a primitive root of unity of order |n/a| in R for all divisors a of n

Proof of Lemma 1 I

I For any ρ ∈ R and any k ∈ Z≥0, we have

(ρ − 1)
k−1∑
j=0

ρj = ρk − 1 (5)

I Select any s ∈ Z that is not divisible by n. Since ωn = 1, we may assume
s = 1, 2, . . . , n − 1

I Let 1 ≤ g ≤ s be the gcd of s and n with us + vn = g for u ∈ Z≥0 and v ∈ Z≤0

I Since s < n, we can choose a prime divisor t of n so that g divides n/t

I Take ρ = ωg and k = n/(gt) in (5) to obtain that ωg − 1 divides ωn/t − 1. That is,
(ωg − 1)γ = ωn/t − 1 for some γ ∈ R

Proof of Lemma 1 II

I Thus ωg − 1 cannot be a zero divisor since if it were, we could conclude that
0 = 0 · γ = (ωg − 1)βγ = (ωn/t − 1)β for a nonzero β ∈ R and hence ωn/t − 1 would be
a zero divisor, a contradiction

I Take ρ = ωs and k = u in (5) to obtain that ωs − 1 divides ωus − 1 = ωus+vn − 1 = ωg − 1

I Thus, ωs − 1 cannot be a zero divisor since if it were, we could conclude that ωg − 1 is a
zero divisor, a contradiction

I Take ρ = ωs and k = n in (5) to obtain (ωs − 1)
∑n−1

i=0 ω
is = ωns − 1 = 1 − 1 = 0

I Since ωs − 1 is not a zero divisor, we conclude that
∑n−1

i=0 ω
is = 0 �

Proof of Lemma 2

I Let a be a divisor of n

I For |a| = n we observe that ωn = ω−n = 1 and hence ωa = 1 is trivially a primitive root
of unity of order 1

I Suppose that |a| < n and let t be any prime divisor of |n/a| > 1

I Then, s = a|n/a|/t is not divisible by n and hence Lemma 1 implies that
ωs − 1 = (ωa) |n/a |/t − 1 is not a zero divisor

I Since t was arbitrary, ωa is a primitive root of unity of order |n/a| in R �

The inverse discrete Fourier transform (inverse DFT)

Lemma 3
Suppose that n is a unit in R and let ω ∈ R be a primitive root of order n. Then,
DFT−1

ω =
1
n · DFTω−1

Proof.

It su�ices to show that for all k = 0, 1, . . . , n − 1 we have

φk =
1
n

n−1∑
i=0

φ̂iω
−ik

Take s = j − k in Lemma 1 to conclude that

1
n

n−1∑
i=0

φ̂iω
−ik =

1
n

n−1∑
i=0

n−1∑
j=0

φjω
ijω−ik =

n−1∑
j=0

φj ·
1
n

n−1∑
i=0

ω i(j−k) = φk

�

Beyond the first (radix-2) FFT

I The rest of the lecture goes beyond the first recursive derivation of a (radix-2) FFT
where we assumed that

1. the ring R has a (primitive) root of unity ω of order n = 2k , and
2. we are content with a recursive implementation

I The rest of the lecture contains more advanced material that shows how to (a) unfold
the recursion into a sequence of linear transformations suitable e.g. for parallel
implementation; and (b) work with rings that do not have a suitable root of unity

I This more advanced material is not necessary for successfully following the rest of the
course

The positional number system (base B)

I Let B ∈ Z≥2

I Suppose that α ∈ Z with 0 ≤ α ≤ Bd − 1 for some d ∈ Z≥0

I Then, there is a unique finite sequence

(αd−1,αd−2, . . . ,α1,α0) ∈ Z
d
≥0 (6)

with 0 ≤ αi ≤ B − 1 for all i = 0, 1, . . . , d − 1 such that

α =
d−1∑
i=0

αiBi = αd−1Bd−1 + αd−2Bd−2 + . . . + α2B2 + α1B + α0 (7)

I We say that the sequence (6) is the (d-digit) representation of the integer α in the
positional number system with base B (or radix B)

I The elements αi are the digits of α

I We say that αd−1 is the most significant digit and α0 is the least significant digit

Example (base 10)

I Let us represent 123 ∈ Z in base B = 10

I We have

123 = 1 · 102 + 2 · 10 + 3 · 1

I Hence, the sequence (1, 2, 3) represents 123 in base 10

I �estion/work point:
Given a representation in base B as input, how do you compute a representation in base
C? Hint: quotient and remainder.

The positional number system (varying base)

I Let Bd−1,Bd−2, . . . ,B1,B0 ∈ Z≥2

I Suppose that α ∈ Z with 0 ≤ α ≤ Bd−1Bd−2 · · ·B1B0 − 1

I Then, there is a unique finite sequence

(αd−1,αd−2, . . . ,α1,α0) ∈ Z
d
≥0 (8)

with 0 ≤ αi ≤ Bi − 1 for all i = 0, 1, . . . , d − 1 such that

α =
d−1∑
i=0

αiBi−1Bi−2 · · ·B0

= αd−1Bd−2Bd−3 · · ·B0 + . . . + α2B1B0 + α1B0 + α0

(9)

I We say that the sequence (8) is the representation of the integer α in the positional
number system with (varying) base (Bd−2,Bd−1, . . . ,B1,B0)

Example (varying base)

I Let us represent 123 ∈ Z in base (9, 8, 7). We have

123 = 2 · 8 · 7 + 1 · 7 + 4 · 1

I Thus, the representation of 123 in base (9, 8, 7) is (2, 1, 4)

I �estion/work point:
Given a representation in base (Bd−1,Bd−2, . . . ,B1,B0) as input, how do you compute a
representation in base (Ce−1,Ce−2, . . . ,C1,C0)? Hint: quotient and remainder.

Factoring a composite-order DFT (1/3)
I Let ω be a primitive root of unity of composite order n = st in R for integers s, t ≥ 2

I We can view an index k ∈ {0, 1, . . . , st − 1} as a varying-base integer k = kst + kt with
ks ∈ {0, 1, . . . , s − 1} and kt ∈ {0, 1, . . . , t − 1}

I That is, ks and kt are the digits of k in base (s, t) so that ks is the most significant digit
and kt is the least significant digit

I Recall that for all i = 0, 1, . . . , st − 1 we have

φ̂i =

st−1∑
j=0

φjω
ij

I Let us expand the output index i in base (s, t) and the input index j in base (t, s)

I We have

φ̂ist+it =

s−1∑
js=0

t−1∑
jt=0

φjt s+jsω
(ist+it) (jt s+js)

Factoring a composite-order DFT (2/3)
I Expand and use the fact that ωst = 1 to obtain

φ̂ist+it =

s−1∑
js=0

t−1∑
jt=0

φjt s+jsω
(ist+it) (jt s+js)

=

s−1∑
js=0

t−1∑
jt=0

φjt s+jsω
is jt st+is jst+it jt s+it js

=

s−1∑
js=0

t−1∑
jt=0

φjt s+jsω
is jstω it jt sω it js

=

s−1∑
js=0

(
ωt

) is js
ω it js

t−1∑
jt=0

φjt s+js

(
ωs

) it jt

︸ ︷︷ ︸
(i)︸ ︷︷ ︸

(ii)︸ ︷︷ ︸
(iii)

.

Factoring a composite-order DFT (3/3)

I Let us study (i), (ii), and (iii) as the indices is, it , js, jt range over their domains:

φ̂ist+it =

s−1∑
js=0

(
ωt

) is js
ω it js

t−1∑
jt=0

φjt s+js

(
ωs

) it jt

︸ ︷︷ ︸
(i)︸ ︷︷ ︸

(ii)︸ ︷︷ ︸
(iii)

I Part (i) takes the t × s input f and outputs the t × s array obtained by taking the t-point
discrete Fourier transform at ωs for each of the s columns of f

I Part (ii) multiplies the resulting t × s array entrywise (Hadamard product) with the t × s
Vandermonde matrix with entries ω it js

I Part (iii) takes as input the t × s array output by (ii) and outputs the t × s array obtained by
taking the s-point discrete Fourier transform at ωt for each of the t rows of the array

I Finally, transpose the t × s array to obtain the s × t output f̂

Fast Fourier transform (FFT)

I Idea:
Apply the previous factorization recursively for smooth n

I For example, suppose that n = 2k for k ∈ Z≥1

I Take s = 2k−1 and t = 2

I Compute Parts (i) and (ii) explicitly, and apply the factorization recursively in Part (iii)

I Thus, the DFT at a primitive root of unity ω of order 2k in R can be computed in
T (2k) ≤ 2T (2k−1) + O(2k) operations in R (exercise)

I In particular, T (n) = O(n log n)

Factors in an FFT (1/4)

I Let us now look at a possible implementation of Parts (i), (ii), and (iii) in more detail

I Let ω be a primitive root of order n ∈ Z≥1 in R and let n = pqr for p, q, r ∈ Z≥1

I We will study two types of transformations that take as input an array a ∈ Rn and
produce as output an array b ∈ Rn

I We assume that the entries a[i] ∈ R of an array are indexed with i = 0, 1, . . . , n − 1

I Let w ∈ Rn be an array with w[i] = ω i for all i = 0, 1, . . . , n − 1
(in an implementation this array can be precomputed with O(n) operations in R)

Factors in an FFT (2/4)

I The first transformation Φ(p,q,r) : Rn → Rn sets

b[iqr + jr + k] =

q−1∑
`=0

w[(j`pr) rem n]a[iqr + `r + k] (10)

for all i ∈ {0, 1, . . . , p − 1}, j ∈ {0, 1, . . . , q − 1}, k ∈ {0, 1, . . . , r − 1}

I Observe that the transformation relies on integers in base (p, q, r) for indexing the
input a and the output b

I Also observe that the transformation implements pr disjoint copies of a q-point DFT,
using in total O(pq2r) = O(nq) operations in R

I This transformation can be used to implement Parts (i) and (iii)

Factors in an FFT (3/4)

I The second transformation Θ(p,q,r) : Rn → Rn sets

b[iqr + jr + k] = w[jkp]a[iqr + jr + k] (11)

for all i ∈ {0, 1, . . . , p − 1}, j ∈ {0, 1, . . . , q − 1}, k ∈ {0, 1, . . . , r − 1}

I Again we observe that we work in base (p, q, r)

I This transformation runs in O(pqr) = O(n) operations in R

I This transformation can be used to implement Part (ii)

Factors in an FFT (4/4)

I A naïve implementation of Parts (iii), (ii), and (i) would now implement an n-point DFT
for n = st and input f ∈ Rn as a sequence of three transformations, read from right to
le�, Φ(1, t,s)Θ(1,s, t)Φ(1,s, t) (f)

I This must be followed by transposition of the resulting array from t × s to s × t to
obtain the output f̂ (Why?)

I However, this does not yet reduce the number of operations to O(n log n) (Why?)

I In an implementation with n = 2k , one can fix q = 2 and proceed with a sequence of
2k − 1 transformations, with p = 2j and r = 2k−1−j for j = 0, 1, . . . k − 1 (completing the
details are an exercise), followed by final permutation of the resulting array

Remarks

I The previous example gave one possibility to implement an FFT

I In general the term “fast Fourier transform” refers to a family of algorithms that rely
on factoring an n × n Vandermonde matrix Ω = (ω ij : i, j = 0, 1, . . . , n − 1) for a
composite n into a sequence of simpler (sparse) matrices such that matrix–vector
multiplication with each matrix in the sequence is cheap to execute

I For example, you may want to view the transformations (10) and (11) as obtaining the
vector b by multiplying a matrix with the vector a

I Van Loan [12] gives an extensive treatment of computational frameworks for the FFT

Key content (revisited)

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution (Schönhage–Strassen algorithm)

Ideal, principal ideal

I Let R be a ring

I A nonempty subset I of R is an ideal if
1. for all a, b ∈ I we have a + b ∈ I, and
2. for all a ∈ I and r ∈ R we have ar ∈ I

I Examples:
• For any a ∈ R we have that 〈a〉 = aR = {ar : r ∈ R} is an ideal;

we say that 〈a〉 is the principal ideal generated by a ∈ R

• For any n ∈ Z, we observe that nZ = {. . . ,−2n,−n, 0, n, 2n, . . .} is a (principal) ideal of Z

Congruence modulo an ideal, residue class

I Let I be an ideal of R

I We say that r, s ∈ R are congruent modulo I and write r ≡ s (mod I) if r − s ∈ I

I For r ∈ R we say that the set r + I = {r + a : a ∈ I} is a residue class modulo I

I For all r, s ∈ R we have

r + I = s + I ⇔ r − s ∈ I ⇔ r ≡ s (mod I)

Residue class ring (factor ring)

I Let I be an ideal of R

I The set R/I = {r + I : r ∈ R} of all residue classes modulo I is a ring (the factor ring or
residue class ring of R modulo I) if we define the ring operations for all r, s ∈ R by

(r + I) + (s + I) = (r + s) + I

and

(r + I) (s + I) = (rs) + I

I Observe in particular that the aforementioned operations are well-defined in the sense
that they do not depend on the choices of representatives r, s for residue classes
modulo I (exercise)

I Example:
For R = Z and I = nZ with n ∈ Z≥1, we have R/I = Z/nZ � Zn

Example: Cyclic convolution

I Let R be a ring and let n ∈ Z≥1

I Consider the factor ring R[x]/〈xn − 1〉

I We may view the elements of R[x]/〈xn − 1〉 as polynomials of degree at most n − 1 in
R[x]

I Addition and multiplication in R[x]/〈xn − 1〉 are as in R[x], with the exception that
a�er multiplication we simplify the result with the substitution xn = 1

Example: Cyclic convolution

I Suppose that n = 8 and that R = Z17

I Let us multiply the following two polynomials in R[x]/〈xn − 1〉

f = 1 + 8x + 13x2 + 16x3 + 15x4 + 6x5 + 7x6 + 10x7

g = 4 + 3x + 16x2 + 7x3 + 6x4 + 11x5 + 9x6 + 15x7

I In R[x], the product is

fg = 4+ x + 7x2 + 4x4 + 16x5 + 12x6 + 10x7 + 7x8 + x9 + 9x10 + 8x11 + 8x12 + 8x13 + 14x14

I In R[x]/〈xn − 1〉, we can first compute fg in R[x] as above, reduce the result with the
substitution xn = 1, and then simplify to obtain the result in R[x]/〈xn − 1〉 (or, what is
the same, first multiply in R[x] and take the remainder in the division with xn − 1):

fg = 4 + x + 7x2 + 4x4 + 16x5 + 12x6 + 10x7 + 7 + x + 9x2 + 8x3 + 8x4 + 8x5 + 14x6

= 11 + 2x + 16x2 + 8x3 + 12x4 + 7x5 + 9x6 + 10x7

Cyclic convolution via the DFT

I Let R be a ring, let n ∈ Z≥1, and let ω ∈ R be a primitive root of unity of order n

I For two vectors a = (α0,α1, . . . ,αn−1) ∈ Rn and b = (β0, β1, . . . , βn−1) ∈ Rn, let us write
a · b for the pointwise product a · b = (α0β0,α1β1, . . . ,αn−1βn−1) ∈ Rn

Theorem 4 (Convolution Theorem)
For all f , g ∈ R[x]/〈xn − 1〉 we have DFTω (fg) = DFTω (f) · DFTω (g)

Proof.

