Point-to-Point Shortest Path Algorithms with Preprocessing

Andrew V. Goldberg
Microsoft Research - Silicon Valley
www.research.microsoft.com/~goldberg/

Joint with Haim Kaplan and Renato Werneck

Einstein Quote

Everything should be made as simple as possible, but not simpler

Shortest Path Problem

Variants

- Nonnegative and arbitrary arc lengths.
- Point to point, single source, all pairs.
- Directed and undirected.

Here we study

- Point to point, nonnegative length, directed problem.
- Allow preprocessing with limited (linear) space.

Many applications, both directly and as a subroutine.

Shortest Path Problem

Input: Directed graph $G=(V, A)$, nonnegative length function $\ell: A \rightarrow \mathbf{R}^{+}$, origin $s \in V$, destination $t \in V$.

Preprocessing: Limited space to store results.

Query: Find a shortest path from s to t.

Interested in exact algorithms that search a (small) subgraph.

Related work: reach-based routing [Gutman 04], hierarchical decomposition [Schultz, Wagner \& Weihe 02], [Sanders \& Schultes 05, 06], geometric pruning [Wagner \& Willhalm 03], arc flags [Lauther 04], [Köhler, Möhring \& Schilling 05], [Möhring et al. 06].

Motivating Application

Driving directions

- Run on servers and small devices.
- Typical production codes
- Use base graph or other heuristics based on road categories; needs hand-tuning.
- Runs (bidirectional) Dijkstra or A* with Euclidean bounds on "patched" graph.
- Non-exact and no performance guarantee.
- We are interested in exact and very efficient algorithms.
- New results finding their way into products.

Outline

- Scanning method and Dijkstra's algorithm.
- Bidirectional Dijkstra's algorithm.
- A^{*} search.
- ALT Algorithm
- Definition of reach
- Reach-based algorithm
- Reach for A^{*}

Scanning Method

- For each vertex v maintain its distance label $d_{s}(v)$ and status $S(v) \in\{$ unreached, labeled, scanned $\}$.
- Unreached vertices have $d_{s}(v)=\infty$.
- If $d_{s}(v)$ decreases, v becomes labeled.
- To scan a labeled vertex v, for each $\operatorname{arc}(v, w)$, if $d_{s}(w)>d_{s}(v)+\ell(v, w)$ set $d_{s}(w)=d_{s}(v)+\ell(v, w)$.
- Initially for all vertices are unreached.
- Start by decreasing $d_{s}(s)$ to 0 .
- While there are labeled vertices, pick one and scan it.
- Different selection rules lead to different algorithms.

Dijkstra's Algorithm

[Dijkstra 1959], [Dantzig 1963].

- At each step scan a labeled vertex with the minimum label.
- Stop when t is selected for scanning.

Work almost linear in the visited subgraph size.

Reverse Algorithm: Run algorithm from t in the graph with all arcs reversed, stop when t is selected for scanning.

Bidirectional Algorithm

- Run forward Dijkstra from s and backward from t.
- Maintain μ, the length of the shortest path seen: when scanning an arc (v, w) such that w has been scanned in the other direction, check if the corresponding $s-t$ path improves μ.
- Stop when about to scan a vertex x scanned in the other direction.
- Output μ and the corresponding path.

Bidirectional Algorithm: Pitfalls

The algorithm is not as simple as it looks.

The searches meat at x, but x is not on the shortest path.

Example Graph

```-
```


1.6 M vertices, 3.8 M arcs, travel time metric.

Dijkstra's Algoriithm

Bidirectional Algorithm

forward search/ reverse search

A* Search

[Doran 67], [Hart, Nilsson \& Raphael 68]

Motivated by large search spaces (e.g., game graphs).

Similar to Dijkstra's algorithm but:

- Domain-specific estimates $\pi_{t}(v)$ on $\operatorname{dist}(v, t)$ (potentials).
- At each step pick a labeled vertex with the minimum $k(v)=$ $d_{s}(v)+\pi_{t}(v)$.
Best estimate of path length.
- In general, optimality is not guaranteed.

Feasibility and Optimality

Potential transformation: Replace $\ell(v, w)$ by
$\ell_{\pi_{t}}(v, w)=\ell(v, w)-\pi_{t}(v)+\pi_{t}(w)$ (reduced costs).

Fact: Problems defined by ℓ and $\ell_{\pi_{t}}$ are equivalent.

Definition: π_{t} is feasible if $\forall(v, w) \in A$, the reduced costs are nonnegative. (Estimates are "locally consistent".)

Optimality: If π_{t} is feasible, the A^{*} search is equivalent to Dijkstra's algorithm on transformed network, which has nonnegative arc lengths. A^{*} search finds an optimal path.

Different order of vertex scans, different subgraph searched.

