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Einstein Quote

Everything should be made as simple as possible, but not simpler
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Shortest Path Problem

Variants

• Nonnegative and arbitrary arc lengths.

• Point to point, single source, all pairs.

• Directed and undirected.

Here we study

• Point to point, nonnegative length, directed problem.

• Allow preprocessing with limited (linear) space.

Many applications, both directly and as a subroutine.
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Shortest Path Problem

Input: Directed graph G = (V, A), nonnegative length function

` : A → R+, origin s ∈ V , destination t ∈ V .

Preprocessing: Limited space to store results.

Query: Find a shortest path from s to t.

Interested in exact algorithms that search a (small) subgraph.

Related work: reach-based routing [Gutman 04], hierarchi-

cal decomposition [Schultz, Wagner & Weihe 02], [Sanders &

Schultes 05, 06], geometric pruning [Wagner & Willhalm 03], arc

flags [Lauther 04], [Köhler, Möhring & Schilling 05], [Möhring

et al. 06].
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Motivating Application

Driving directions

• Run on servers and small devices.

• Typical production codes
◦ Use base graph or other heuristics based on road cate-

gories; needs hand-tuning.

◦ Runs (bidirectional) Dijkstra or A∗ with Euclidean bounds

on “patched” graph.

◦ Non-exact and no performance guarantee.

• We are interested in exact and very efficient algorithms.

• New results finding their way into products.
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Outline

• Scanning method and Dijkstra’s algorithm.

• Bidirectional Dijkstra’s algorithm.

• A∗ search.

• ALT Algorithm

• Definition of reach

• Reach-based algorithm

• Reach for A∗
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Scanning Method

• For each vertex v maintain its distance label ds(v) and status

S(v) ∈ {unreached, labeled, scanned}.

• Unreached vertices have ds(v) = ∞.

• If ds(v) decreases, v becomes labeled.

• To scan a labeled vertex v, for each arc (v, w),

if ds(w) > ds(v) + `(v, w) set ds(w) = ds(v) + `(v, w).

• Initially for all vertices are unreached.

• Start by decreasing ds(s) to 0.

• While there are labeled vertices, pick one and scan it.

• Different selection rules lead to different algorithms.
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Dijkstra’s Algorithm

[Dijkstra 1959], [Dantzig 1963].

• At each step scan a labeled vertex with the minimum label.

• Stop when t is selected for scanning.

Work almost linear in the visited subgraph size.

Reverse Algorithm: Run algorithm from t in the graph with all

arcs reversed, stop when t is selected for scanning.

Bidirectional Algorithm

• Run forward Dijkstra from s and backward from t.

• Maintain µ, the length of the shortest path seen: when scan-

ning an arc (v, w) such that w has been scanned in the other

direction, check if the corresponding s-t path improves µ.

• Stop when about to scan a vertex x scanned in the other

direction.

• Output µ and the corresponding path.
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Bidirectional Algorithm: Pitfalls

The algorithm is not as simple as it looks.

5x

2 2
s t

ba 5

5

The searches meat at x, but x is not on the shortest path.
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Example Graph

1.6M vertices, 3.8M arcs, travel time metric.
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Dijkstra’s Algorithm

Searched area
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Bidirectional Algorithm

forward search/ reverse search

SP with preprocessing 11



A∗ Search

[Doran 67], [Hart, Nilsson & Raphael 68]

Motivated by large search spaces (e.g., game graphs).

Similar to Dijkstra’s algorithm but:

• Domain-specific estimates πt(v) on dist(v, t) (potentials).

• At each step pick a labeled vertex with the minimum k(v) =

ds(v) + πt(v).

Best estimate of path length.

• In general, optimality is not guaranteed.
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Feasibility and Optimality

Potential transformation: Replace `(v, w) by

`πt(v, w) = `(v, w) − πt(v) + πt(w) (reduced costs).

Fact: Problems defined by ` and `πt are equivalent.

Definition: πt is feasible if ∀(v, w) ∈ A, the reduced costs are

nonnegative. (Estimates are “locally consistent”.)

Optimality: If πt is feasible, the A∗ search is equivalent to Dijk-

stra’s algorithm on transformed network, which has nonnegative

arc lengths. A∗ search finds an optimal path.

