
Point-to-Point Shortest Path Algorithms

with Preprocessing

Andrew V. Goldberg

Microsoft Research – Silicon Valley

www.research.microsoft.com/∼goldberg/

Joint with Haim Kaplan and Renato Werneck



Einstein Quote

Everything should be made as simple as possible, but not simpler

SP with preprocessing 1



Shortest Path Problem

Variants

• Nonnegative and arbitrary arc lengths.

• Point to point, single source, all pairs.

• Directed and undirected.

Here we study

• Point to point, nonnegative length, directed problem.

• Allow preprocessing with limited (linear) space.

Many applications, both directly and as a subroutine.

SP with preprocessing 2



Shortest Path Problem

Input: Directed graph G = (V, A), nonnegative length function

` : A → R+, origin s ∈ V , destination t ∈ V .

Preprocessing: Limited space to store results.

Query: Find a shortest path from s to t.

Interested in exact algorithms that search a (small) subgraph.

Related work: reach-based routing [Gutman 04], hierarchi-

cal decomposition [Schultz, Wagner & Weihe 02], [Sanders &

Schultes 05, 06], geometric pruning [Wagner & Willhalm 03], arc

flags [Lauther 04], [Köhler, Möhring & Schilling 05], [Möhring

et al. 06].

SP with preprocessing 3



Motivating Application

Driving directions

• Run on servers and small devices.

• Typical production codes
◦ Use base graph or other heuristics based on road cate-

gories; needs hand-tuning.

◦ Runs (bidirectional) Dijkstra or A∗ with Euclidean bounds

on “patched” graph.

◦ Non-exact and no performance guarantee.

• We are interested in exact and very efficient algorithms.

• New results finding their way into products.

SP with preprocessing 4



Outline

• Scanning method and Dijkstra’s algorithm.

• Bidirectional Dijkstra’s algorithm.

• A∗ search.

• ALT Algorithm

• Definition of reach

• Reach-based algorithm

• Reach for A∗

SP with preprocessing 5



Scanning Method

• For each vertex v maintain its distance label ds(v) and status

S(v) ∈ {unreached, labeled, scanned}.

• Unreached vertices have ds(v) = ∞.

• If ds(v) decreases, v becomes labeled.

• To scan a labeled vertex v, for each arc (v, w),

if ds(w) > ds(v) + `(v, w) set ds(w) = ds(v) + `(v, w).

• Initially for all vertices are unreached.

• Start by decreasing ds(s) to 0.

• While there are labeled vertices, pick one and scan it.

• Different selection rules lead to different algorithms.

SP with preprocessing 6



Dijkstra’s Algorithm

[Dijkstra 1959], [Dantzig 1963].

• At each step scan a labeled vertex with the minimum label.

• Stop when t is selected for scanning.

Work almost linear in the visited subgraph size.

Reverse Algorithm: Run algorithm from t in the graph with all

arcs reversed, stop when t is selected for scanning.

Bidirectional Algorithm

• Run forward Dijkstra from s and backward from t.

• Maintain µ, the length of the shortest path seen: when scan-

ning an arc (v, w) such that w has been scanned in the other

direction, check if the corresponding s-t path improves µ.

• Stop when about to scan a vertex x scanned in the other

direction.

• Output µ and the corresponding path.

SP with preprocessing 7



Bidirectional Algorithm: Pitfalls

The algorithm is not as simple as it looks.

5x

2 2
s t

ba 5

5

The searches meat at x, but x is not on the shortest path.

SP with preprocessing 8



Example Graph

1.6M vertices, 3.8M arcs, travel time metric.

SP with preprocessing 9



Dijkstra’s Algorithm

Searched area

SP with preprocessing 10



Bidirectional Algorithm

forward search/ reverse search

SP with preprocessing 11



A∗ Search

[Doran 67], [Hart, Nilsson & Raphael 68]

Motivated by large search spaces (e.g., game graphs).

Similar to Dijkstra’s algorithm but:

• Domain-specific estimates πt(v) on dist(v, t) (potentials).

• At each step pick a labeled vertex with the minimum k(v) =

ds(v) + πt(v).

Best estimate of path length.

• In general, optimality is not guaranteed.

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

������
������
������
������
������
������

������
������
������
������
������
��������������������������������������������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

������������������������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

0

126

12340

1 2 3 4

5

SP with preprocessing 12



Feasibility and Optimality

Potential transformation: Replace `(v, w) by

`πt(v, w) = `(v, w) − πt(v) + πt(w) (reduced costs).

Fact: Problems defined by ` and `πt are equivalent.

Definition: πt is feasible if ∀(v, w) ∈ A, the reduced costs are

nonnegative. (Estimates are “locally consistent”.)