Exercise. �

I Furthermore, if n is a unit in R, we have fg = 1
n DFTω−1 (DFTω (f) · DFTω (g))

I This enables fast algorithms for computing fg assuming (i) R admits a suitable
primitive root of unity, (ii) n is a unit in R, and (iii) n is divisible enough to enable an
FFT by divide and conquer

Example: Cyclic convolution via the DFT (1/2)

I Suppose that n = 8 and that R = Z17

I We observe that ω = 2 is a primitive root of unity of order n = 8 in R = Z17; indeed,

ω0 = 1, ω1 = 2, ω2 = 4, ω3 = 8, ω4 = 16, ω5 = 15, ω6 = 13, ω7 = 9, ω8 = 1

I We also observe that 2−1 = 9 ∈ R = Z17 and hence 8−1 = 2−3 = 15 ∈ R = Z17

I Using the DFT, let us multiply the following two polynomials in R[x]/〈xn − 1〉

f = 1 + 8x + 13x2 + 16x3 + 15x4 + 6x5 + 7x6 + 10x7

g = 4 + 3x + 16x2 + 7x3 + 6x4 + 11x5 + 9x6 + 15x7

I First we compute the n-point DFTs of f and g at ω to obtain

DFTω (f) = (8, 11, 16, 7, 13, 9, 10, 2)

DFTω (g) = (3, 14, 4, 9, 16, 4, 0, 16)

Example: Cyclic convolution via the DFT (2/2)

I Next we take the pointwise product of the DFTs

DFTω (f) = (8, 11, 16, 7, 13, 9, 10, 2) ∈ Rn

DFTω (g) = (3, 14, 4, 9, 16, 4, 0, 16) ∈ Rn

to obtain

DFTω (f) · DFTω (g) = (7, 1, 13, 12, 4, 2, 0, 15) ∈ Rn

I Finally take the inverse n-point DFT to obtain the result

1
n

DFTω−1 (DFTω (f) · DFTω (g)) = (11, 2, 16, 8, 12, 7, 9, 10) ∈ Rn

or what is the same as a polynomial

fg = 11 + 2x + 16x2 + 8x3 + 12x4 + 7x5 + 9x6 + 10x7

Remarks (1/2)

I Cyclic convolution via the DFT (when implemented with FFTs) can be used to multiply
polynomials in R[x] fast

I Indeed, simply choose a large enough n so that the degree of the product of the two
polynomials is less than n

I In this situation we can multiply two polynomials using O(n log n) operations in R;
contrast this with the classical O(n2) operations

I Caveat:
This approach needs (i) that R is endowed with a primitive root of unity ω of order n
and (ii) that n is a unit in R

I So what to do when R does not meet (i) and (ii) ?

Remarks (2/2)

I Next we will look at a multiplication algorithm, Schönhage–Strassen multiplication [10],
that needs very light assumptions about the coe�icient ring

I Our present exposition roughly follows the exposition of a polynomial version of the
Schönhage–Strassen algorithm in von zur Gathen and Gerhard [6, Section 8.3]

I For convenience in what follows, let us write S instead of R for the coe�icient ring, and
y instead of x for the polynomial indeterminate

I Rather than relying on cyclic convolution, the algorithm will rely on the following
notion of negative-wrapping cyclic convolution ...

Example: Negative-wrapping cyclic convolution

I Let S be a ring and let n ∈ Z≥1

I Consider the factor ring S[y]/〈yn + 1〉

I We may view the elements of S[y]/〈yn + 1〉 as polynomials of degree at most n − 1 in
S[y]

I Addition and multiplication in S[y]/〈yn + 1〉 are as in S[y], with the exception that
a�er multiplication we simplify the result with the substitution yn = −1

Example: Negative-wrapping cyclic convolution

I Suppose that n = 8 and that S = Z5

I Let us multiply the following two polynomials in S[y]/〈yn + 1〉

f = 1 + 2y + 2y2 + 4y3 + 3y4 + 4y5 + 2y6 + 3y7

g = 3 + 2y + 4y2 + y4 + 4y5 + y6 + 2y7

I In S[y], the product is

fg = 3 + 3y + 4y2 + 4y3 + y4 + 2y6 + 4y8 + y9 + 4y10 + y11 + 2y12 + 2y13 + y14

I In S[y]/〈yn + 1〉, we can first compute fg in S[y] as above, reduce the result with the
substitution yn = −1, and then simplify to obtain the result in S[y]/〈yn + 1〉 (or, what
is the same, first multiply in S[y] and take the remainder in the division with yn + 1):

fg = 3 + 3y + 4y2 + 4y3 + y4 + 2y6 − 4 − y − 4y2 − y3 − 2y4 − 2y5 − y6

= 4 + 2y + 3y3 + 4y4 + 3y5 + y6

Schönhage–Strassen multiplication (1/7)

I Let S be a ring

I Suppose that 2 is a unit in S (this is the only assumption we make about S)

I Let n = 2k for some k ∈ Z≥3

I Let f , g ∈ S[y]/〈yn + 1〉 be given as input

I We want to compute the product fg ∈ S[y]/〈yn + 1〉

I With foresight, let m = 2 bk/2c and t = 2 dk/2e ; in particular, we have n = mt and
m ≤ t ≤ 2m

I The key idea is to reduce one multiplication in S[y]/〈ymt + 1〉 into t multiplications in
S[y]/〈y2m + 1〉 and then apply recursion

Running example (1/8)

I It will be convenient to illustrate the algorithm design with a running example

I Let us work with S = Z5; in particular we observe that 2 is a unit with inverse
2−1 = 3 ∈ Z5

I Suppose that n = 8 and that our given input in S[y]/〈yn + 1〉 is

f = 1 + 2y + 2y2 + 4y3 + 3y4 + 4y5 + 2y6 + 3y7

g = 3 + 2y + 4y2 + y4 + 4y5 + y6 + 2y7

I We need to produce the output

fg = 4 + 2y + 3y3 + 4y4 + 3y5 + y6

I Since n = 8, we have m = 2 and t = 4

Schönhage–Strassen multiplication (2/7)

I Let us introduce a new indeterminate x and transform f and g so that every monomial
yk is replaced with xqyr where q and r are the unique nonnegative integers with
k = qm + r and 0 ≤ r < m

I Let us write F and G for the resulting two-variable polynomials in S[x, y]

I Let Q,H ∈ S[x, y] be the unique polynomials such that

FG = (x t + 1)Q + H (12)

and H has x-degree at most t − 1

I We observe that Q,H above exist by polynomial division (e.g. recall Lecture 1) since
the leading coe�icient of x t + 1 is a unit in S[y] with (S[y])[x] � S[x, y]

I (It should be noted that the actual algorithm never constructs Q in explicit form, here
we merely use polynomial division to conclude that Q exists.)

Running example (2/8)

I Continuing the running example, we have S = Z5, n = 8, m = 2, t = 4 and the inputs

f = 1 + 2y + 2y2 + 4y3 + 3y4 + 4y5 + 2y6 + 3y7

g = 3 + 2y + 4y2 + y4 + 4y5 + y6 + 2y7

I Substituting ym = x to f and g, the polynomials F and G in S[x, y] are

F = 1 + 2y + (2 + 4y)x + (3 + 4y)x2 + (2 + 3y)x3

G = 3 + 2y + 4x + (1 + 4y)x2 + (1 + 2y)x3

I For illustration, let us also display the polynomials FG, Q, and H, but also observe that
FG and Q are not computed by the algorithm, and the polynomial H will be obtained
only later

FG = 3 + 3y + 4y2 + (4y + 3y2)x + (3 + y2)x2 + (1 + y2)x3 + (3 + y + 4y2)x4 + yx5 + (2 + 2y + y2)x6

Q = 3 + y + 4y2 + yx + (2 + 2y + y2)x2

H = 2y + (3y + 3y2)x + (1 + 3y)x2 + (1 + y2)x3

Schönhage–Strassen multiplication (3/7)

I Substitute x = ym to both sides of (12) to conclude that

F (ym, y)G(ym, y) = (ymt + 1)Q (ym, y) + H (ym, y)

implying

F (ym, y)G(ym, y) ≡ H (ym, y) (mod ymt + 1)

I Since f = F (ym, y) and g = G(ym, y), we conclude that it su�ices to compute H (ym, y)
to determine the product fg in S[y]/〈ymt+1〉

I Indeed, H (ym, y) is a polynomial in y with degree less than 2mt , which is easily
reduced with the substitution ymt = −1 to yield the result fg

I We observe that (12) implies FG ≡ H (mod x t + 1), so our goal in what follows will be
to multiply given F and G modulo x t + 1

Running example (3/8)

I Continuing the running example, we have S = Z5, n = 8, m = 2, t = 4 and

F = 1 + 2y + (2 + 4y)x + (3 + 4y)x2 + (2 + 3y)x3

G = 3 + 2y + 4x + (1 + 4y)x2 + (1 + 2y)x3

I Let us also recall that

H = 2y + (3y + 3y2)x + (1 + 3y)x2 + (1 + y2)x3

I Thus, substituting ym = x into H, we obtain

H (ym, y) = 2y + 3y3 + 4y4 + 3y5 + y6 + y8

I Substituting ymt = −1 into H (ym, y), we obtain the desired output

fg = 4 + 2y + 3y3 + 4y4 + 3y5 + y6

Schönhage–Strassen multiplication (4/7)

I By construction, F and G both have y-degree less than m, so FG has y-degree less
than 2m

I We may thus work with (S[y]/〈y2m + 1〉)[x] in place of S[x, y] when computing FG
from given F and G

I Accordingly, let R = S[y]/〈y2m + 1〉

I Restating our goal from the previous slide, given F ,G ∈ R[x] as input, we seek to
compute a H ∈ R[x] of x-degree at most t − 1 such that there is a Q ∈ R[x] with
FG = (x t + 1)Q + H

Schönhage–Strassen multiplication (5/7)

I Next we want to reduce our goal from multiplying modulo x t + 1 to multiplying
modulo x t − 1, since the la�er can be implemented with cyclic convolution

I Toward this end, it will be useful to have a primitive root of unity of order 2t in R;
here is where our foresight in the choice of the parameters m and t will pay o�

I First, observe that y is a primitive root of unity of order 4m in R = S[y]/〈y2m + 1〉:
indeed, since y2m ≡ −1 (mod y2m + 1) holds and 2 is a unit in S by assumption, we
observe that y2m − 1 ≡ −2 (mod y2m + 1) is a unit in R and hence cannot be a zero
divisor in R

I Since m and t are positive integer powers of 2 with t ≤ 2m, we have that

η = y2m/t

is a primitive root of order 2t in R by Lemma 2

Running example (4/8)

I Continuing the running example, we have S = Z5, n = 8, m = 2, t = 4

I Accordingly, in R = S[y]/〈y2m + 1〉 we have that η = y2m/t = y is a primitive root of
order 2t

I Indeed, in R we have

η0 = 1, η1 = y, η2 = y2, η3 = y3, η4 = −1, η5 = −y, η6 = −y2, η7 = −y3, η8 = 1

Schönhage–Strassen multiplication (6/7)

I Given F ,G ∈ R[x] as input, we seek to compute a H ∈ R[x] of x-degree at most t − 1
such that there is a Q ∈ R[x] with

FG = (x t + 1)Q + H (13)

I Observing that ηt = −1 in R and substituting ηx in place of x in (13), we have, in R[x],

F (ηx)G(ηx) = ((ηx)t + 1)Q (ηx) + H (ηx)

= (−x t + 1)Q (ηx) + H (ηx)

= (x t − 1)Q̃ (ηx) + H (ηx)

I That is, we have F (ηx)G(ηx) = H (ηx) in R[x]/〈x t − 1〉

I In particular, we can use cyclic convolution and the FFT at the primitive root of unity
ω = η2 of order t in R to multiply F (ηx) and G(ηx) in R[x]/〈x t − 1〉 to obtain H (ηx)

I Substituting η−1x in place of x in H (ηx) yields our desired result H in R[x]

Running example (5/8)

I Continuing the running example, we have S = Z5, n = 8, m = 2, t = 4 and

F = 1 + 2y + (2 + 4y)x + (3 + 4y)x2 + (2 + 3y)x3

G = 3 + 2y + 4x + (1 + 4y)x2 + (1 + 2y)x3

H = 2y + (3y + 3y2)x + (1 + 3y)x2 + (1 + y2)x3

I Recalling that η = y in R = S[y]/〈y2m + 1〉 for our chosen parameters, in R[x] we have

F (ηx) = 1 + 2y + (2y + 4y2)x + (3y2 + 4y3)x2 + (2 + 2y3)x3

G(ηx) = 3 + 2y + 4yx + (y2 + 4y3)x2 + (3 + y3)x3

H (ηx) = 2y + (3y2 + 3y3)x + (y2 + 3y3)x2 + (4y + y3)x3

I In particular, observe how substituting ηx in place of x in F ,G,H cyclically shi�s the
coe�icients (polynomials in y) with negative wrapping because y2m = −1 in R

Schönhage–Strassen multiplication (7/7)

I Let us now summarize the algorithm in one slide

1. To multiply f , g ∈ S[y]/〈ymt + 1〉, construct F ,G ∈ R[x] with R = S[y]/〈y2m + 1〉 from f
and g by introducing a new indeterminate x and substituting ym = x

2. Let η = y2m/t ∈ R and substitute ηx in place of x to obtain F (ηx),G(ηx) ∈ R[x]

3. Compute the product F (ηx)G(ηx) = H (ηx) ∈ R[x]/〈x t − 1〉 via cyclic convolution

H (ηx) =
1
t

DFTω−1

(
DFTω (F (ηx)) · DFTω (G(ηx))

)
using t-point fast Fourier transforms at the primitive root ω = η2 of order t in R

[[This leads to t recursive multiplications in R = S[y]/〈y2m + 1〉 when taking the
pointwise product · above.]]

4. Substitute η−1x in place of x in H (ηx) to obtain H

5. Substitute x = ym and ymt = −1 in H to obtain the output fg ∈ S[y]/〈ymt + 1〉

Running example (6/8)

I Let us illustrate the execution of the algorithm in our running example

I We have S = Z5, n = 8, m = 2, t = 4 and the input

f = 1 + 2y + 2y2 + 4y3 + 3y4 + 4y5 + 2y6 + 3y7

g = 3 + 2y + 4y2 + y4 + 4y5 + y6 + 2y7

1. Substituting ym = x , we construct the polynomials

F = 1 + 2y + (2 + 4y)x + (3 + 4y)x2 + (2 + 3y)x3

G = 3 + 2y + 4x + (1 + 4y)x2 + (1 + 2y)x3

2. Substituting ηx in place of x , we obtain

F (ηx) = 1 + 2y + (2y + 4y2)x + (3y2 + 4y3)x2 + (2 + 2y3)x3

G(ηx) = 3 + 2y + 4yx + (y2 + 4y3)x2 + (3 + y3)x3

Running example (7/8)

I We have S = Z5, n = 8, m = 2, t = 4

3. Taking the t-point fast Fourier transforms at ω = η2, we obtain

DFTω (F (ηx)) = (3 + 4y + 2y2 + y3, 2 + 4y + 3y3, 4 + 4y2 + 2y3, 4y2 + 4y3)

DFTω (G(ηx)) = (1 + y + y2, 3 + 3y + y2, 3y + y2 + 3y3, 3 + y + 2y2 + 2y3)

This leads to t recursive multiplications in R = S/〈y2m + 1〉 as follows

(3 + 4y + 2y2 + y3) (1 + y + y2) = y + 4y2 + 2y3

(2 + 4y + 3y3) (3 + 3y + y2) = 2 + 4y2 + 3y3

(4 + 4y2 + 2y3) (3y + y2 + 3y3) = 3y + 3y2 + 4y3

(4y2 + 4y3) (3 + y + 2y2 + 2y3) = 3 + 4y + 4y2 + y3

That is, we obtain the pointwise product

DFTω (F (ηx))·DFTω (G(ηx)) = (y+4y2+2y3, 2+4y2+3y3, 3y+3y2+4y3, 3+4y+4y2+y3)

Running example (8/8)

I We have S = Z5, n = 8, m = 2, t = 4

3. (continued)
Taking the t-point inverse FFT, we obtain

1
t

DFTω−1 (DFTω (F (ηx)) · DFTω (G(ηx))) = (2y, 3y2 + 3y3, y2 + 3y3, 4y + y3)

or what is the same as a polynomial in two variables

H (ηx) = 2y + (3y2 + 3y3)x + (y2 + 3y3)x2 + (4y + y3)x3

4. Substituting η−1x in place of x in H (ηx), we obtain

H = 2y + (3y + 3y2)x + (1 + 3y)x2 + (1 + y2)x3

5. Finally, we substitute x = ym and ymt − 1 in H to obtain the output

fg = 4 + 2y + 3y3 + 4y4 + 3y5 + y6

Implementation remarks (1/3)

I In an implementation, we can represent a polynomial f ∈ S[y]/〈ymt + 1〉 as an array
consisting of mt elements of S