Different order of vertex scans, different subgraph searched.

Fact: If πt is feasible and πt(t) = 0, then πt gives lower bounds

on distances to t.
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Computing Lower Bounds

Euclidean bounds:

[folklore], [Pohl 71], [Sedgewick & Vitter 86].

For graph embedded in a metric space, use Euclidean distance.

Limited applicability, not very good for driving directions.

We use triangle inequality
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dist(v, w) ≥ dist(v, b)−dist(w, b); dist(v, w) ≥ dist(a, w)−dist(a, v).
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Lower Bounds (cont.)

Maximum (minimum, average) of feasible potentials is feasible.

• Select landmarks (a small number).

• For all vertices, precompute distances to and from each land-

mark.

• For each s, t, use max of the corresponding lower bounds for

πt(v).

Why this works well (when it does)

s t

a

x y

`πt(x, y) = 0
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Bidirectional Lowerbounding

Forward reduced costs: `πt(v, w) = `(v, w) − πt(v) + πt(w).

Reverse reduced costs: `πs(v, w) = `(v, w) + πs(v) − πs(w).

What’s the problem?
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Bidirectional Lowerbounding

Forward reduced costs: `πt(v, w) = `(v, w) − πt(v) + πt(w).

Reverse reduced costs: `πs(v, w) = `(v, w) + πs(v) − πs(w).

Fact: πt and πs give the same reduced costs iff πs + πt = const.

[Ikeda et at. 94]: use ps(v) = πs(v)−πt(v)
2 and pt(v) = −ps(v).

Other solutions possible. Easy to loose correctness.

ALT algorithms use A∗ search and landmark-based lower bounds.
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Landmark Selection

Preprocessing

• Random selection is fast.

• Many heuristics find better landmarks.

• Local search can find a good subset of candidate landmarks.

• We use a heuristic with local search.

Preprocessing/query trade-off.

Query

• For a specific s, t pair, only some landmarks are useful.

• Use only active landmarks that give best bounds on dist(s, t).

• If needed, dynamically add active landmarks (good for the

search frontier).

Allows using many landmarks with small time overhead.
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Bidirectional ALT Example
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Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05
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Related Systems Work

Network delay estimation:

Use delays to beacons to estimate arbitrary node delays.

E.g., IDMaps [Francis et al. 01].

Theoretical analysis [Kleinberg, Slivkins & Wexler 04]: for ran-

dom beacons and bounded doubling dimension graphs, get good

bounds for most node pairs.

Good bounds are not enough to prove bounds on ALT.
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Reach Intuition

Identify local intersections and prune them when searching far

from s and t.
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Reaches

[Gutman 04]

• Consider a vertex v that splits a path P into P1 and P2.

rP (v) = min(`(P1), `(P2)).

• r(v) = maxP (rP (v)) over all shortest paths P through v.

Using reaches to prune Dijkstra:

LB(w,t)
d(s,v) wv

ts

If r(w) < min(d(v) + `(v, w), LB(w, t)) then prune w.

SP with preprocessing 23



Obtaining Lower Bounds

Can use landmark lower bounds if available.

Bidirectional search gives implicit bounds (Rt below).

Rt

LB(w,t)
d(s,v) wv

ts

Reach-based query algorithm is Dijkstra’s algorithm with prun-

ing based on reaches. Given a lower-bound subroutine, a small

change to Dijkstra’s algorithm.
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Computing Reaches

• A natural exact computation uses all-pairs shortest paths.

• Overnight for 0.3M vertex graph, years for 30M vertex graph.

• Have a heuristic improvement, but it is not fast enough.

• Can use reach upper bounds for query search pruning.

Iterative approximation algorithm: [Gutman 04]

• Use partial shortest path trees of depth O(ε) to bound reaches

of vertices v with r(v) < ε.

• Delete vertices with bounded reaches, add penalties.

• Increase ε and repeat.

Query time does not increase much; preprocessing faster but still

not fast enough.
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Reach Algorithm

SP with preprocessing 26



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61
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Shortcuts

• Consider the graph below.

• Many vertices have large reach.

10001000

1010101010101010
100010101020103010401030102010101000 ts
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Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

10001000

1010101010101010

80

ts
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Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

1000605040304050601000 ts
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Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

• Repeat.