Fact: If π_{t} is feasible and $\pi_{t}(t)=0$, then π_{t} gives lower bounds on distances to t.

Computing Lower Bounds

Euclidean bounds:

[folklore], [Pohl 71], [Sedgewick \& Vitter 86].
For graph embedded in a metric space, use Euclidean distance. Limited applicability, not very good for driving directions.

We use triangle inequality

$\operatorname{dist}(v, w) \geq \operatorname{dist}(v, b)-\operatorname{dist}(w, b) ; \operatorname{dist}(v, w) \geq \operatorname{dist}(a, w)-\operatorname{dist}(a, v)$.

Lower Bounds (cont.)

Maximum (minimum, average) of feasible potentials is feasible.

- Select landmarks (a small number).
- For all vertices, precompute distances to and from each landmark.
- For each s, t, use max of the corresponding lower bounds for $\pi_{t}(v)$.

Why this works well (when it does)

$$
\ell_{\pi_{t}}(x, y)=0
$$

Bidirectional Lowerbounding

Forward reduced costs: $\ell_{\pi_{t}}(v, w)=\ell(v, w)-\pi_{t}(v)+\pi_{t}(w)$.

Reverse reduced costs: $\ell_{\pi_{s}}(v, w)=\ell(v, w)+\pi_{s}(v)-\pi_{s}(w)$.

What's the problem?

Bidirectional Lowerbounding

Forward reduced costs: $\ell_{\pi_{t}}(v, w)=\ell(v, w)-\pi_{t}(v)+\pi_{t}(w)$.

Reverse reduced costs: $\ell_{\pi_{s}}(v, w)=\ell(v, w)+\pi_{s}(v)-\pi_{s}(w)$.

Fact: π_{t} and π_{s} give the same reduced costs iff $\pi_{s}+\pi_{t}=$ const.
[Ikeda et at. 94]: use $p_{s}(v)=\frac{\pi_{s}(v)-\pi_{t}(v)}{2}$ and $p_{t}(v)=-p_{s}(v)$.

Other solutions possible. Easy to loose correctness.

ALT algorithms use A^{*} search and landmark-based lower bounds.

Landmark Selection

Preprocessing

- Random selection is fast.
- Many heuristics find better landmarks.
- Local search can find a good subset of candidate landmarks.
- We use a heuristic with local search.

Preprocessing/query trade-off.

Query

- For a specific s, t pair, only some landmarks are useful.
- Use only active landmarks that give best bounds on $\operatorname{dist}(s, t)$.
- If needed, dynamically add active landmarks (good for the search frontier).

Allows using many landmarks with small time overhead.

Bidirectional ALT Example

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

	preprocessing method		query minutes				MB	avgscan	maxscan	ms
Bidirectional Dijkstra	-	28	518723	1197607	340.74					
ALT	4	132	16276	150389	12.05					

Related Systems Work

Network delay estimation:

Use delays to beacons to estimate arbitrary node delays. E.g., IDMaps [Francis et al. 01].

Theoretical analysis [Kleinberg, Slivkins \& Wexler 04]: for random beacons and bounded doubling dimension graphs, get good bounds for most node pairs.

Good bounds are not enough to prove bounds on ALT.

Identify local intersections and prune them when searching far from s and t.

Reaches

[Gutman 04]

- Consider a vertex v that splits a path P into P_{1} and P_{2}. $r_{P}(v)=\min \left(\ell\left(P_{1}\right), \ell\left(P_{2}\right)\right)$.
- $r(v)=\max _{P}\left(r_{P}(v)\right)$ over all shortest paths P through v.

Using reaches to prune Dijkstra:

If $r(w)<\min (d(v)+\ell(v, w), L B(w, t))$ then prune w.

Obtaining Lower Bounds

Can use landmark lower bounds if available.

Bidirectional search gives implicit bounds (R_{t} below).

Reach-based query algorithm is Dijkstra's algorithm with pruning based on reaches. Given a lower-bound subroutine, a small change to Dijkstra's algorithm.

Computing Reaches

- A natural exact computation uses all-pairs shortest paths.
- Overnight for 0.3 M vertex graph, years for 30 M vertex graph.
- Have a heuristic improvement, but it is not fast enough.
- Can use reach upper bounds for query search pruning.

Iterative approximation algorithm: [Gutman 04]

- Use partial shortest path trees of depth $O(\epsilon)$ to bound reaches of vertices v with $r(v)<\epsilon$.
- Delete vertices with bounded reaches, add penalties.
- Increase ϵ and repeat.

Query time does not increase much; preprocessing faster but still not fast enough.

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

	preprocessing		query method				minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra	-	28	518723	1197607	340.74						
ALT	4	132	16276	150389	12.05						
Reach	1100	34	53888	106288	30.61						

Shortcuts

- Consider the graph below.
- Many vertices have large reach.