Optimality: If πt is feasible, the A∗ search is equivalent to Dijk-

stra’s algorithm on transformed network, which has nonnegative

arc lengths. A∗ search finds an optimal path.

Different order of vertex scans, different subgraph searched.

Fact: If πt is feasible and πt(t) = 0, then πt gives lower bounds

on distances to t.

SP with preprocessing 13



Computing Lower Bounds

Euclidean bounds:

[folklore], [Pohl 71], [Sedgewick & Vitter 86].

For graph embedded in a metric space, use Euclidean distance.

Limited applicability, not very good for driving directions.

We use triangle inequality

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

����������������������
���
���
���
���
���
���

���
���
���
���
���
���

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

���
���
���
���
���
���

���
���
���
���
���
���

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

v w

a b

dist(v, w) ≥ dist(v, b)−dist(w, b); dist(v, w) ≥ dist(a, w)−dist(a, v).

SP with preprocessing 14



Lower Bounds (cont.)

Maximum (minimum, average) of feasible potentials is feasible.

• Select landmarks (a small number).

• For all vertices, precompute distances to and from each land-

mark.

• For each s, t, use max of the corresponding lower bounds for

πt(v).

Why this works well (when it does)

s t

a

x y

`πt(x, y) = 0

SP with preprocessing 15



Bidirectional Lowerbounding

Forward reduced costs: `πt(v, w) = `(v, w) − πt(v) + πt(w).

Reverse reduced costs: `πs(v, w) = `(v, w) + πs(v) − πs(w).

What’s the problem?

SP with preprocessing 16



Bidirectional Lowerbounding

Forward reduced costs: `πt(v, w) = `(v, w) − πt(v) + πt(w).

Reverse reduced costs: `πs(v, w) = `(v, w) + πs(v) − πs(w).

Fact: πt and πs give the same reduced costs iff πs + πt = const.

[Ikeda et at. 94]: use ps(v) = πs(v)−πt(v)
2 and pt(v) = −ps(v).

Other solutions possible. Easy to loose correctness.

ALT algorithms use A∗ search and landmark-based lower bounds.

SP with preprocessing 17



Landmark Selection

Preprocessing

• Random selection is fast.

• Many heuristics find better landmarks.

• Local search can find a good subset of candidate landmarks.

• We use a heuristic with local search.

Preprocessing/query trade-off.

Query

• For a specific s, t pair, only some landmarks are useful.

• Use only active landmarks that give best bounds on dist(s, t).

• If needed, dynamically add active landmarks (good for the

search frontier).

Allows using many landmarks with small time overhead.

SP with preprocessing 18



Bidirectional ALT Example

SP with preprocessing 19



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

SP with preprocessing 20



Related Systems Work

Network delay estimation:

Use delays to beacons to estimate arbitrary node delays.

E.g., IDMaps [Francis et al. 01].

Theoretical analysis [Kleinberg, Slivkins & Wexler 04]: for ran-

dom beacons and bounded doubling dimension graphs, get good

bounds for most node pairs.

Good bounds are not enough to prove bounds on ALT.

SP with preprocessing 21



Reach Intuition

Identify local intersections and prune them when searching far

from s and t.

SP with preprocessing 22



Reaches

[Gutman 04]

• Consider a vertex v that splits a path P into P1 and P2.

rP (v) = min(`(P1), `(P2)).

• r(v) = maxP (rP (v)) over all shortest paths P through v.

Using reaches to prune Dijkstra:

LB(w,t)
d(s,v) wv

ts

If r(w) < min(d(v) + `(v, w), LB(w, t)) then prune w.

SP with preprocessing 23



Obtaining Lower Bounds

Can use landmark lower bounds if available.

Bidirectional search gives implicit bounds (Rt below).

Rt

LB(w,t)
d(s,v) wv

ts

Reach-based query algorithm is Dijkstra’s algorithm with prun-

ing based on reaches. Given a lower-bound subroutine, a small

change to Dijkstra’s algorithm.

SP with preprocessing 24



Computing Reaches

• A natural exact computation uses all-pairs shortest paths.

• Overnight for 0.3M vertex graph, years for 30M vertex graph.

• Have a heuristic improvement, but it is not fast enough.

• Can use reach upper bounds for query search pruning.

Iterative approximation algorithm: [Gutman 04]

• Use partial shortest path trees of depth O(ε) to bound reaches

of vertices v with r(v) < ε.

• Delete vertices with bounded reaches, add penalties.

• Increase ε and repeat.

Query time does not increase much; preprocessing faster but still

not fast enough.

SP with preprocessing 25



Reach Algorithm

SP with preprocessing 26



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

SP with preprocessing 27



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

10001000

1010101010101010
100010101020103010401030102010101000 ts

SP with preprocessing 28



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

10001000

1010101010101010

80

ts

SP with preprocessing 29



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

1000605040304050601000 ts

SP with preprocessing 30



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

• Repeat.