1000201020302010201000 ts
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Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

• Repeat.

• A small number of shortcuts can greatly decrease many reaches.

100001003001001000 ts
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Shortcuts

[Sanders & Schultes 05, 06]: similar idea in hierarchy-based al-

gorithm; similar performance.

• During preprocessing we shortcut small-degree vertices every

time ε is updated.

• Shortcut replaces a vertex by a clique on its neighbors.

• A constant number of arcs is added for each deleted vertex.

• Shortcuts greatly speed up preprocessing.

• Shortcuts speed up queries.
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Reach with Shortcuts
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Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

Reach+Short 17 100 2804 5877 2.39
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Reaches and ALT

• ALT computes transformed and original distances.

• ALT can be combined with reach pruning.

• Careful: Implicit lower bounds do not work, but landmark

lower bounds do.

• Shortcuts do not affect landmark distances and bounds.
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Reach with Shortcuts and ALT
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Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

Reach+Short 17 100 2804 5877 2.39

Reach+Short+ALT 21 204 367 1513 0.73

SP with preprocessing 38



Further Improvements

• Improved locality (sort by reach).

• For RE, factor of 3− 12 improvement for preprocessing and

factor of 2 − 4 for query times.

• Reach-aware landmarks: time/space trade-off.

• Idea: maintain landmark distances for a small fraction of

high-reach vertices only.

• Can use more landmarks and improve both time and space.

Practical even for large (USA, Europe) graphs

• ≈ 1 ms. query time on a server.

• ≈ 5sec. query time on a Pocket PC with 2GB flash card.

• Better for local queries.
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The USA Graph

USA: 24M vertices, 58M arcs, time metric, random queries.

preprocessing query
method min KB avgscan maxscan ms

Dijkstra — 536 11808864 — 5440.49

ALT(16) 17.6 2563 187968 2183718 295.44

Reach impractical

Reach+Short 27.9 893 2405 4813 1.77

Reach+Short+ALT(16,1) 45.5 3032 592 2668 0.80

Reach+Short+ALT(64,16) 113.9 1579 538 2534 0.86
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The USA Graph

USA: 24M vertices, 58M arcs, distance metric, random queries.

preprocessing query
method min KB avgscan maxscan ms

Dijkstra — 536 11782104 — 4576.02

ALT(16) 15.2 2417 276195 2910133 410.73

Reach impractical

Reach+Short 46.4 918 7311 13886 5.78

Reach+Short+ALT(16,1) 61.5 2923 905 5510 1.41

Reach+Short+ALT(64,16) 120.5 1575 670 3499 1.22
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Europe Graph

Europe: 18M vertices, 43M arcs, time metric, random queries.

preprocessing query
method min KB avgscan maxscan ms

Dijkstra — 393 8984289 — 4365.81

ALT(16) 12.5 1597 82348 993015 120.09

Reach impractical

Reach+Short 45.1 648 4371 8486 3.06

Reach+Short+ALT(16,1) 57.7 1869 714 3387 0.89

Reach+Short+ALT(64,16) 102.6 1037 610 2998 0.91
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Grid Graphs

Grid with uniform random lengths (0.5M vertices), 16 landmarks.

No highway structure.

preprocessing query
method min MB avgscan maxscan ms

Bidirectional Dijkstra — 18.0 174150 416925 160.14

ALT 0.26 96.6 6057 65664 6.28

Reach+Short 7.77 27.7 6458 10049 4.75

Reach+Short+ALT(16,1) 8.03 106.3 558 3189 0.89

Reach+Short+ALT(64,16) 9.14 49.2 2823 3711 2.67

Reach preprocessing expensive, but helps queries.

(64,16) significantly slower that (16,1).
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Demo
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Concluding Remarks

• Our heuristics work well on road networks.

• Recent improvements: [Bast et al. 07, Geisberger et al. 08].

• How to select good shortcuts? (Road networks/grids.)

• For which classes of graphs do these techniques work?

• Need theoretical analysis for interesting graph classes.

• Interesting problems related to reach, e.g.
◦ Is exact reach as hard as all-pairs shortest paths?

◦ Constant-ratio upper bounds on reaches in Õ(m) time.

• Dynamic graphs (real-time traffic).
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