Shortcuts

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.

Shortcuts

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.

Shortcuts

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.
- Repeat.

Shortcuts

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.
- Repeat.
- A small number of shortcuts can greatly decrease many reaches.

Shortcuts

[Sanders \& Schultes 05, 06]: similar idea in hierarchy-based algorithm; similar performance.

- During preprocessing we shortcut small-degree vertices every time ϵ is updated.
- Shortcut replaces a vertex by a clique on its neighbors.
- A constant number of arcs is added for each deleted vertex.
- Shortcuts greatly speed up preprocessing.
- Shortcuts speed up queries.

Reach with Shortcuts

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

	preprocessing method		query minutes				MB	avgscan	maxscan	ms
Bidirectional Dijkstra	-	28	518723	1197607	340.74					
ALT	4	132	16276	150389	12.05					
Reach	1100	34	53888	106288	30.61					
Reach+Short	17	100	2804	5877	2.39					

Reaches and ALT

- ALT computes transformed and original distances.
- ALT can be combined with reach pruning.
- Careful: Implicit lower bounds do not work, but landmark lower bounds do.
- Shortcuts do not affect landmark distances and bounds.

Reach with Shortcuts and ALT

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

	preprocessing method		query minutes				MB	avgscan	maxscan	ms
Bidirectional Dijkstra	-	28	518723	1197607	340.74					
ALT	4	132	16276	150389	12.05					
Reach	1100	34	53888	106288	30.61					
Reach+Short	17	100	2804	5877	2.39					
Reach+Short+ALT	21	204	367	1513	0.73					

Further Improvements

- Improved locality (sort by reach).
- For RE, factor of 3-12 improvement for preprocessing and factor of 2-4 for query times.
- Reach-aware landmarks: time/space trade-off.
- Idea: maintain landmark distances for a small fraction of high-reach vertices only.
- Can use more landmarks and improve both time and space.

Practical even for large (USA, Europe) graphs

- ≈ 1 ms. query time on a server.
- ≈ 5 sec. query time on a Pocket PC with 2 GB flash card.
- Better for local queries.

The USA Graph

USA: 24 M vertices, 58 M arcs, time metric, random queries.

method	preprocessing min		query		
Dijkstra	-	536	11808864	-	5440.49
ALT(16)	17.6	2563	187968	2183718	295.44
Reach	impractical				
Reach+Short	27.9	893	2405	4813	1.77
Reach+Short+ALT $(16,1)$	45.5	3032	592	2668	0.80
Reach+Short+ALT $(64,16)$	113.9	1579	538	2534	0.86

The USA Graph

USA: 24M vertices, 58M arcs, distance metric, random queries.

method	preprocessing		query		
	min	KB	avgscan	maxscan	ms
Dijkstra	-	536	11782104	-	4576.02
ALT(16)	15.2	2417	276195	2910133	410.73
Reach	imp	tical			
Reach+Short	46.4	918	7311	13886	5.78
Reach + Short+ALT $(16,1)$	61.5	2923	905	5510	1.41
Reach+Short+ALT $(64,16)$	120.5	1575	670	3499	1.22

Europe Graph

Europe: 18M vertices, 43M arcs, time metric, random queries.

method	preprocessing		query min		
Kijkstra	-	393	8984289	-	4365.81
ALT(16)	12.5	1597	82348	993015	120.09
Reach	impractical				
Reach+Short	45.1	648	4371	8486	3.06
Reach+Short+ALT $(16,1)$	57.7	1869	714	3387	0.89
Reach+Short+ALT $(64,16)$	102.6	1037	610	2998	0.91

Grid Graphs

Grid with uniform random lengths (0.5 M vertices), 16 landmarks. No highway structure.

method	preprocessing		query min		
Bidirectional Dijkstra	-	18.0	174150	416925	160.14
ALT	0.26	96.6	6057	65664	6.28
Reach+Short	7.77	27.7	6458	10049	4.75
Reach+Short+ALT $(16,1)$	8.03	106.3	558	3189	0.89
Reach+Short+ALT $(64,16)$	9.14	49.2	2823	3711	2.67

Reach preprocessing expensive, but helps queries. $(64,16)$ significantly slower that $(16,1)$.

Demo

Concluding Remarks

- Our heuristics work well on road networks.
- Recent improvements: [Bast et al. 07, Geisberger et al. 08].
- How to select good shortcuts? (Road networks/grids.)
- For which classes of graphs do these techniques work?
- Need theoretical analysis for interesting graph classes.
- Interesting problems related to reach, e.g.
- Is exact reach as hard as all-pairs shortest paths?
- Constant-ratio upper bounds on reaches in $\widetilde{O}(m)$ time.
- Dynamic graphs (real-time traffic).