I Accordingly, we can represent a polynomial F ∈ (S[y]/〈y2m + 1〉)[x]/〈x t − 1〉 as an
array of length 2mt that has been (tacitly) partitioned into t segments, with each
segment consisting of 2m elements of S

I That is, each segment represents a coe�icient in R = S[y]/〈y2m + 1〉 and the t
segments together represent a polynomial in R[x]/〈x t − 1〉

Implementation remarks (2/3)

I Multiplication with powers of y in R = S[y]/〈y2m + 1〉 is easy: we just cyclically shi�
the list of coe�icients of a polynomial in y by as many places as is indicated by the
power of y , taking care to adjust the sign of the coe�icient in case of wrap-arounds

I Accordingly, multiplication and substitution with powers of η are similarly
negative-wrapping cyclic shi�s

I In particular, fast Fourier transforms at ω = η2 over R = S[y]/〈y2m + 1〉 similarly
amount to additions and negative-wrapping cyclic shi�s

Implementation remarks (3/3)

I To build F from f , we (i) view f as a collection of t segments of length m each, and (ii)
pad each segment with m zeros of S so that each segment has length 2m

I Multiplication and substitution with a power of η rotates each segment cyclically
(with negative wrapping since y2m = −1)

I Recursive multiplications in R operate on pairs of segments

I To build fg from H, we compress back from length 2mt to length mt so that each of the
mt elements of fg becomes a (signed) sum of 2 elements of H as determined by the
substitutions x = ym and y tm = −1

Analysis (1/3)

I For n = 2k with k ∈ Z≥0, we claim that Schönhage-Strassen multiplication runs in
O(n log n log log n) operations in S for two inputs f , g ∈ S[y]/〈yn + 1〉 given in
coe�icient representation

I Recalling that t = 2 dk/2e and m = 2 bk/2c with n = mt ≥ 8, it su�ices to analyse the
recurrence

T (n) ≤ tT (2m) + Cn log2 n (14)

with T (1), T (2), T (4) ≤ D where C and D are constants independent of n

I Indeed, for an input of size n ≥ 8, the algorithm makes t recursive calls on inputs of
size 2m < n and does at most Cn log2 n work (operations in S) to prepare the recursive
calls and to prepare the result based on the return values of the calls

Analysis (2/3)

I Let us reparameterize (14) in terms of k to obtain, for all k ≥ 3,

T (k) ≤ 2 dk/2eT (bk/2c + 1) + C · 2kk (15)

I For all nonnegative integers k we have

bk/2c + dk/2e = k, b(k + 1)/2c = dk/2e, and d(k + 1)/2e = bk/2c + 1 (16)

I From (16) we have that (15) is equivalent to, for all k ≥ 2,

T (k + 1) ≤ 2 bk/2c+1T (dk/2e + 1) + C · 2k+1 (k + 1) (17)

I For convenience, let us substitute T (k + 1) = 2k (k − 1)L(k) to (17) and divide by
2k (k − 1) on both sides to obtain the equivalent form, for all k ≥ 2,

L(k) ≤
2(dk/2e − 1)

k − 1
L(dk/2e) +

2C (k + 1)
k − 1

(18)

Analysis (3/3)

I From (18) we obtain that for all k ≥ 2 we have

L(k) ≤ L(dk/2e) + 6C (19)
I Now let us observe that at most log2 3k iterations of the map k 7→ dk/2e su�ice to

reach the value 1 starting from any positive integer k

I Indeed, the map k 7→ dk/2e is dominated by the map k 7→ bk/2c + 1, which can be
viewed as right-shi�ing k (viewed as an integer in base 2 representation) by one bit
position and then incrementing the result

I When iterating k 7→ bk/2c + 1, the increments in total contribute at most the least
power of 2 at least k (which is at most 2k), so at most log2 3k right-shi�s and
increments su�ice to reach the value 1

I In particular, iterating (19), we obtain, for all k ≥ 2,

L(k) ≤ L(dk/2e) + 6C ≤ L(ddk/2e/2e) + 12C ≤ · · · ≤ L(1) + 6C log2 3k = O(log k)

and for k ≥ 3 thus T (k) = 2k−1 (k − 2)L(k − 1) = O(2kk log k)

Further remarks

I Using Schönhage–Strassen multiplication, we can multiply two polynomials of degree
at most n in O(n log n log log n) operations in the coe�icient ring S, provided that 2 is a
unit in S

I With some extra work, the assumption that 2 is a unit in S can be li�ed to obtain a
multiplication algorithm that works over any coe�icient ring S in O(n log n log log n)
operations; cf. von zur Gathen and Gerhard [6, Section 8.3, Exercises 8.29 and 8.30]
and Schönhage [9]

I Cf. also the “three-primes” FFT algorithm for integer multiplication on 64-bit
hardware [6, Section 8.3]

Recap of key content for Lecture 2

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution (Schönhage–Strassen algorithm)

Problem Set 2 – I

1. Multiplication with the discrete Fourier transform. Let us multiply
f = 1+ x + x2 ∈ Z13[x] and g = 2+ 12x3 ∈ Z13[x] using the discrete Fourier transform.
(a) Compute DFTω (f) and DFTω (g) in Z6

13 utilizing the fact that ω = 4 is a primitive root of
unity of order 6 in Z13.

(b) Compute the pointwise product DFTω (f) · DFTω (g) ∈ Z6
13.

(c) Compute the inverse 1
6 DFTω−1 (DFTω (f) · DFTω (g)) ∈ Z6

13.

Hints: To ease your computations, we have 4−1 = 10 ∈ Z13 and 6−1 = 11 ∈ Z13. Check
that your result for (c) agrees with the sequence of coe�icients of fg ∈ Z13[x].

Problem Set 2 – II

2. The convolution identity. Let ω ∈ R be a primitive root of unity of order n in a ring R.
Show that for all f , g ∈ R[x]/〈xn − 1〉 we have DFTω (fg) = DFTω (f) · DFTω (g).

Hints: Recall that we may view f and g as elements of R[x] of degree at most n − 1, in
which case we obtain fg ∈ R[x]/〈xn − 1〉 by multiplying f and g in R[x] and then
substituting xn = 1 until the result has degree at most n − 1. Recalling that ωn = 1,
show that the vectors on the le�-hand side and the right-hand side of the identity
agree in each position.

Problem Set 2 – III

3. The fast Fourier transform. Let ω ∈ R be a primitive root of unity of order n = 2k in a
ring R with k ∈ Z≥0. Present detailed pseudocode for an algorithm that given

f = (φ0,φ1, . . . ,φn−1) ∈ Rn

as input computes the discrete Fourier transform

DFTω (f) = (φ̂0, φ̂1, . . . , φ̂n−1) ∈ Rn

in O(n log2 n) arithmetic operations in R. Carefully analyse the number of arithmetic
operations in R that your algorithm uses.

Hints: You may want to consider a recursive design that relies on the fact that n = 2k

for some k ∈ Z≥0. Consult the factorization of a composite-order DFT into parts (i),
(ii), and (iii) in the lecture slides. Remember to set up base cases for the recursion. You
may set up the recursion, for example, by factoring the order as n = st ≥ 4 with s and
t equal to powers of 2. Also, you may want to precompute powers of ω into a look-up
table so that they are immediately available. If you want to test your design, you can

Problem Set 2 – IV

make use of the fact that ω = 19 is a primitive root of unity of order 32 in Z97.
Compare the output of your algorithm with a reference output obtained by
multiplying the input with an appropriate Vandermonde matrix.

Problem Set 2 – V
4. Fast integer multiplication by reduction to polynomial multiplication. Let α , β ∈ Z≥1

with blog2 αc + 1 ≤ m and blog2 βc + 1 ≤ m be given as input. Furthermore, let us
assume that α and β are represented in binary as sequences of 64-bit words. That is,
we have α =

∑ bm/64c
i=0 αi · 264i and β =

∑ bm/64c
i=0 βi · 264i with αi, βi ∈ Z and

0 ≤ αi, βi ≤ 264 − 1. Design an algorithm that computes the product γ = αβ
represented as a sequence of 64-bit words using Õ(m) operations in Z2128 .

Hints: You may want to apply the Schönhage–Strassen algorithm from the lecture
slides. View α and β as polynomials a =

∑ bm/64c
i=0 αiy i and b =

∑ bm/64c
i=0 βiy i in a

polynomial ring S[y] for a carefully chosen coe�icient ring S. Maybe you want to try
S = Zu for some u ∈ Z≥2. Suppose you have access to the polynomial product c = ab.
How do you recover from c the sequence of words that represents γ ? Be careful with
carries in addition. How does the size of S depend on m? Observe also that 2 must be
a unit in S if you want to apply Schönhage–Strassen, so this somewhat limits your
choice for u. Carefully justify that the number of operations in Z2128 used by your
algorithm is O(m(log m)d) for some constant d independent of m. You may use

Problem Set 2 – VI

classical arithmetic algorithms for arithmetic in S, but note that each arithmetic
operation in S may consume multiple operations in Z2128 and these need to be
accounted for in your analysis.

3. �otient and remainder;
evaluation and interpolation

Computer Science Club, St Petersburg
17–18 November 2018

Pe�eri Kaski
Department of Computer Science

Aalto University

Recap of last lecture

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution (Schönhage–Strassen algorithm)

Goal: Near-linear-time toolbox for univariate polynomials

I Multiplication

I Division (quotient and remainder) (this lecture)

I Batch evaluation (this lecture)

I Interpolation (this lecture)

I Extended Euclidean algorithm (gcd)

I Interpolation from partly erroneous data

Key content for Lecture 3

I Division (quotient and remainder) for polynomials

I Fast division by reduction to fast multiplication

I Polynomial division via reversal

I Newton iteration

I Newton iteration for the inverse of the reverse of the divisor

I Convergence analysis for Newton iteration

I Fast batch evaluation and interpolation of polynomials

I Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

Fast quotient and remainder (polynomials)

(von zur Gathen and Gerhard [6],
Sections 9.1 and 9.4)

Division (quotient and remainder)

I We start by recalling polynomial division

I We also recall that we can multiply fast

I Our goal for this lecture is to develop division algorithms that are essentially
(up to constants) as fast as our multiplication algorithms

I The key idea is to proceed by reduction to multiplication

I In preparing the reductions, we recall and encounter many useful concepts ...

Polynomial quotient and remainder

I Let R be a ring

I Let a =
∑n

i=0 αix i ∈ R[x] and b =
∑m

i=0 βix i ∈ R[x] such that αn , 0 and βm = 1

I That is, deg a = n and b is monic with deg b = m

I Then, there exist polynomials q, r ∈ R[x] that satisfy a = qb + r with deg r < deg b

I We write a quo b for such a quotient q and a rem b for such a remainder r in the
division of a by b

I In fact, such q and r are unique (exercise)

The classical division algorithm (for polynomials)

I Let a =
∑

i αix i, b =
∑

i βix i ∈ R[x] be given as input with deg a = n, deg b = m,
n ≥ m ≥ 0, and suppose that βm ∈ R is a unit

I We want to compute q, r ∈ R[x] with a = qb + r and deg r < m

I The classical division algorithm:
1. r ← a, µ ← β−1

m
2. for i = n −m, n −m − 1, . . . , 0 do
3. if deg r = m + i then ηi ← lc(r)µ, r ← r − ηix ib

else ηi ← 0
4. return q =

∑n−m
i=0 ηix i and r

I The classical algorithm runs in O((n +m)2) operations in R

I ... But could we do be�er? A�er Lecture 2, we know how to multiply in
near-linear-time ...

Fast polynomial multiplication

I Let R be a ring

I Given f , g ∈ R[x] with deg f ≤ d and deg g ≤ d as input, we can compute the product
fg ∈ R[x] in O(M(d)) operations in R

I We can take M(d) = O(d log d) if R has a primitive root of unity that supports an
appropriate FFT

I In general, we can take M(d) = O(d log d log log d)

I (In Lecture 2 we explored Schönhage–Strassen multiplication that assumes 2 is a unit
in R; this algorithm can be generalized so that R is an arbitrary ring.)

First reduction towards division: the quotient su�ices

I Division (viewed from 36,000�, see earlier slides for details):

Given a, b we need to compute q, r such that a = qb + r

I Observation:
It su�ices to compute q since then we can recover r = a − qb by fast multiplication

High-level idea: iterate for the quotient

I Our approach will be to recover the quotient iteratively

I In essence, we iterate for a multiplicative inverse of the divisor b such that each
iteration increases the accuracy of our inverse

I We want the accuracy (e.g. the polynomial degree) to increase geometrically from n
to 2n in one iteration

I Once a su�iciently accurate version of the inverse is available (n is large enough), we
proceed to solve for the quotient

I Each iteration will involve a constant number of multiplications, additions, and
subtractions on inputs of size O(n)

The cost of a geometric iteration

I We say that a function T : Z≥n0 → Z≥0 grows at least linearly if for all
n, n1, n2 ∈ Z≥n0 it holds that n = n1 + n2 implies T (n) ≥ T (n1) + T (n2)

I Examples:
T (n) = Cn log2 n for n0 = 1 and any constant C > 0
T (n) = Cn log2 n log2 log2 n for n0 = 2 and any constant C > 0

Lemma 5 (Last step dominates—the previous steps are “for free”)

Suppose that T grows at least linearly for n ≥ n0 ≥ 1 and let 2k0 be the least integer power of
2 at least n0. Then, for all k ≥ k0 we have

∑k
j=k0

T (2j) ≤ T (2k+1)

Proof.

By induction (exercise). �

Goal for fast polynomial division

I Let R be a ring

I Let a, b ∈ R[x] with b monic and d ≥ deg a ≥ deg b for some d ∈ Z≥0

I We want an algorithm that computes the quotient q and the remainder r in the
division of a by b in O(M(d)) operations in R

I Here M(d) = O(d log d) or M(d) = O(d log d log log d) depending on R

Reversal to recover the quotient
I For a polynomial

f = φ0 + φ1x + φ2x2 + . . . + φnxn

of degree at most n ∈ Z≥0, the n-reversal of f is the polynomial

revn f = φn + φn−1x + φn−2x2 + . . . + φ0xn

I For the quotient-and-remainder identity a = qb + r with deg a = n ≥ m = deg b and
deg r ≤ m − 1, we observe (exercise) that the reversal operator satisfies

revn a = (revn−m q) (revm b) + xn−m+1 revm−1 r

I In particular, working in the factor ring relative to the ideal 〈xn−m+1〉,

revn a ≡ (revn−m q) (revm b) (mod xn−m+1)

I Since b is monic, revm b has a multiplicative inverse modulo xn−m+1

I Thus, we can compute the quotient q by computing the inverse of revm b modulo
xn−m+1, multiplying by revn a, and (n −m)-reversing the result

Example: Reversal (1/2)

I Suppose that in Z5[x] we have

a = 3 + 3x + x2 + 2x3 + x4 + 4x6 + x7 + 3x8 + 4x9 + 3x10 + x11 + x12

b = 2 + x + x2 + 3x3 + 3x4 + 3x5 + x6

with n = deg a = 12 and m = deg b = 6; we also observe that b is monic

I We have a = qb + r and 0 ≤ deg r ≤ deg b − 1 for

q = 3 + 3x + 3x2 + 4x3 + x4 + 3x5 + x6

r = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5

I Taking reverses, we have

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

revm b = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

revn−m q = 1 + 3x + x2 + 4x3 + 3x4 + 3x5 + 3x6

revm−1 r = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5

Example: Reversal (2/2)

I Recalling that

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

revm b = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

revn−m q = 1 + 3x + x2 + 4x3 + 3x4 + 3x5 + 3x6

revm−1 r = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5

with n = 12 and m = 6, we can now verify the reversed division equality

revn a = (revn−m q) (revm b) + xn−m−1 revm−1 r

I Indeed,

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

(revn−m q) (revm b) = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + 3x7 + 2x8 + 3x9 + 2x10 + 4x11 + x12

xn−m−1r = 2x7 + 4x8 + 4x9 + 4x10 + 4x11 + 2x12

The inverse modulo xd by reduction to fast multiplication
I Let g =

∑
jψjx j ∈ R[x] withψ0 = 1 be given as input

I We set up a Newton iteration that doubles d at every step

I Assume inductively that f ∈ R[x] satisfies fg ≡ 1 (mod x2k
) for k ∈ Z≥0

I To set up the base case k = 0, take f = 1 and observe that the assumption holds