1000201020302010201000 ts

SP with preprocessing 31



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

• Repeat.

• A small number of shortcuts can greatly decrease many reaches.

100001003001001000 ts

SP with preprocessing 32



Shortcuts

[Sanders & Schultes 05, 06]: similar idea in hierarchy-based al-

gorithm; similar performance.

• During preprocessing we shortcut small-degree vertices every

time ε is updated.

• Shortcut replaces a vertex by a clique on its neighbors.

• A constant number of arcs is added for each deleted vertex.

• Shortcuts greatly speed up preprocessing.

• Shortcuts speed up queries.

SP with preprocessing 33



Reach with Shortcuts

SP with preprocessing 34



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

Reach+Short 17 100 2804 5877 2.39

SP with preprocessing 35



Reaches and ALT

• ALT computes transformed and original distances.

• ALT can be combined with reach pruning.

• Careful: Implicit lower bounds do not work, but landmark

lower bounds do.

• Shortcuts do not affect landmark distances and bounds.

SP with preprocessing 36



Reach with Shortcuts and ALT

SP with preprocessing 37



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

Reach+Short 17 100 2804 5877 2.39

Reach+Short+ALT 21 204 367 1513 0.73

SP with preprocessing 38



Further Improvements

• Improved locality (sort by reach).

• For RE, factor of 3− 12 improvement for preprocessing and

factor of 2 − 4 for query times.

• Reach-aware landmarks: time/space trade-off.

• Idea: maintain landmark distances for a small fraction of

high-reach vertices only.

• Can use more landmarks and improve both time and space.

Practical even for large (USA, Europe) graphs

• ≈ 1 ms. query time on a server.

• ≈ 5sec. query time on a Pocket PC with 2GB flash card.

• Better for local queries.

SP with preprocessing 39



The USA Graph

USA: 24M vertices, 58M arcs, time metric, random queries.

preprocessing query
method min KB avgscan maxscan ms

Dijkstra — 536 11808864 — 5440.49

ALT(16) 17.6 2563 187968 2183718 295.44

Reach impractical

Reach+Short 27.9 893 2405 4813 1.77

Reach+Short+ALT(16,1) 45.5 3032 592 2668 0.80

Reach+Short+ALT(64,16) 113.9 1579 538 2534 0.86

SP with preprocessing 40



The USA Graph

USA: 24M vertices, 58M arcs, distance metric, random queries.

preprocessing query
method min KB avgscan maxscan ms

Dijkstra — 536 11782104 — 4576.02

ALT(16) 15.2 2417 276195 2910133 410.73

Reach impractical

Reach+Short 46.4 918 7311 13886 5.78

Reach+Short+ALT(16,1) 61.5 2923 905 5510 1.41

Reach+Short+ALT(64,16) 120.5 1575 670 3499 1.22

SP with preprocessing 41



Europe Graph

Europe: 18M vertices, 43M arcs, time metric, random queries.

preprocessing query
method min KB avgscan maxscan ms

Dijkstra — 393 8984289 — 4365.81

ALT(16) 12.5 1597 82348 993015 120.09

Reach impractical

Reach+Short 45.1 648 4371 8486 3.06

Reach+Short+ALT(16,1) 57.7 1869 714 3387 0.89

Reach+Short+ALT(64,16) 102.6 1037 610 2998 0.91

SP with preprocessing 42



Grid Graphs

Grid with uniform random lengths (0.5M vertices), 16 landmarks.

No highway structure.

preprocessing query
method min MB avgscan maxscan ms

Bidirectional Dijkstra — 18.0 174150 416925 160.14

ALT 0.26 96.6 6057 65664 6.28

Reach+Short 7.77 27.7 6458 10049 4.75

Reach+Short+ALT(16,1) 8.03 106.3 558 3189 0.89

Reach+Short+ALT(64,16) 9.14 49.2 2823 3711 2.67

Reach preprocessing expensive, but helps queries.

(64,16) significantly slower that (16,1).

SP with preprocessing 43



Demo

SP with preprocessing 44



Concluding Remarks

• Our heuristics work well on road networks.

• Recent improvements: [Bast et al. 07, Geisberger et al. 08].

• How to select good shortcuts? (Road networks/grids.)

• For which classes of graphs do these techniques work?

• Need theoretical analysis for interesting graph classes.

• Interesting problems related to reach, e.g.
◦ Is exact reach as hard as all-pairs shortest paths?

◦ Constant-ratio upper bounds on reaches in Õ(m) time.

• Dynamic graphs (real-time traffic).

SP with preprocessing 45