I Compute f̂ ≡ (2 − fg)f (mod x2k+1
) using fast multiplication,

truncating both g and f̂ using the substitution x2k+1
= 0

I Since the assumption holds for f with parameter value k, there exists a h ∈ R[x] with
fg = 1 + x2k

h

I We observe that f̂ g ≡ (2 − fg)fg ≡ (1 − x2k
h) (1 + x2k

h) ≡ 1 (mod x2k+1
) and thus the

assumption holds for f̂ with parameter value k + 1

I The cost of step k is O(M(2k)) since M grows at most polynomially; by Lemma 5 the
total cost is O(M(d)) operations in R

Example: Iterating for the inverse modulo xd

I Let g = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6 ∈ Z5[x]

I Let us compute the multiplicative inverse of g modulo xd for d = 7

I The least integer k for which 2k ≥ d is k = 3, so we need three rounds of Newton
iteration

I Truncating g and f̂ by se�ing x2k+1
= 0 and iterating, we have

k f g
0 1 1 + 3x
1 1 + 2x 1 + 3x + 3x2 + 3x3

2 1 + 2x + x2 + 3x3 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

3 1 + 2x + x2 + 3x3 + x4 + 2x5 + 2x6 + 2x7

I Thus, the multiplicative inverse of g modulo xd is

1 + 2x + x2 + 3x3 + x4 + 2x5 + 2x6

Example: Division with reversal and Newton iteration

I Suppose that in Z5[x] we have

a = 3 + 3x + x2 + 2x3 + x4 + 4x6 + x7 + 3x8 + 4x9 + 3x10 + x11 + x12

b = 2 + x + x2 + 3x3 + 3x4 + 3x5 + x6

with n = deg a = 12 and m = deg b = 6; we also observe that b is monic

I Reverse a and b to obtain

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

revm b = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

I Iterate for the inverse f of revm b modulo xn−m+1 to obtain

f = 1 + 2x + x2 + 3x3 + x4 + 2x5 + 2x6

I Compute f revn a, truncate with xn−m+1 = 0, and (n −m)-reverse the result to obtain
the quotient q = 3 + 3x + 3x2 + 4x3 + x4 + 3x5 + x6

I Compute the remainder r = a − qb = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5

Summary—fast polynomial division

I Let R be a ring

I Let a, b ∈ R[x] with b monic and d ≥ deg a ≥ deg b for some d ∈ Z≥0

I We have an algorithm that computes the quotient q and the remainder r in the
division of a by b in O(M(d)) operations in R

1. Let n = deg a and m = deg b
2. m-reverse b and compute the multiplicative inverse of revm b modulo xn−m+1 using

Newton iteration, multiply by the result by revn a modulo xn−m+1, and (n −m)-reverse
the result to obtain the quotient q

3. Compute remainder r by r = a − qb

I Here M(d) = O(d log d) or M(d) = O(d log d log log d) depending on R

Batch evaluation and interpolation

(von zur Gathen and Gerhard [6],
Sections 10.1–10.3 and 5.1–5.4)

Batch evaluation and interpolation
I To evaluate a polynomial (φ0,φ1, . . . ,φd) ∈ F d+1 at (“a batch of”) distinct points
ξ0, ξ1, . . . , ξd ∈ F , we multiply from the le� with the Vandermonde matrix:

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

φ0
φ1
...
φd

=

f (ξ0)
f (ξ1)
...

f (ξd)

I To interpolate the coe�icients of a polynomial with values
(f (ξ0), f (ξ1), . . . , f (ξd)) ∈ F d+1 at distinct ξ0, ξ1, . . . , ξd ∈ F , we multiply from the le�
with the inverse of the Vandermonde matrix:

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

−1

f (ξ0)
f (ξ1)
...

f (ξd)

=

φ0
φ1
...
φd

Fast batch evaluation and interpolation?

I Can we go faster than working with the Vandermonde matrix in explicit form?

I Yes, for example, in the case when the points ξ0, ξ1, . . . , ξd are powers of a primitive
root of unity of composite order d + 1 (recall fast Fourier transform from Lecture 2)

I But what about in general?
That is, when ξ0, ξ1, . . . , ξd are arbitrary distinct points in a ring R

I We now know how to multiply and divide fast, so maybe we could put these algorithms
into use ...

Polynomial division (quotient and remainder) recalled

I Let R be a ring (commutative and nontrivial, as usual)

I Let a =
∑

i αix i ∈ R[x] and b =
∑

i βix i ∈ R[x] be given as input with deg a = n,
deg b = m, and n ≥ m ≥ 0

I Let us also assume that βm = 1 (that is, b is monic)

I We want to compute q, r ∈ R[x] with a = qb + r and deg r < m

I That is, q = a quo b is the quotient and r = a rem b is the remainder in the
polynomial division with dividend a and divisor b

I We now have a fast algorithm that divides in O(M(n)) operations in R by reduction to
fast multiplication

I Let us now develop fast algorithms for batch evaluation and interpolation to by
reduction to fast division

Fast batch evaluation by recursive remaindering

I Suppose we have a polynomial f = φ0 + φ1x + φ2x2 + . . . + φdxd ∈ R[x] and we want
to compute the values f (ξ0), f (ξ1), . . . , f (ξe−1) at e given points ξ0, ξ1, . . . , ξe−1 ∈ R

I Goal: O(M(d) +M(e) log e) operations in R

I We reduce the multi-point (batch) evaluation task to recursive remaindering along a
subproduct tree enabled by the following to lemmas (proofs: in the problem set)

Lemma 6 (Evaluation at a point via remainder)

For all ξ ∈ R and f ∈ R[x] it holds that f (ξ) = f rem (x − ξ)

Lemma 7 (Recursive remaindering)

Let a, b, c ∈ R[x], with b and c monic, and suppose that c divides b. Then,
a rem c = (a rem b) rem c

Example: Batch evaluation

I The algorithm for fast batch evaluation is perhaps best illustrated by starting with an
example and then proceeding with the details

I Let us work over R = Z for simplicity

I Let f = x5 − x4 + 2x3 + 4x − 5 ∈ Z[x]

I Let ξ0 = 0, ξ1 = 1, ξ2 = 2, ξ3 = 3

Example: Batch evaluation (0/4)

Example: Batch evaluation (1/4)

Example: Batch evaluation (2/4)

Example: Batch evaluation (3/4)

Example: Batch evaluation (4/4)

Nodes of a perfect binary tree and binary strings (1/2)

I Let us now present the algorithm in detail

I Without loss of generality we can assume that e = 2k for some k ∈ Z≥0

(for example, insert new points of evaluation until e is a power of 2)

I We will structure the recursion along a perfect binary tree with 2k leaves

I Let us write {0, 1}k for the set of all binary strings of length at most k, including the
empty string ϵ

I For u ∈ {0, 1}k let us write 0 ≤ |u| ≤ k for the length of u

I Example. For k = 3, we have

{0, 1}k = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111}

Nodes of a perfect binary tree and binary strings (2/2)

I The 2k+1 − 1 =
∑k

j=0 2j strings in {0, 1}k are in a
natural one-to-one correspondence with the nodes of
a perfect binary tree with 2k leaves, with the empty
string ϵ corresponding to the root and the strings of
length k corresponding to the leaves

I Indeed, to navigate from a non-root node to its parent
node, simply delete the last bit from the
corresponding string

I Dually, to navigate from a non-leaf node to one of its
two children, append either the bit 0 (to go the le�
child) or the bit 1 (to go the right child) to the string

A subproduct tree for batch evaluation

I Let us work with a perfect binary tree with 2k leaves and nodes indexed by the binary
strings in {0, 1}k

I Associate with each leaf v ∈ {0, 1}k the linear polynomial

sv = x − ξv (20)

I Associate with each internal node u ∈ {0, 1}k−1 the product of the children of u by

su = su0su1 (21)

I We observe that su is a monic polynomial of degree 2k−|u | for all u ∈ {0, 1}k

Fast batch evaluation using a subproduct tree

I To perform batch evaluation, first compute and store the polynomials su for all
u ∈ {0, 1}k using (20) and (21)

I Then, associate the remainder

rϵ = f rem sϵ (22)

with the root ϵ of the binary tree

I For each nonroot u ∈ {0, 1}k \ {ϵ }, associate with u the remainder

ru = rp rem su (23)

where p ∈ {0, 1}k−1 is the parent of u in the binary tree

I For each leaf v ∈ {0, 1}k , the remainder rv satisfies rv = f (ξv)

Analysis

I Recall that su is a monic polynomial of degree 2k−|u | for all u ∈ {0, 1}k

I From (20) and (21) we have that each su can be prepared in O(M(2k−|u |)) operations in
R using fast multiplication

I There are in total 2j binary strings u ∈ {0, 1}j , implying that the total cost of level
j = k, k − 1, . . . , 0 is O(2jM(2k−j)) operations in R, which is O(M(2k)) = O(M(e)) by
at-least-linear and at-most-polynomial growth of M

I The root remainder (22) takes O(M(d) +M(e)) operations in R using fast division

I Below the root, each level j = 0, 1, . . . , k similarly takes O(M(e)) operations in R using
(23) and fast division

I Since there are k = O(log e) levels, we obtain that that batch evaluation runs in total
O(M(d) +M(e) log e) operations in R

Interpolation

I Let R be a ring

I Let ξ0, ξ1, . . . , ξe−1 ∈ R and η0,η1, . . . ,ηe−1 ∈ R such that ξi − ξj is a unit in R for all
0 ≤ i < j ≤ e − 1

I We seek to compute the coe�icients of the Lagrange interpolation polynomial

` =

e−1∑
i=0

(
ηi

e−1∏
j=0
j,i

(ξi − ξj)
−1

) e−1∏
j=0
j,i

(x − ξj) ∈ R[x]

that satisfies `(ξi) = ηi for all i = 0, 1, . . . , e − 1

Fast interpolation with subproduct trees

I The form

` =

e−1∑
i=0

(
ηi

e−1∏
j=0
j,i

(ξi − ξj)
−1

) e−1∏
j=0
j,i

(x − ξj) ∈ R[x]

suggests that one should first seek to construct the coe�icients of the polynomial

` =

e−1∑
i=0

λi

e−1∏
j=0
j,i

(x − ξj) ∈ R[x]

from e given scalars λ0, λ1, . . . , λe−1 ∈ R

I A strategy based on subproduct-trees works also here and leads to an algorithm that
runs in O(M(e) log e) operations in R (exercise)

Application: How to share a secret

“In this paper we show how to divide data D into n pieces in such a way that D is
easily reconstructible from any k pieces, but even complete knowledge of k − 1 pieces
reveals absolutely no information about D. This technique enables the construction of
robust key management schemes for cryptographic systems that can function securely
and reliably even when misfortunes destroy half the pieces and security breaches
expose all but one of the remaining pieces.”

(Shamir [11])

Application: How to share a secret (1/5)

I Let us work over a finite field F (for example, F = Zp for p prime)

I Let f = φ0 + φ1x ∈ F [x] be a line (polynomial of degree at most 1)

I How much do we know about the constant φ0 of the line f if we know the value f (ξ)
for a nonzero ξ ∈ F ?

Application: How to share a secret (2/5)

I Let us work over a finite field F (for example, F = Zp for p prime)

I Let f = φ0 + φ1x + φ2x2 + . . . + φdxd ∈ F [x] be a polynomial of degree at most d

I How much do we know about the constant φ0 of the polynomial f if we know
(ξj, f (ξj)) for exactly d nonzero distinct values ξj ∈ F for j = 1, 2, . . . , d ?

Application: How to share a secret (3/5)

I Let f = φ0 + φ1x + φ2x2 + . . . + φdxd ∈ F [x] be a polynomial of degree at most d

I How much do we know about the constant φ0 of the polynomial f if we know
(ξj, f (ξj)) for exactly d nonzero distinct values ξj ∈ F for j = 0, 1, . . . , d ?

I We claim that this knowledge reveals no information about φ0;
indeed, let us set ξ0 = 0 and recall the interpolation identity

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

−1

f (ξ0)
f (ξ1)
...

f (ξd)

=

φ0
φ1
...
φd

I Since f (ξ0) = f (0) = φ0, we have that for each choice φ0 ∈ F the values

f (ξ1), f (ξ2), . . . , f (ξd) are consistent with exactly one choice (φ0,φ1, . . . ,φd) ∈ F d+1

I Thus, the values f (ξ1), f (ξ2), . . . , f (ξd) reveal no information about φ0

Application: How to share a secret (4/5)

I Let f = φ0 + φ1x + φ2x2 + . . . + φdxd ∈ F [x] be a polynomial of degree at most d

I How much do we know about the constant φ0 of the polynomial f if we know
(ξj, f (ξj)) for exactly e nonzero distinct values ξj ∈ F for j = 1, 2, . . . , e ?

I For e ≤ d , we obtain no information about φ0

I For e ≥ d + 1, we have full information about φ0 since we can interpolate all the
coe�icients of f from any d + 1 evaluations at distinct points

Application: How to share a secret (5/5)

I Suppose φ0 ∈ F is a secret that you want to split into s shares so that
I knowledge of any k shares enables recovery of the secret

I knowledge of any k − 1 or fewer shares reveals no information about the secret

1. Let ξ1, ξ2, . . . , ξs ∈ F be distinct and nonzero

2. Select elements φ1,φ2, . . . ,φk−1 ∈ F independently and uniformly at random

3. Let f = φ0 + φ1x + φ2x2 + . . . + φk−1xk−1 ∈ F [x]

4. For j = 1, 2, . . . , s, share j is the pair (ξj, f (ξj)) ∈ F 2

I Using fast batch evaluation and interpolation, preparing the shares takes O(M(s) log s)
operations in F , and recovering the secret takes O(M(k) log k) operations in F

Randomization and primal–dual

I The secret φ0 ∈ F resides in the primal (coe�icient representation)

I Selecting φ1,φ2, . . . ,φk−1 ∈ F independently and uniformly at random masks the
secret in the dual (evaluation representation) unless we know k shares

I This is our first example of the use of randomization during this course

I The evaluation–interpolation duality enables us to spread the information in the
coe�icient representation uniformly to evaluations in the evaluation representation

I The following lectures will explore both randomization as a tool in algorithm design
and the aforementioned “uniformity” further, the la�er in particular as regards
error-correcting codes and error-tolerant computation

Recap of key content for Lecture 3

I Division (quotient and remainder) for polynomials

I Fast division by reduction to fast multiplication

I Polynomial division via reversal

I Newton iteration

I Newton iteration for the inverse of the reverse of the divisor

I Convergence analysis for Newton iteration

I Fast batch evaluation and interpolation of polynomials

I Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

Problem Set 3 – I

1. Polynomial division by reversal. For a polynomial f = φ0 + φ1x + . . . + φnxn ∈ R[x] of
degree at most n ∈ Z≥0 over a ring R, let the n-reversal of f be the polynomial
revn f = φn + φn−1x + . . . + φ0xn ∈ R[x]. Let a, b ∈ R[x] be polynomials with b monic
and n = deg a ≥ deg b = m. Show that the quotient q ∈ R[x] and the remainder
r ∈ R[x] with a = qb + r and deg r ≤ m − 1 satisfy the reversal identity

revn a = (revn−m q) (revm b) + xn−m+1 revm−1 r .

Hint: Observe that for all i = 0, 1, . . . , n −m and j = 0, 1, . . . ,m we have
xn−i−j = xn−m−ixm−j .

Problem Set 3 – II

2. Evaluation via recursive remaindering. Let R be a ring.
(a) Show that for all ξ ∈ R and f ∈ R[x] we have f (ξ) = f rem (x − ξ).
(b) Let a, b, c ∈ R[x], with b and c monic, and suppose that c divides b. Show that

a rem c = (a rem b) rem c.

Hints: Recall that the quotient and remainder are unique for a, b ∈ R[x] with b monic.
Use the defining equality a = qb + r with deg r < deg b for both parts. For part (a),
investigate what happens when you evaluate the defining equality at ξ .

Problem Set 3 – III

3. Preliminaries for fast interpolation. Let R be a ring, let ξ0, ξ1, . . . , ξe−1 ∈ R, and
λ0, λ1, . . . , λe−1 ∈ R be given as input. The form of the Lagrange interpolation
polynomial (27) suggests that one should first seek to construct the coe�icients of the
polynomial

` =

e−1∑
i=0

λi

e−1∏
j=0
j,i

(x − ξj) ∈ R[x] . (24)

Show that we can compute the coe�icients of ` in O(M(e) log e) operations in R. You
may assume that e = 2k for a nonnegative integer k. Here M(e) = e log e log log e.

Hints: Work with binary strings and the representation of the perfect binary tree using
binary strings in {0, 1}k . To construct the coe�icients of the polynomial (24), first
construct a subproduct tree with polynomials su for all u ∈ {0, 1}k from ξ0, ξ1, . . . , ξe−1

Problem Set 3 – IV

as during fast evaluation. Next, annotate the tree with another family of polynomials
such that the polynomial at the root will be equal to (24). You may want to try
associating with each leaf v ∈ {0, 1}k the polynomial

`v = λv (25)

and with each internal node u ∈ {0, 1}k−1 the polynomial

`u = `u0su1 + su0`u1 . (26)

Why is this a good choice? Prepare a small example, say with k = 2 or k = 3 as
necessary. Show that `ϵ = `, where ϵ is the empty binary string.

Problem Set 3 – V
4. Fast interpolation via subproducts and fast evaluation. Let R be a ring and let

ξ0, ξ1, . . . , ξe−1 ∈ R and η0,η1, . . . ,ηe−1 ∈ R such that ξi − ξj is a unit in R for all
0 ≤ i < j ≤ e − 1. Show that we can compute the coe�icients of the Lagrange
interpolation polynomial

` =

e−1∑
i=0

(
ηi

e−1∏
j=0
j,i

(ξi − ξj)
−1

) e−1∏
j=0
j,i

(x − ξj) ∈ R[x] (27)

that satisfies `(ξi) = ηi for all i = 0, 1, . . . , e − 1 in O(M(e) log e) operations in R. You
may assume that e = 2k for a nonnegative integer k.

Hints: Apply your solution to Problem 3 in two passes. In the first pass, set λv = 1 for
all v ∈ {0, 1}k and compute the coe�icients of the polynomial f = `ϵ using (25) and
(26). Evaluate f at ξ0, ξ1, . . . , ξe−1 using fast evaluation. Then do a second pass (with a
di�erent choice for the values λv) so that at the root you recover the Lagrange
interpolation polynomial (27).

4. Extended Euclidean algorithm and
interpolation from erroneous data

Computer Science Club, St Petersburg
17–18 November 2018

Pe�eri Kaski
Department of Computer Science

Aalto University

Recap of last lecture

I Division (quotient and remainder) for polynomials

I Fast division by reduction to fast multiplication

I Polynomial division via reversal

I Newton iteration

I Newton iteration for the inverse of the reverse of the divisor

I Convergence analysis for Newton iteration

I Fast batch evaluation and interpolation of polynomials

I Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

Goal: Near-linear-time toolbox for univariate polynomials

I Multiplication

I Division (quotient and remainder)

I Batch evaluation

I Interpolation

I Extended Euclidean algorithm (gcd) (this lecture)

I Interpolation from partly erroneous data
(this lecture)

Further motivation for this lecture

I A�er this lecture we have completed our work on the near-linear time toolbox for
univariate polynomials

I This lecture is also our first encounter with uncertainty in computation

I In this lecture we learn how to cope with uncertainty in the form of errors in data by
using error-correcting codes

I Next lecture looks at errors in computation ...

Fast extended Euclidean algorithm (for polynomials)

(von zur Gathen and Gerhard [6],
Section 11.1)

Fast interpolation from partly erroneous data

(Gao [5])

Key content for Lecture 4

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm for polynomials by divide and conquer
I The two polynomial operands truncated to a prefix of the highest-degree monomials

determine the prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Extended Euclidean algorithm (for polynomials)

I Let F be a field and let f , g ∈ F [x] with deg f ≥ deg g ≥ 0

I Traditional extended Euclidean algorithm:
1. r0 ← f , s0 ← 1, t0 ← 0,

r1 ← g, s1 ← 0, t1 ← 1
2. i ← 1,

while ri , 0 do
qi ← ri−1 quo ri

ri+1 ← ri−1 − qiri

si+1 ← si−1 − qisi

ti+1 ← ti−1 − qiti

i ← i + 1
3. ` ← i − 1

return `, ri, si, ti for i = 0, 1, . . . , ` + 1, and qi for i = 1, 2, . . . , `

I We want a faster algorithm

Example (over Z2[x])

I Let f = x5 + x4 + x3 + x2 + x + 1 ∈ Z2[x] and g = x5 + x4 + 1 ∈ Z2[x]

I We obtain

i ri si ti qi

0 x5 + x4 + x3 + x2 + x + 1 1 0
1 x5 + x4 + 1 0 1 1
2 x3 + x2 + x 1 1 x2 + 1
3 x2 + x + 1 x2 + 1 x2 x
4 0 x3 + x + 1 x3 + 1

I In particular ` = 3 and r` = x2 + x + 1 is a greatest common divisor of
x5 + x4 + x3 + x2 + x + 1 and x5 + x4 + 1

Terminology

I The sequence q1, q2, . . . , q` is the quotient sequence produced by the algorithm

I The polynomial ri is the remainder at iteration i

I The polynomials si and ti are the Bézout coe�icients at iteration i

I The Bézout coe�icients satisfy ri = sir0 + tir1

Desiderata for a fast algorithm

I Let F be a field and let f , g ∈ F [x] with d ≥ deg f ≥ deg g ≥ 0

I Desired output:
The quotients q1, q2, . . . , qh and two consecutive rows rh, sh, th and rh+1, sh+1, th+1 for a
choice of h = 1, 2, . . . , `

I Using O(M(d) log d) operations in F

The degree sequences mi and ni

I It will be convenient to work with the following two sequences

I For i = 1, 2, . . . , ` + 1 let

mi = deg qi

where, for convenience, we let m`+1 = ∞

I For i = 0, 1, . . . , ` + 1, let

ni = deg ri

recalling that n`+1 = deg 0 = −∞

I By assumption, we have deg r0 ≥ deg r1 ≥ 0

I Since we have ri+1 = ri−1−qiri and deg ri > deg ri+1 for all i = 1, 2, . . . , `, it follows that

ni−1 = ni +mi

Example (over Z2[x])

I Let f = x5 + x4 + x3 + x2 + x + 1 ∈ Z2[x] and g = x5 + x4 + 1 ∈ Z2[x]

I We obtain

i ri si ti qi mi ni

0 x5 + x4 + x3 + x2 + x + 1 1 0 5
1 x5 + x4 + 1 0 1 1 0 5
2 x3 + x2 + x 1 1 x2 + 1 2 3
3 x2 + x + 1 x2 + 1 x2 x 1 2
4 0 x3 + x + 1 x3 + 1 ∞ −∞

I In particular ` = 3 and r` = x2 + x + 1 is a greatest common divisor of
x5 + x4 + x3 + x2 + x + 1 and x5 + x4 + 1

The halting threshold h = h(k)

I Given a threshold parameter k = 0, 1, . . . , n0 as input, we want the algorithm to halt
at iteration h = h(k) determined by

m1 +m2 + . . . +mh ≤ k

and

m1 +m2 + . . . +mh +mh+1 > k

I In particular, we observe that 0 ≤ h ≤ `

The halting threshold h = h(k)

I Equivalently, since ni = ni−1 −mi for i = 1, 2, . . . , ` + 1, we have

nh ≥ n0 − k

and

nh+1 < n0 − k

I That is, the algorithm halts at the unique iteration h = 0, 1, . . . , ` when the degree of
rh+1 for the first time decreases below n0 − k

Truncating a polynomial

I Let

f = φnxn + φn−1xn−1 + . . . + φ1x + φ0 ∈ F [x]

with leading coe�icient lc f = φn , 0

I For k ∈ Z, define the truncated polynomial

f � k = φnxk + φn−1xk−1 + . . . + φn−k+1x + φn−k ∈ F [x]

where we set φi = 0 for i < 0 as necessary

I For k ≥ 0 we have that f � k is a polynomial of degree k whose coe�icients are the
k + 1 highest coe�icients of f

I For k < 0 we have f � k = 0

I For all i = 0, 1, . . . we have (fx i)� k = f � k

Example: Truncating a polynomial

I Let us work with the polynomial

f = 2 + 9x + 10x2 + 4x3 ∈ Z11[x]

I We obtain the truncations
.
.
.

f �−2 = 0

f �−1 = 0

f � 0 = 4

f � 1 = 10 + 4x

f � 2 = 9 + 10x + 4x2

f � 3 = 2 + 9x + 10x2 + 4x3

f � 4 = 2x + 9x2 + 10x3 + 4x4

f � 5 = 2x2 + 9x3 + 10x4 + 4x5

.

.

.

Coinciding pairs of polynomials

I Let f , g, f̃ , g̃ ∈ F [x] \ {0} with deg f ≥ deg g and deg f̃ ≥ deg g̃

I For k ∈ Z, we say that (f , g) and (f̃ , g̃) coincide up to k and write (f , g) ≡k (f̃ , g̃) if

f � k = f̃ � k

g�(k − (deg f − deg g)) = g̃�(k − (deg f̃ − deg g̃))

I Remark:
If (f , g) ≡k (f̃ , g̃) and k ≥ deg f − deg g, then deg f − deg g = deg f̃ − deg g̃

Example: Coinciding pairs of polynomials

I The pairs

f = 7 + 2x + x2 + x3 + 10x4 + 7x5 + x6 + 5x7 + 9x8 + 5x9 + 7x10 ∈ Z11[x]

g = 3 + 7x + 4x2 + 2x3 + 2x4 + 6x5 + 3x6 + 2x7 + 4x8 ∈ Z11[x]

and

f̃ = 1 + 5x + 9x2 + 5x3 + 7x4 ∈ Z11[x]

g̃ = 3 + 2x + 4x2 ∈ Z11[x]

coincide up to 4

I Indeed, we have deg f = 10, deg g = 8, deg f̃ = 4, and deg g̃ = 2, with

f � 4 = f̃ � 4 = 1 + 5x + 9x2 + 5x3 + 7x4

g� 2 = g̃� 2 = 3 + 2x + 4x2

�otients of coinciding pairs of polynomials

I The following lemma enables us to design a divide-and-conquer extended Euclidean
algorithm by truncating the operands to division

Lemma 8 (Su�iciently coinciding pairs of polynomials have identical quotients)

Suppose that (f , g) ≡2k (f̃ , g̃) for k ∈ Z with k ≥ deg f − deg g ≥ 0. Define q, r, q̃, r̃ ∈ F [x]
by division with quotients and remainders as follows

f = qg + r, deg r < deg g ,

f̃ = q̃g̃ + r̃, deg r̃ < deg g̃ .

Then, q = q̃ and at least one of the following holds (g, r) ≡2(k−deg q) (g̃, r̃) or r = 0 or
k − deg q < deg g − deg r.

Proof.

Exercise �

Example: �otient of coinciding pairs of polynomials

I The pairs

f = 7 + 2x + x2 + x3 + 10x4 + 7x5 + x6 + 5x7 + 9x8 + 5x9 + 7x10 ∈ Z11[x]

g = 3 + 7x + 4x2 + 2x3 + 2x4 + 6x5 + 3x6 + 2x7 + 4x8 ∈ Z11[x]

and

f̃ = 1 + 5x + 9x2 + 5x3 + 7x4 ∈ Z11[x]

g̃ = 3 + 2x + 4x2 ∈ Z11[x]

coincide up to 4, with 4 ≥ deg f − deg g = 2

I Accordingly (by Lemma 8), the quotients agree:

f quo g = 9 + 10x + 10x2

f̃ quo g̃ = 9 + 10x + 10x2

�otient sequences of coinciding pairs of polynomials

I Now let us study what happens in the extended Euclidean algorithm if we execute it
for two inputs, (r0, r1) and (r̃0, r̃1), with deg r0 ≥ deg r1 ≥ 0 and deg r̃0 ≥ deg r̃1 ≥ 0:

r0 = q1r1 + r2, r̃0 = q̃1r̃1 + r̃2

r1 = q2r2 + r3, r̃1 = q̃2r̃2 + r̃3

...
...

ri−1 = qiri + ri+1, r̃i−1 = q̃i r̃i + r̃i+1

...
...

r`−1 = q`r`, r̃ ˜̀−1 = q̃ ˜̀ r̃ ˜̀

I In particular, our interest is on the case (r0, r1) ≡2k (r̃0, r̃1) ...

�otient sequences of coinciding pairs of polynomials

I We can now study the execution on two coinciding inputs (r0, r1) and (r̃0, r̃1) with
deg r0 ≥ deg r1 ≥ 0 and deg r̃0 ≥ deg r̃1 ≥ 0 as follows

Lemma 9 (Identical quotient sequences up to the halting threshold)

Let k ∈ Z with (r0, r1) ≡2k (r̃0, r̃1). Then, h(k) = h̃(k) with qi = q̃i for all i = 1, 2, . . . , h(k).

Proof sketch.

By induction on i and using Lemma 8 for the induction step, the following holds for all
0 ≤ i ≤ h(k): we have i ≤ h̃(k), qi = q̃i , and at least one of the following holds: i = h(k) or
(ri, ri+1) ≡2(k−

∑j
j=1 mj)

(r̃i, r̃i+1). �

Example: �otient sequences of coinciding pairs
I Let us run the extended Euclidean algorithm for a pair of polynomials in Z11[x]:

i qi ri si ti
0 7 + x + 3x2 + 5x3 + 9x4 + 10x5 + 7x6 1 0
1 4 4 + 10x + 7x2 + 4x3 + 7x4 + 4x5 + 10x6 0 1
2 4 + 2x 2 + 5x + 8x2 + 3x4 + 5x5 1 7
3 4 + 10x 7 + 8x + 9x2 + 10x3 + 6x4 7 + 9x 6 + 8x
4 2 + 3x 7 + 2x + 2x2 + 2x3 6 + 4x + 9x2 5 + 7x + 8x2

5 10 + 9x 4 + 5x + 10x2 6 + 5x + 3x2 + 6x3 7 + x + 7x2 + 9x3

6 4 + 8x 4x 1 + 10x + x3 + x4 1 + 6x2 + x3 + 7x4

7 x 4 2 + x + 2x3 + 10x4 + 3x5 3 + 4x + 5x2 + x3 + 8x4 + 10x5

8 0 1 + 8x + 10x2 + x3 + 10x4 + x5 + 8x6 1 + 8x + 2x2 + 7x3 + 6x4 + 3x5 + x6

I Here is a run on a pair that coincides with the first pair up to length 2k = 4:
i qi ri si ti
0 3 + 5x + 9x2 + 10x3 + 7x4 1 0
1 4 7 + 4x + 7x2 + 4x3 + 10x4 0 1
2 4 + 2x 8 + 3x2 + 5x3 1 7
3 4 + 10x 8 + 10x + 6x2 7 + 9x 6 + 8x
4 6x 9 + x 6 + 4x + 9x2 5 + 7x + 8x2

5 8 + 7x 8 7 + 6x + 9x2 + x3 6 + 2x2 + 7x3

6 0 5 + 6x + 5x2 + 6x3 + 4x4 1 + 9x + 3x2 + 7x3 + 6x4

I Observe that the quotient sequences agree up to total degree
deg q1 + deg q2 + . . . + deg qh(k) ≤ k with h(k) = 3

A divide-and-conquer extended Euclidean algorihtm

I We now use Lemma 9 to design a fast divide-and-conquer version of the extended
Euclidean algorihtm

I For a given input (r0, r1) ∈ F [x]2 with deg r0 ≥ deg r1 ≥ 0 and halting parameter k ≥ 0,
the key idea is to truncate the input using the “�”-operator and build the quotient
sequence q1, q2, . . . , qh(k) using two recursive calls with halting parameter at most
bk/2c each

I That is, the idea essentially to use the first recursive call to recover q1, q2, . . . , qh(bk/2c) ,
then compute (as needed) the next quotient qh(bk/2c)+1 explicitly, and then make a
second recursive call (as needed) to recover the rest of the quotient sequence
q1, q2, . . . , qh(k)

I With careful implementation, this leads to an algorithm that runs in O(M(k) log k)
operations in F

I Before describing the algorithm in detail, let us recall some further terminology ...

Invariants of the extended Euclidean algorithm

I Recall the matrices

R0 =

[
s0 t0

s1 t1

]
=

[
1 0
0 1

]
, Qi =

[
0 1
1 −qi

]
for i = 1, 2, . . . , `

and Ri = QiQi−1 · · ·Q1R0 ∈ F [x]2×2 for i = 0, 1, . . . , ` from the analysis of the
traditional extended Euclidean algorithm in Problem Set 1

I We recall that for all i = 0, 1, . . . , ` we have Ri =

[
si ti

si+1 ti+1

]
and Ri

[
r0

r1

]
=

[
ri

ri+1

]

I Our algorithm design will be such that on input (r0, r1) and k it produces as output (i)
the value h(k), (ii) the quotient sequence q1, q2, . . . , qh(k) , and (iii) the matrix Rh(k) ...

Truncating inputs to the extended Euclidean algorithm

I Let us write h(k), q1, q2, . . . , qh(k),Rh(k) ← extgcd(k, r0, r1) to indicate that the
algorithm produces the output h(k), q1, q2, . . . , qh(k),Rh(k) on input k, r0, r1 with
deg r0 ≥ deg r1 ≥ 0

I Lemma 9 now implies that we have

extgcd(k, r0, r1) = extgcd
(
k, r0� 2k, r1�(2k − (deg r0 − deg r1))

)
(28)

I In particular, we can assemble the output recursively so that the input polynomials to
each recursive call are truncated in degree to the minimum enabled by (28)

I We are now ready for the detailed pseudocode of the algorithm ...

A divide-and-conquer extended Euclidean algorithm I

I Let F be a field and let k ∈ Z and r0, r1 ∈ F [x] with deg r0 ≥ deg r1 and r0 , 0 be given
as input

1. If k < deg r0 − deg r1 holds, then return with output h(k) ← 0 and Rh(k) ←

[
1 0
0 1

]

2. If k = 0 and deg r0 = deg r1 hold, then return with output h(k) ← 1, q1 =
lc r0
lc r1

, and

Rh(k) ←

[
0 1
1 −

lc r0
lc r1

]

3. Set k1 ← bk/2c

4. Make the first recursive call
h1, q

(1)
1 , q

(1)
2 , . . . , q

(1)
h1
,R(1) ← extgcd

(
k1, r0� 2k1, r1�(2k1 − (deg r0 − deg r1))

)
5. Compute the matrix-vector product

[
r̃h1

r̃h1+1

]
← R(1)

[
r0� 2k
r1�(2k − (deg r0 − deg r1))

]

A divide-and-conquer extended Euclidean algorithm II

6. If deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
+ deg r̃h1 − deg r̃h1+1 > k holds, then return with

output h(k) ← h1, q1, q2, . . . , qh(k) ← q(1)
1 , q

(1)
2 , . . . , q

(1)
h1

, and Rh(k) ← R(1)

7. Compute the quotient qh1+1 ← r̃h1 quo r̃h1+1 and the matrix Qh1+1 ←

[
0 1
1 −qh1+1

]

8. Compute the remainder r̃h1+2 ← r̃h1 − qh1+1r̃h1+1

9. Set k2 ← k − (deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
+ deg qh1+1)

10. Make the second recursive call
h2, q

(2)
1 , q

(2)
2 , . . . , q

(2)
h2
,R(2) ← extgcd

(
k2, r̃h1+1� 2k1, r̃h1+2�(2k1 − (deg r̃h1+1 − deg r̃h1+2))

)
11. Return with output h(k) ← h1 + 1 + h2,

q1, q2, . . . , qh(k) ← q(1)
1 , q

(1)
2 , . . . , q

(1)
h1
, qh1+1, q

(2)
1 , q

(2)
2 , . . . , q

(2)
h2

, and

Rh(k) ← R(2)Qh1+1R(1)

Remarks and analysis
I Caveat: In Step 1 we may have deg r1 = −∞ (that is, r1 = 0) and in Step 6 we may have

deg r̃h1+1 = −∞ (that is, r̃h1+1 = 0)

I A�er Step 1 it holds that k ≥ deg r0 − deg r1 ≥ 0, a�er Step 2 it holds that k ≥ 1 and
deg r0 > deg r1 ≥ 0; thus, 0 ≤ k1 ≤ k − 1

I A�er Step 5 we have

deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
≤ k1

and, also recalling that k1 = bk/2c,

deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
+ deg r̃h1 − deg r̃h1+1 ≥ k1 + 1 ≥ dk/2e

I Assuming that r̃h1+1 , 0, we have deg qh1+1 = deg r̃h1 − deg r̃h1+1

I Thus, k2 ≤ bk/2c ≤ k − 1

I The algorithm runs in T (k) ≤ T (k1) + T (k2) + O(M(k)) ≤ 2T (bk/2c) + O(M(k))
operations in F ; that is, T (k) = O(M(k) log k) operations in F

Key content for Lecture 4 (recalled)

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm for polynomials by divide and conquer
I The two polynomial operands truncated to a prefix of the highest-degree monomials

determine the prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Number of roots

I Let F be a field

I A root of a polynomial f ∈ F [x] is an element ξ ∈ F with f (ξ) = 0

Theorem 10 (Number of roots)
A nonzero polynomial f ∈ F [x] of degree at most d has at most d distinct roots.

Proof.

Exercise �

Two distinct polynomials mostly disagree

I Let F be a field

I Let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e be a vector of e distinct elements of F

I Associate with f ∈ F [x] the vector of evaluations

f (Ξ) = (f (ξ1), f (ξ2), . . . , f (ξe)) ∈ F e

Lemma 11 (Bounded agreement of low-degree polynomials)

Let f0, f1 ∈ F [x] be distinct polynomials of degree at most d.
Then, f0 (Ξ) and f1 (Ξ) agree in at most d coordinates.

Proof.

The di�erence f0 − f1 , 0 is a polynomial of degree at most d and thus has at most d
distinct roots �

Reconstructibility from partly erroneous data

I Let f ∈ F [x] be a polynomial of degree at most d

I Let e ≥ d + 1 and let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consist of distinct elements

Lemma 12 (Unique reconstructibility)

Suppose that the vectors Γ ∈ F e and f (Ξ) disagree in at most (e − d − 1)/2 coordinates.
Then, Γ uniquely identifies f

Proof.

Let f0, f1 ∈ F [x] be two polynomials of degree at most d such that f0 (Ξ) and f1 (Ξ) each
disagree with Γ in at most (e − d − 1)/2 coordinates. In total there are e coordinates, so
f0 (Ξ) and f1 (Ξ) and Γ must thus all agree in at least e − 2(e − d − 1)/2 = d + 1 coordinates.
By Lemma 11 thus f0 = f1. �

(Furthermore, we can, very ine�iciently, recover f from Γ by considering in turn each vector Γ̃ ∈ F e that disagrees with Γ

in at most (e − d − 1)/2 coordinates: for each such Γ̃, interpolate f from f (Ξ) = Γ̃, and stop when f has degree at most d .)

Reed–Solomon codes

I Suppose we want to protect a sequence Φ = (φ0,φ1, . . . ,φd) ∈ F d+1 of elements of a
field F against errors

I We may represent Φ as a polynomial f = φ0 + φ1x + . . . + φdxd ∈ F [x] of degree at
most d

I Let e ≥ d + 1 and let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consist of distinct elements

I Let us use Ψ = f (Ξ) ∈ F e as the encoded representation of Φ

I Suppose that Ψ̂ disagrees with Ψ in at most (e − d − 1)/2 coordinates. Then,
Lemma 12 implies that we can recover Φ from Ψ̂

I That is, Ψ̂ may have up to b(e − d − 1)/2c errors and we can still recover Φ

I Encoding can be done in near-linear-time by fast batch evaluation ...

I ... but how e�iciently can we decode in the presence of errors?

Example: Encoding

I Let us work with e = 8, d = 3, F = Z11, and the evaluation points
Ξ = (ξ1, ξ2, . . . , ξe) = (0, 1, 2, 3, 4, 5, 6, 7) ∈ Ze

11

I Suppose we want to protect the data vector Φ = (5, 3, 1, 9) ∈ Zd+1
11

I We view Φ as the degree-at-most-d polynomial f = 5 + 3x + x2 + 9x3 ∈ Z11[x]

I The encoded representation of Φ is

Ψ = f (Ξ) = (f (ξ1), f (ξ2), . . . , f (ξe)) = (5, 7, 10, 2, 4, 4, 1, 5) ∈ Ze
11

Gao’s (2003) decoder for Reed–Solomon codes

I Let f ∈ F [x] be a polynomial of degree at most d

I Let e ≥ d + 1 and let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consist of distinct elements

I Suppose that the vectors Γ ∈ F e and f (Ξ) disagree in at most (e − d − 1)/2
coordinates. Then, Γ uniquely identifies f (Lemma 12)

I Moreover, given Ξ, Γ, d as input, f can be computed in O(M(e) log e) operations in F
(Gao [5])

Gao’s decoding algorithm

I Let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consisting of distinct elements, Γ = (γ1,γ2, . . . ,γe) ∈ F e,
and d ∈ Z≥0 with d + 1 ≤ e be given as input

I Gao’s algorithm [5] proceeds as follows:
1. Using a subproduct tree, construct the polynomial g0 =

∏e
i=1 (x − ξi)

2. Interpolate the unique polynomial g1 ∈ F [x] of degree at most e − 1 that satisfies
g1 (ξi) = γi for all i = 1, 2, . . . , e

3. Apply the extended Euclidean algorithm to g0 and g1 to produce the consecutive
remainders gh, gh+1 with deg gh ≥ D, and deg gh+1 < D for D = (e + d + 1)/2. Let
sh+1, th+1 ∈ F [x] be the associated Bézout coe�icients with gh+1 = sh+1g0 + th+1g1

4. Divide gh+1 by th+1 to obtain the quotient f1 ∈ F [x] and the remainder r ∈ F [x] with
gh+1 = th+1f1 + r and deg r < deg th+1

5. Output f1 as the result of interpolation if both deg f1 ≤ d and r = 0;
otherwise assert decoding failure

I It is immediate that the algorithm runs in O(M(e) log e) operations in F

Example: Decoding I

I Let us work with e = 8, d = 3, F = Z11, and the evaluation points
Ξ = (ξ1, ξ2, . . . , ξe) = (0, 1, 2, 3, 4, 5, 6, 7) ∈ Ze

11

I Suppose we have the vector Γ = (γ1,γ2, . . . ,γe) = (5, 7, 1, 2, 9, 4, 1, 5) ∈ Ze
11

I First, we construct the polynomial

g0 =

e∏
i=1

(x − ξi) = 9x + 2x3 + 4x4 + 9x5 + 3x6 + 5x7 + x8

I Then, we interpolate the polynomial

g1 = 5 + 7x + 5x2 + 2x3 + 10x4 + 9x5 + 6x6 + 7x7

that satisfies g1 (ξi) = γi for all i = 1, 2, . . . , e

Example: Decoding II
I Next we apply the extended Euclidean algorithm to g0 and g1 to produce the

consecutive remainders gh, gh+1 with deg gh ≥ D, and deg gh+1 < D for
D = (e + d + 1)/2 = 6 ...

I For convenience, we display the entire output of the extended Euclidean algorithm
(but omi�ing the first Bézout coe�icient sequence):

i qi gi ti
0 9x + 2x3 + 4x4 + 9x5 + 3x6 + 5x7 + x8 0
1 8 + 8x 5 + 7x + 5x2 + 2x3 + 10x4 + 9x5 + 6x6 + 7x7 1
2 7 + 10x 4 + x + 3x2 + x3 + 7x4 + 4x6 3 + 3x
3 3 + 3x 10 + 4x + 7x2 + 9x3 + 6x4 + 5x5 2 + 4x + 3x2

4 6 + 10x 7 + 3x + 3x2 + 8x3 + 6x4 8 + 7x + x2 + 2x3

5 10 + 9x 1 + 4x + 3x2 + 8x3 9 + 3x + 4x2 + 2x4

6 4 + 10x 8 + 9x + 3x2 6 + 6x + 10x3 + 2x4 + 4x5

7 5 + 4x 2 + 9x 7 + 7x + 10x2 + 4x3 + 4x4 + 8x5 + 4x6

8 10 + x 9 4 + 9x + 10x2 + 5x3 + 10x4 + 3x5 + 3x6 + 6x7

9 0 x + 10x3 + 9x4 + x5 + 4x6 + 3x7 + 5x8

I (In a fast implementation we would of course use the divide-and-conquer extended
Euclidean algoritm and would not produce the entire sequence of remainders gi)

Example: Decoding III

I From the extended Euclidean algorithm we obtain that h = 2 with

gh+1 = 10 + 4x + 7x2 + 9x3 + 6x4 + 5x5

th+1 = 2 + 4x + 3x2

I Dividing gh+1 by th+1 we obtain the quotient

f1 = 5 + 3x + x2 + 9x3

and the remainder r = 0

I In particular, the decoding is successful, and the reconstructed data vector is
(5, 3, 1, 9) ∈ Zd+1

11

I Re-encoding the reconstructed vector as appropriate, we can also observe that the
vector Γ has two errors, namely f (ξ3) = 10 , γ3 = 2 and f (ξ5) = 4 , γ5 = 9

Correctness I

I First, suppose that the algorithm does not assert failure

I Then, f1 = gh+1/th+1 has degree at most d

I Since th+1f1 = gh+1 = sh+1g0 + th+1g1, we have sh+1g0 = th+1 (f1 − g1) and hence for all
i = 1, 2, . . . , e we have th+1 (ξi) = 0 or f1 (ξi) = g1 (ξi) = γi

I Since gh+1 is the first remainder with deg gh+1 < D and deg g0 = e, by the structure of
the Bézout coe�icients we have deg th+1 ≤ e − D = (e − d − 1)/2

I Indeed, from the definition of Bézout coe�icients we have
deg sh+1, deg th+1 ≤

∑h
i=1 deg qi = deg g0 − deg gh ≤ e − D since

deg gi + deg qi = deg gi−1 and deg gh ≥ D

I Since th+1 has at most deg th+1 roots, we have f1 (ξi) , γi for at most (e − d − 1)/2
coordinates i = 1, 2, . . . , e

I Thus, f1 is a valid output for input Ξ, Γ, d

Correctness II

I Next, let f ∈ F [x] be a polynomial of degree at most d , let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e

consist of distinct elements, and let Γ = (γ1,γ2, . . . ,γe) ∈ F e be a vector that disagrees
with f (Ξ) in at most (e − d − 1)/2 coordinates for d + 1 ≤ e

I By Lemma 12, we know that Γ uniquely determines f

I We show that Gao’s algorithm outputs f1 = f on input Ξ, Γ, d

I Let B = {i ∈ {1, 2, . . . , e} : f (ξi) , γi } be the set of “bad” coordinates

I That is, B is the set of coordinates where Γ and f (Ξ) disagree

I By assumption we have |B| ≤ (e − d − 1)/2

I To understand the operation of the algorithm, let us split the polynomials g0 and g1

into parts based on B and G = {1, 2, . . . , e} \ B (the “bad” and “good” coordinates)

Correctness III

I Toward this end, let

q =
∏
i∈G

(x − ξi) ∈ F [x] , r0 =
∏
i∈B

(x − ξi) ∈ F [x]

I It is immediate that g0 = qr0

I Let r1 ∈ F [x] be the unique polynomial of degree at most (e − d − 1)/2 − 1 with
r1 (ξi) = q(ξi)

−1 (γi − f (ξi)) , 0 for all i ∈ B

I Thus, we have g1 = qr1 + f

I We have that gcd(r0, r1) = 1 since no root of r0 is a root of r1 and r0 factors into a
product of degree 1 polynomials

I The following lemma will imply that the algorithm outputs f1 = f ; we postpone the
proof and give it as Lemma 13

Correctness IV

I Gao’s Lemma. (Lemma 13 below) Let c, d,D ∈ Z≥0 and let q, r0, r1, f0, f1 ∈ F [x] with
gcd(r0, r1) = 1, deg q ≥ D ≥ c + d + 1, and deg ri ≤ c, deg fi ≤ d for i = 0, 1. Run the
extended Euclidean algorithm on input g0 = qr0 + f0 and g1 = qr1 + f1 to obtain the
remainders gh and gh+1 = sh+1g0 + th+1g1 for sh+1, th+1 ∈ F [x] with deg gh ≥ D and
deg gh+1 < D. Then, sh+1 = −αr1 and th+1 = αr0 for some α ∈ F \ {0}

I Take f0 = 0, f1 = f , c = |B| in the lemma and recall that we have D = (e + d + 1)/2

I Thus, c ≤ (e − d − 1)/2, deg q = |G | = e − |B| ≥ D ≥ c + d + 1, and the lemma applies
to the polynomials g0 = qr0 and g1 = qr1 + f constructed in the algorithm

I Let gh+1, sh+1, th+1 be the output of the lemma (also constructed by the algorithm)

I Because f0 = 0 and f1 = f , we have gh+1 = −αr1qr0 + αr0 (qr1 + f) = th+1f

I In particular, the algorithm outputs f1 = f = gh+1/th+1 �

Preparation for Gao’s Lemma

I Recall the matrices

R0 =

[
s0 t0

s1 t1

]
=

[
1 0
0 1

]
, Qi =

[
0 1
1 −qi

]
for i = 1, 2, . . . , `

and Ri = QiQi−1 · · ·Q1R0 ∈ F [x]2×2 for i = 0, 1, . . . , ` from the analysis of the
traditional extended Euclidean algorithm in Problem Set 1

I We recall that for all i = 0, 1, . . . , ` we have Ri =

[
si ti

si+1 ti+1

]
and Ri

[
r0

r1

]
=

[
ri

ri+1

]

I Since det Qi = −1 we have det Ri = (−1)i and thus R−1
i = (−1)i

[
ti+1 −ti

−si+1 si

]

I Since r`+1 = 0, we have
[
r0

r1

]
= R−1

`

[
r`
0

]
=

[
(−1)`t`+1r`
(−1)`+1s`+1r`

]

I We conclude that s`+1 = (−1)`+1r1/r` and t`+1 = (−1)`r0/r`

Gao’s Lemma

Lemma 13 (Gao [5])
Let c, d,D ∈ Z≥0 and let q, r0, r1, f0, f1 ∈ F [x] with gcd(r0, r1) = 1, deg q ≥ D ≥ c + d + 1,
and deg ri ≤ c, deg fi ≤ d for i = 0, 1. Run the extended Euclidean algorithm on input
g0 = qr0 + f0 and g1 = qr1 + f1 to obtain the remainders gh and gh+1 = sh+1g0 + th+1g1 for
sh+1, th+1 ∈ F [x] with deg gh ≥ D and deg gh+1 < D. Then, sh+1 = −αr1 and th+1 = αr0 for
some α ∈ F \ {0}

Proof of Gao’s Lemma I

I Let r0, r1, . . . , r`, r`+1 and q1, q2, . . . , q` be the sequences of remainders and quotients
in the extended Euclidean algorithm on input r0, r1

I Since gcd(r0, r1) = 1, we have r` ∈ F \ {0} and r`+1 = 0

I Let si, ti ∈ F [x] for i = 0, 1, . . . , ` + 1 be the associated sequence of Bézout coe�icients

I For all i = 1, 2, . . . , `, we have

ri+1 = ri−1 − qiri , si+1 = si−1 − qisi , ti+1 = ti−1 − qiti (29)

I For all i = 2, 3, . . . , ` + 1 define gi = sig0 + tig1

I From (29) it follows that gi+1 = gi−1 − qigi for all i = 1, 2, . . . , `

I Let us show that deg gi is a monotone decreasing sequence for i = 1, 2, . . . , `

Proof of Gao’s Lemma II

I We have ri = sir0 + tir1 for all i = 1, 2, . . . , ` + 1. Furthermore, deg si ≤ c and deg ti ≤ c
for all i = 1, 2, . . . , ` + 1

I Since g0 = qr0 + f0, g1 = qr1 + f1, and gi = sig0 + tig1, for all i = 0, 1, . . . , ` we have
gi = qri + sif0 + tif1

I Since deg(sif0 + tif1) ≤ c + d and deg q ≥ D ≥ c + d + 1, we have
deg gi = deg q + deg ri ≥ D for all i = 0, 1, . . . , `

I Since deg ri is monotone decreasing for i = 1, 2, . . . , `, we have that the same holds for
deg gi

I Thus, we have that g0, g1, . . . , g` and q1, q2, . . . , q` form a prefix of the sequence of
remainders and quotients in the extended Euclidean algorithm on input g0, g1

I Since deg r` = 0, we have deg g` = deg q ≥ D

Proof of Gao’s Lemma III

I Since s`+1 = (−1)`+1r1/r` and t`+1 = (−1)`r0/r` , we have

g`+1 = s`+1g0 + t`+1g1 = (−1)` (−f0r1 + f1r0)/r`

I Thus, deg g`+1 ≤ c + d < D and it follows that g`+1 = g = sg0 + tg1 with α = (−1)`/r` ,
s = −αr1, and t = αr0 �

Recap of Lecture 4

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm by divide and conquer
I The two operands truncated to a prefix of the highest-degree monomials determine the

prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Problem Set 4 – I

1. Let F be a field. Show that a nonzero polynomial f ∈ F [x] of degree at most d has at
most d distinct roots.

Hints: To reach a contradiction, assume that you have at least d + 1 distinct roots.
Recall what we know about Vandermonde matrices from our earlier problem sets.

Problem Set 4 – II

2. Reed–Solomon codes.
(a) Encoding. Suppose we want to encode the data vector Φ = (7, 6, 5, 4, 3) ∈ F5

11 using the
evaluation points Ξ = (0, 1, 2, 3, 4, 5, 6) ∈ F7

11. Find the encoding Ψ = f (Ξ) ∈ F7
11.

(b) Decoding in the presence of errors. Suppose that Ξ = (1, 2, 3, 4, 5, 6) ∈ F6
13 and that

Γ = (3, 8, 6, 0, 7, 1) ∈ F6
13. Find the unique polynomial f ∈ F13[x] of degree at most 1 such

that f (Ξ) agrees with Γ in all but at most 2 coordinates, or conclude that no such f exists.

Hints: For part (a), we have f = 7 + 6x + 5x2 + 4x3 + 3x4 ∈ F11[x], d = 4, and e = 7. For
part (b), we have d = 1 and e = 6. One possibility to decode is to try out all
polynomials f of degree at most 1 over F13. How many such polynomials are there?
Another is to use Gao’s algorithm.

Problem Set 4 – III

3. Coinciding pairs of polynomials and polynomial quotient. Let us study the two pairs
of polynomials

f = 4 + 5x + 3x2 + 2x3 + 9x4 + 8x5 + x6 + 3x7 + 9x8 + 5x9 + 7x10 ∈ Z11[x] ,

g = 5 + 7x + 5x2 + 5x3 + x4 + 7x5 + 4x6 + 5x7 + 8x8 ∈ Z11[x]

and

f̃ = x6 + 3x7 + 9x8 + 5x9 + 7x10 ∈ Z11[x] ,

g̃ = 4x6 + 5x7 + 8x8 ∈ Z11[x] .

Observe that (f , g) ≡4 (f̃ , g̃). Using the classical algorithm for polynomial division
(recall Lecture 1), divide f by g and divide f̃ by g̃. Observe that both divisions produce
the same quotient. Using the structure of the classical algorithm, justify why the two
divisions must produce the same quotient.

Problem Set 4 – IV

Hints: Study carefully how the classical division algorithm obtains the coe�icients of
the quotient, one coe�icient at a time. Which coe�icients of the dividend and the
divisor can have an e�ect on a particular coe�icient of the quotient?

Problem Set 4 – V

4. Coinciding pairs of polynomials, polynomial quotient, and further coincidence. Let F
be a field and let f , g, f̃ , g̃ ∈ F [x] with deg f ≥ deg g ≥ 0 and deg f̃ ≥ deg g̃ ≥ 0.
Suppose that (f , g) ≡2k (f̃ , g̃) for k ∈ Z with k ≥ deg f − deg g ≥ 0. Define
q, r, q̃, r̃ ∈ F [x] by division with quotients and remainders as follows

f = qg + r, deg r < deg g ,

f̃ = q̃g̃ + r̃, deg r̃ < deg g̃ .

Prove that we have q = q̃ and at least one of the following holds:
(g, r) ≡2(k−deg q) (g̃, r̃) or r = 0 or k − deg q < deg g − deg r .

Hints: Recall that (f , g) ≡2k (f̃ , g̃) holds if and only if f � 2k = f̃ � 2k and
g�(2k − (deg f − deg g)) = g̃�(2k − (deg f̃ − deg g̃)). Show first that without loss
generality (by multiplying each pair (f , g) and (f̃ , g̃) with xm for a nonnegative integer
m as necessary), we can assume that deg f = deg f̃ . Then conclude that

Problem Set 4 – VI

k ≥ deg f − deg g ≥ 0 implies deg g = deg g̃. To show that q = q̃ holds, study the
identity

f − f̃ = q(g − g̃) + (q − q̃)g̃ + r − r̃

and seek to control the degrees of the di�erences f − f̃ , g − g̃, and r − r̃ from above.
For example, f � 2k = f̃ � 2k and deg f = deg f̃ imply that we have
deg(f − f̃) < deg f − 2k. Finally, show that r , 0 and k − deg q ≥ deg g − deg r
together imply (g, r) ≡2(k−deg q) (g̃, r̃).

5. Identity testing and probabilistically
checkable proofs

Computer Science Club, St Petersburg
17–18 November 2018

Pe�eri Kaski
Department of Computer Science

Aalto University

Recap of last lecture

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm for polynomials by divide and conquer
I The two polynomial operands truncated to a prefix of the highest-degree monomials

determine the prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Have: Near-linear-time toolbox for univariate polynomials

I Multiplication

I Division (quotient and remainder)

I Batch evaluation

I Interpolation

I Extended Euclidean algorithm (gcd)

I Interpolation from partly erroneous data

Motivation for this lecture

I In the last lecture we encountered uncertainty in computation

I We saw how to cope with uncertainty in the form of errors in data by using
error-correcting codes

I In this lecture we look at (fine-grained) proof systems and errors in computation ...

I Our motivation is to be able to delegate computation ...

Delegating computation

Key content for Lecture 5

I We look at yet further applications of the evaluation–interpolation duality and
randomization in algorithm design

I Randomized identity testing for polynomials and matrices (exercise)

I Delegating computation and proof systems

I Completeness and soundness of a proof system,
cost of preparing a proof, cost of verifying a proof

I Williams’s (2016) [14] probabilistic proof system for #CNFSAT

I Coping with errors in computation using error-correcting codes with multiplicative
structure (Reed–Solomon codes revisited)

I Proof systems that tolerate errors during proof preparation (Björklund & K. 2016) [3]

Proof systems

I Let I be a claim
(an instance of a computational problem with a yes/no (true/false) solution)

I Let us assume that I is decidable, that is, there exists an algorithm D that given I as
input outputs whether I is true

I Deciding whether I is true can o�en be assisted by supplying a proof Π for I

I A proof system consists of a verification algorithm (the verifier) V that takes as
input I together with a putative proof Π̃ and either accepts or rejects Π̃ as a proof for I

Completeness and soundness

I A proof system with verifier V is

I complete if for every true I there exists a proof Π such that V accepts on input I and Π

I sound if for every false I and every putative proof Π̃ it holds that V rejects on input I
and Π̃

Probabilistic soundness

I Let us relax the notion of soundness somewhat by allowing the verifier V to make
random choices during its execution

I A proof system with a randomized verifier V is probabilistically sound if for every
false I and every putative proof Π̃ it holds that V rejects with high probability on input
I and Π̃

I By “high probability” we mean with probability 1 − o(1) as a function of the size of I,
where probability is over the random choices made by V

E�iciency (verifier)

I In addition to completeness and soundness, in general we want a proof system also to
be e�icient

I That is, V on input I and Π̃ should consume less computational resources than it takes
to decide I (using the best known algorithm for deciding I)

E�iciency (prover)

I Besides verifier e�iciency, a yet further aspect to a proof system are the computational
resources to prepare a proof

I Let P be an algorithm (the prover) that given a claim I as input outputs whether I is
true, and if I is true, also outputs a proof Π such that V accepts on input I and Π

I We would like P to be e�icient in the sense that P should not consume substantially
more computational resources than it takes to decide I (using the best known
algorithm for deciding I)

(Some of) recent work on fine-grained proof systems

I Goldwasser, Kalai, Rothblum [7]

I Walfish and Blumberg [13]

I Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, Schneider [4]

I Williams [14]

I Björklund, K. [3, 8]

I In what follows we look at Williams’s [14] proof system for #CNFSAT ...

Boolean satisfiability

I Let x1, x2, . . . , xn be n variables that take values in {0, 1}

I A truth assignment A is a mapping that assigns a value in {0, 1} to each of the
variables x1, x2, . . . , xn

I A literal is a variable (xi) or its negation (x̄i)

I A literal xi (respectively, x̄i) is satisfied by A if A(xi) = 1 (respectively, A(xi) = 0)

I A clause C is a set of literals

I A clause C is satisfied by A if at least one literal in C is satisfied by A

I A collection of clauses C1,C2, . . . ,Cm is satisfied by A if A satisfies every clause
C1,C2, . . . ,Cm

Conjunctive-normal-form satisfiability (CNFSAT)

I The CNFSAT problem asks, given a collection C1,C2, . . . ,Cm of clauses over variables
x1, x2, . . . , xn as input, whether there exists a truth assignment that satisfies all the
clauses C1,C2, . . . ,Cm

I CNFSAT is NP-complete

I The #CNFSAT problem asks, given a collection C1,C2, . . . ,Cm of clauses over
variables x1, x2, . . . , xn as input, for the number of truth assignments that satisfy all
the clauses C1,C2, . . . ,Cm

I #CNFSAT is #P-complete

I It is not known how to solve CNFSAT in worst-case time O∗ ((2 − ϵ)n) for any constant
ϵ > 0; the best known algorithms run in O∗ (2n) time

I Here the O∗ () notation suppresses a multiplicative factor polynomial in the size of the
input

CNFSAT and #CNFSAT

I It is easy to convince a verifier that an instance C1,C2, . . . ,Cm of CNFSAT is satisfiable
– just give the verifier a truth assignment A that satisfies C1,C2, . . . ,Cm

I The verifier can check that A actually satisfies C1,C2, . . . ,Cm in time O(mn)

I But how to convince a verifier that C1,C2, . . . ,Cm has exactly N satisfying truth
assignments?

I For example, how to convince a verifier that C1,C2, . . . ,Cm has no (zero) satisfying
truth assignments?

A probabilistic proof system for #CNFSAT

I Williams (2016) [14]:
There exists a randomized algorithm V (the verifier) such that for all collections C of
m clauses over n variables and all integers N it holds that

1. if C has exactly N satisfying truth assignments, then there exists a bit string Π of length
O∗ (2n/2) such that V accepts the triple C ,N ,Π with probability 1;

2. if C does not have exactly N satisfying truth assignments, then for every bit string Π̃ it
holds that V rejects the triple C ,N , Π̃ with probability 1 − o(1).

Moreover, V runs in time O∗ (2n/2)

Multivariate polynomial representation

I Let us work over Fq, a finite field with q ≥ 2 elements, q prime

I Let x1, x2, . . . , xn be indeterminates that take values in Fq

I Let us work with multivariate polynomials in Fq[x1, x2, . . . , xn]

I We will transform a collection C of m clauses over x1, x2, . . . , xn into a multivariate
polynomial pC (x1, x2, . . . , xn) such that for all α1,α2, . . . ,αn ∈ {0, 1} ⊆ Fq we have
pC (α1,α2, . . . ,αn) = 1 if and only if the truth assignment A with
A(x1) = α1,A(x2) = α2, . . . ,A(xn) = αn satisfies C , and pC (α1,α2, . . . ,αn) = 0
otherwise

A literal as a multivariate polynomial

I For a literal ` over the variables x1, x2, . . . , xn, define the multivariate polynomial

p` (x1, x2, . . . , xn) =

1 − xi if ` = xi;

xi if ` = x̄i
I p` has degree 1

I For all α1,α2, . . . ,αn ∈ {0, 1} we have p` (α1,α2, . . . ,αn) = 0 if and only if the truth
assignment A with A(x1) = α1,A(x2) = α2, . . . ,A(xn) = αn satisfies `, and
p` (α1,α2, . . . ,αn) = 1 otherwise

A clause as a multivariate polynomial

I Let C be a clause over the variables x1, x2, . . . , xn

I For a clause C, define the multivariate polynomial

pC (x1, x2, . . . , xn) = 1 −
∏
`∈C

p` (x1, x2, . . . , xn)

I Since C has at most 2n literals, pC has degree at most 2n

I For all α1,α2, . . . ,αn ∈ {0, 1} we have pC (α1,α2, . . . ,αn) = 1 if and only if the truth
assignment A with A(x1) = α1,A(x2) = α2, . . . ,A(xn) = αn satisfies C, and
pC (α1,α2, . . . ,αn) = 0 otherwise

A collection of clauses as a multivariate polynomial

I Let C be a collection C1,C2, . . . ,Cm of clauses over the variables x1, x2, . . . , xn

I Define the multivariate polynomial

pC (x1, x2, . . . , xn) =
m∏

j=1

pCj (x1, x2, . . . , xn)

I pC has degree at most 2mn

I For all α1,α2, . . . ,αn ∈ {0, 1} we have pC (α1,α2, . . . ,αn) = 1 if and only if the truth
assignment A with A(x1) = α1,A(x2) = α2, . . . ,A(xn) = αn satisfies C , and
pC (α1,α2, . . . ,αn) = 0 otherwise

#CNFSAT as a multivariate polynomial

I Let us work over Fq, a finite field with q ≥ 2 elements, q a prime

I Let x1, x2, . . . , xn be indeterminates that take values in Fq

I Let C be a collection of m clauses over x1, x2, . . . , xn

I We now have a multivariate polynomial pC (x1, x2, . . . , xn) of degree at most 2mn such
that for all α1,α2, . . . ,αn ∈ {0, 1} we have pC (α1,α2, . . . ,αn) = 1 if and only if the
truth assignment A with A(x1) = α1,A(x2) = α2, . . . ,A(xn) = αn satisfies C , and
pC (α1,α2, . . . ,αn) = 0 otherwise

I That is, the number N of satisfying truth assignments to C satisfies

N ≡
∑

α1,α2, ...,αn∈{0,1}

pC (α1,α2, . . . ,αn) (mod q)

#CNFSAT as a univariate polynomial (1/2)

I Without loss of generality we may assume that n is even

I With some foresight, let us now assume that 2n/2+2mn ≤ q ≤ 2n/2+3mn
(for large enough n we can find the two smallest such primes q1, q2 in time O∗ (2n/2),
cf. [2] and [1])

I Let a1, a2, . . . , an/2 ∈ Fq[x] be univariate polynomials of degree at most 2n/2 − 1 such
that

{0, 1}n/2 = {(a1 (α), a2 (α), . . . , an/2 (α)) : α ∈ {0, 1, . . . , 2n/2 − 1}}

I In particular we can construct such polynomials a1, a2, . . . , an/2 in time O∗ (2n/2) using
fast interpolation (exercise)

I Now define the univariate polynomial PC ∈ Fq[x] in the indeterminate x by

PC (x) =
∑

αn/2+1,αn/2+2, ...,αn∈{0,1}

pC

(
a1 (x), a2 (x), . . . , an/2 (x),αn/2+1,αn/2+2, . . . ,αn

)

#CNFSAT as a univariate polynomial (2/2)

I Recalling from the previous slide, we have

PC (x) =
∑

αn/2+1,αn/2+2, ...,αn∈{0,1}

pC

(
a1 (x), a2 (x), . . . , an/2 (x),αn/2+1,αn/2+2, . . . ,αn

)
I We observe that PC has degree at most 2n/2+1mn ≤ q/2

I Using near-linear-time algorithms for univariate polynomials, given a collection C of
clauses and a point ξ ∈ Fq as input, we can compute the value PC (ξ) in time O∗ (2n/2)
(exercise)

I From the definition of the polynomials a1, a2, . . . , an/2 we observe that the number N
of satisfying truth assignments to C satisfies

N ≡
2n/2−1∑
α=0

PC (α) (mod q) (30)

The proof string

I Recall that for large enough n we can assume that we work modulo a prime q with
2n/2+2mn ≤ q ≤ 2n/2+3mn

I Given C as input, in time O∗ (2n/2e) we can produce e evaluations of PC at distinct
points

I If e ≥ 2n/2+1mn + 1, these evaluations enable us to interpolate PC in time O∗ (2n/2)
using fast interpolation

I We can represent the prime q and the coe�icients of PC ∈ Fq[x] (of degree at most
2n/2+1mn) as a (prefix-coded) binary string Πq of length O∗ (2n/2)

I Let q1, q2 be the two least primes in the interval [2n/2+2mn, 2n/2+3mn]

I Take as the proof string Π the concatenation of Πq1 and Πq2

Completeness

I Suppose Π = Πq1Πq2 is a correct proof string (of length O∗ (2n/2))

I Using Πq1 and Πq2 together with fast batch evaluation and (30) we can recover
N mod q1 and N mod q2 in time O∗ (2n/2), where N is the number of satisfying truth
assignments to C

I Since 0 ≤ N ≤ 2n and q1q2 ≥ 2n + 1, from N mod q1 and N mod q2 we can reconstruct
the correct N using the Chinese Remainder Theorem

I Thus the verifier will always accept a correct triple C , Ñ , Π̃ with Π̃ = Π and Ñ = N in
time O∗ (2n/2)

Soundness (probabilistic) I

I Suppose the verifier is given as input a collection C of m clauses over the variables
x1, x2, . . . , xn, an integer Ñ , and a binary string Π̃

I The verifier first checks that Π̃ = Π̃q1 Π̃q2 such that Π̃q1 and Π̃q2 encode the coe�icients
of a polynomial P̃ of degree at most 2n/2+1mn modulo the two least primes q1 and q2

in the interval [2n/2+2mn, 2n/2+3mn]; if this is not the case, the verifier rejects

I Next, consider each q ∈ {q1, q2} in turn

I To verify that P̃ = PC ∈ Fq[x] the verifier repeats the following test dlog2 ne + 1 times:
select ξ ∈ Fq independently and uniformly at random, and test that P̃ (ξ) = PC (ξ)
holds; if this is not the case, the verifier rejects

I The le�-hand side P̃ (ξ) can be evaluated in time O∗ (2n/2) using Horner’s rule; the
right-hand side PC (ξ) can be evaluated in time O∗ (2n/2) using the dedicated
evaluation algorithm for PC (in the exercises)

Soundness (probabilistic) II

I Since P̃ − PC has degree at most 2n+1mn ≤ q/2, if P̃ , PC ∈ Fq[x] then the verifier
rejects with probability at least 1 − 1/n (exercise)

I Thus the verifier rejects with probability 1 − o(1) unless the string Π̃ is in fact the
correct proof string Π; from Π the verifier can recover the correct solution N and reject
unless Ñ = N ; the verifier runs in time O∗ (2n/2)

Complexity of preparing and verifying the proof

I Given C as input, in time O∗ (2n/2e) we can produce e evaluations of PC at distinct
points modulo q

I If e ≥ 2n/2+1mn + 1, these evaluations enable us to interpolate PC in time O∗ (2n/2)
using fast interpolation

I Thus, the total e�ort to prepare the proof is O∗ (2n), which essentially matches the best
known algorithms for counting the number of satisfying assignments to C (that is, no
algorithm that runs in worst-case time O∗ ((2 − ϵ)n) is known for any constant ϵ > 0)

I The total e�ort to (probabilistically) verify the proof is O∗ (2n/2)

Proof preparation with tolerance for errors [3, 8]
I Beyond #CNFSAT, a number of other computational problems admit proof systems in

the following framework ...

I The proof is a polynomial p(x) of degree at most d over Fq

(one or more polynomials with Chinese Remaindering)

I Prepare the proof in evaluation representation with distinct e points

(ξ1, p(ξ1)), (ξ2, p(ξ2)), . . . , (ξe, p(ξe))

I Preparation is vector-parallel, tolerates at most (e − d − 1)/2 errors for e ≥ d + 1

I Decode the proof from evaluation representation to coe�icient representation

p(x) = π0 + π1x + π2x2 + . . . + πdxd

I Verify the proof by selecting a uniform random ξ ∈ Fq and testing whether

p(ξ) = π0 + π1ξ + π2ξ
2 + . . . + πdξ

d

Delegating computation

Recap of Lecture 5

I We look at yet further applications of the evaluation–interpolation duality and
randomization in algorithm design

I Randomized identity testing for polynomials and matrices (exercise)

I Delegating computation and proof systems

I Completeness and soundness of a proof system,
cost of preparing a proof, cost of verifying a proof

I Williams’s (2016) [14] probabilistic proof system for #CNFSAT

I Coping with errors in computation using error-correcting codes with multiplicative
structure (Reed–Solomon codes revisited)

I Proof systems that tolerate errors during proof preparation (Björklund & K. 2016) [3]

Problem Set 5 – I

1. Randomized polynomial identity testing. Let F be a field with at least q elements.
1.1 Let f ,Λf ∈ F [x] be polynomials of degree at most d . Show that if f , Λf then a uniform

random ξ ∈ F satisfies f (ξ) , Λf (ξ) with probability at least 1 − d/q.
1.2 Let a, b, c ∈ F [x] be three polynomials, each of degree at most d and each given as a

sequence of coe�icients. Present a randomized test that verifies c = ab and uses O(d)
operations in F . If c = ab the test must accept with probability 1; if c , ab the test must
reject with probability at least 1 − d/q.

Hints: For part (a), recall what we know about low-degree polynomials. For part (b),
reduce to part (a) and carefully justify that your algorithm uses O(d) operations in F .

Problem Set 5 – II

2. Testing a matrix product. Let A,B,C be three n × n matrices with entries in a field F .
Present a randomized algorithm that tests whether C = AB using O(n2) operations in
F . When C = AB, your algorithm must always assert that C = AB. When C , AB,
your algorithm must assert that C , AB with probability at least 1/2.

Hints: Select a uniform random x ∈ {0, 1}n ⊆ F n. Study the probability that
Cx , A(Bx) when C , AB.

Problem Set 5 – III

3. Evaluation algorithm for the #CNFSAT proof polynomial PC . Let C be a collection of
clauses C1,C2, . . . ,Cm over n variables x1, x2, . . . , xn taking values in {0, 1}. Present
detailed pseudocode for an algorithm that, given as input C , a prime q with
2n/2+2mn ≤ q ≤ 2n/2+3mn, and ξ ∈ Fq, computes the value PC (ξ) ∈ Fq in time
O(2n/2 (mn)c) for some constant c > 0. Carefully justify the running time of your
algorithm. You may use the near-linear-time toolbox for univariate polynomials and
algorithms for modular arithmetic in Fq as subroutines without detailed pseudocode,
but make sure that you specify with care the input to each subroutine.

Hints: The polynomial PC ∈ Fq[x] is defined in the lecture slides. Observe that your
algorithm needs to work for an arbitrary ξ ∈ Fq, not only for ξ ∈ {0, 1}. Also observe
that the given input is C , q, and ξ . In particular, the polynomials a1, a2, . . . , an/2 need
to be constructed inside your algorithm.

Problem Set 5 – IV

4. Delegating matrix multiplication. Suppose you have two n × n matrices, X and Y , with
entries in a finite field F with at least four elements. You want to delegate the task of
computing the product matrix XY to your three friends Alice, Bob, and Charlie so that
none of your three friends individually gains any information about the matrices X
and Y other than the size parameter n. Describe a protocol that employs Alice, Bob,
and Charlie to help you so that you obtain the product matrix XY without you
yourself pu�ing in more work than O(n2) operations in F . You can assume you have a
subroutine that returns independent uniform random elements of F .

Hints: Recall Shamir’s secret sharing. Extend each matrix X ,Y to a matrix whose
entries are polynomials of degree at most one with coe�icients in F , where the
constant of each polynomial is the original matrix entry. Have Alice, Bob, and Charlie
each multiply a pair of n × n matrices X (A),Y (A) , X (B),Y (B) , and X (C),Y (C) with entries
in F . Recover the product matrix XY by interpolation from the products X (A)Y (A) ,
X (B)Y (B) , and X (C)Y (C) that Alice, Bob, and Charlie supply to you. Carefully justify

Problem Set 5 – V

that each of your friends on his or her own does not gain any information about X and
Y other than the size parameter n.

References I

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004),
781–793.
[doi:10.4007/annals.2004.160.781].

[2] R. C. Baker, G. Harman, and J. Pintz, The di�erence between consecutive primes. II,
Proc. London Math. Soc. (3) 83 (2001), 532–562.
[doi:10.1112/plms/83.3.532].

[3] A. Björklund and P. Kaski, How proofs are prepared at Camelot: extended abstract,
in Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC 2016, Chicago, IL, USA, July 25-28, 2016 (G. Giakkoupis, Ed.). ACM, 2016, pp.
391–400.
[doi:10.1145/2933057.2933101].

https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1112/plms/83.3.532
https://doi.org/10.1145/2933057.2933101

References II

[4] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider,
Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility, in Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016
(M. Sudan, Ed.). ACM, 2016, pp. 261–270.
[doi:10.1145/2840728.2840746].

[5] S. Gao, A new algorithm for decoding Reed–Solomon codes, in Communications,
Information, and Network Security (V. K. Bhargava, H. V. Poor, V. Tarokh, and S. Yoon,
Eds.), Springer, 2003, pp. 55–68.

[6] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, third ed., Cambridge
University Press, Cambridge, 2013.
[doi:10.1017/CBO9781139856065].

https://doi.org/10.1145/2840728.2840746
https://doi.org/10.1017/CBO9781139856065

References III

[7] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, Delegating computation: Interactive
proofs for muggles, J. ACM 62 (2015), 27:1–27:64.
[doi:10.1145/2699436].

[8] P. Kaski, Engineering a delegatable and error-tolerant algorithm for counting small
subgraphs, in Proceedings of the Twentieth Workshop on Algorithm Engineering and
Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018. (R. Pagh and
S. Venkatasubramanian, Eds.). SIAM, 2018, pp. 184–198.
[doi:10.1137/1.9781611975055.16].

[9] A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der
Charakteristik 2, Acta Informat. 7 (1976/77), 395–398.
[doi:10.1007/BF00289470].

[10] A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing
(Arch. Elektron. Rechnen) 7 (1971), 281–292.

https://doi.org/10.1145/2699436
https://doi.org/10.1137/1.9781611975055.16
https://doi.org/10.1007/BF00289470

References IV

[11] A. Shamir, How to share a secret, Comm. ACM 22 (1979), 612–613.
[doi:10.1145/359168.359176].

[12] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, 1992.
[doi:10.1137/1.9781611970999].

[13] M. Walfish and A. J. Blumberg, Verifying computations without reexecuting them,
Commun. ACM 58 (2015), 74–84.
[doi:10.1145/2641562].

[14] R. R. Williams, Strong ETH breaks with Merlin and Arthur: Short non-interactive
proofs of batch evaluation, in 31st Conference on Computational Complexity, CCC
2016, May 29 to June 1, 2016, Tokyo, Japan (R. Raz, Ed.). Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1–2:17.
[doi:10.4230/LIPIcs.CCC.2016.2].

https://doi.org/10.1145/359168.359176
https://doi.org/10.1137/1.9781611970999
https://doi.org/10.1145/2641562
https://doi.org/10.4230/LIPIcs.CCC.2016.2

