

 1

The consensus problem

© Fernando Pedone

The consensus problem

 Informal definition
– Each process starts with an initial value
– Each one is supposed to output the same value
– A validity condition relates outputs to inputs

© Fernando Pedone

The consensus problem

 Failure model
– Crash-stop failure model

• Correct processes never crash
• Faulty processes are not correct

 Formal definition(s)
– Two primitives

• propose(v), and
• decide(v), where v ∈ V

© Fernando Pedone

The consensus problem

 Formal definition(s)
– Consensus properties

• Agreement: No two correct processes decide on
 different values.

• Termination: All correct processes eventually decide.
• Validity: If all processes start with the same initial

 value v, then v is the only possible decision
 value.

• Strong validity: Any decision value is the initial
 value of some process.

 2

© Fernando Pedone

The consensus problem

 Formal definition(s)
– Uniform consensus

• Uniform agreement: No two processes decide on
 different values.

• Termination: All correct processes eventually decide.
• Strong validity: Any decision value is the initial

 value of some process.

© Fernando Pedone

The consensus problem

 Synchronous systems
– System model

• The execution begins with all processes in arbitrary
start states, and all channels empty. Then, in lock-
step mode, processes do:

• Apply a message-generation function to the current
state to generate messages and send them to all
outgoing neighbors.

• Apply a state-transition function to the current state
and incoming messages to obtain the new state.

ro
un

d

© Fernando Pedone

The consensus problem

 Synchronous systems
– System model (cont’d)

• If a process crashes in the middle of a message-
sending step, only a subset of the messages may
be delivered. At most f processes crash.

p1

p2

p3

. . .

round
© Fernando Pedone

The consensus problem
– The algorithm (UA, T, V)

• Each process maintains a variable W containing a
subset of V. Initially, process pi’s variable W has
only pi’s initial value. For each of f+1 rounds, each
process broadcasts W, then adds all the elements
of the received sets to W.
After f+1 rounds, pi decides on the unique element
of W; otherwise, pi decides on the default value v0.

 3

© Fernando Pedone

The consensus problem
– Correctness

• Lemma 1: If no process fails during a particular
round r, 1 ≤ r ≤ f+1, then Wi(r) = Wj(r) for all pi and pj

that are active after r rounds.
• Lemma 2: Suppose that Wi(r) = Wj(r) for all pi and pj

that are active after r rounds. Then, for any round r’,
r ≤ r’ ≤ f+1, the same holds, that is, Wi(r) = Wj(r) for
all pi and pj that are active after r’ rounds.

• Lemma 3: If processes pi and pj are active after f+1
rounds, then Wi(r) = Wj(r) at the end of round f+1.

© Fernando Pedone

The consensus problem

 Asynchronous systems
– System model

• All processes begin in arbitrary start states, and all
channels empty. Then, processes do:

• Apply a message-generation function to the current
state to generate messages and send them to all
outgoing neighbors.

• Wait for n-f messages and apply a state-transition
function to the current state and incoming
messages to obtain the new state.

© Fernando Pedone

The consensus problem
– Synchronous vs. asynchronous

p1

p2

p3

. . .

sy
nc

hr
on

ou
s

p1

p2

p3

. . .

as
yn

ch
ro

no
us

© Fernando Pedone

The consensus problem
– Fundamental result:

No algorithm can solve consensus in an
asynchronous system despite a single crash.

FLP impossibility result (after Fischer, Lynch, and Paterson, 1985)

Synchronous assumptions are too strong…
Asynchronous assumptions don’t allow a solution…
…is there hope?

 4

© Fernando Pedone

The consensus problem

 Solving consensus by…
– …weakening the problem definition

– …strengthening the model assumptions

– …doing both

© Fernando Pedone

The consensus problem

 k-Agreement
– Properties

• Agreement: There is a subset W of V, |W| = k, such
 that all decision values are in W.

• Termination: All correct processes eventually decide.
• Validity: Any decision value is the initial value of

 some process.

© Fernando Pedone

The consensus problem

 Randomized algorithm
– Stronger than the asynchronous model

• Processes can made random choices

– Weak termination
• Correct processes decide at time t with probability

at least p(t)

© Fernando Pedone

The consensus problem

 Failure detectors
– Prevent processes from blocking forever

– General idea:
wait for message m from pi

is replaced by
wait for m from pi or suspect pi

 5

© Fernando Pedone

The consensus problem
– Informally

• Completeness
Faulty processes should be suspected

• Accuracy
Correct processes should not be suspected

p1 p2

p3

p4p5

p6 S_List3 = { }

© Fernando Pedone

The consensus problem

p3

p4p5

p6
S_List3 = { p1,p5 }

p1 p2

p1 p2

p3

p4p5

p6
S_List3 = { p1 }

p1 p2

p3

p4p5

p6
S_List3 = { p5 }

heartbeat

p1 p2

p3

p4p5

p6
S_List3 = { p6 }

© Fernando Pedone

The consensus problem

– Completeness
• Strong completeness

Eventually every process that crashes is
permanently suspected by every correct process.

• Weak completeness
Eventually every process that crashes is
permanently suspected by some correct process.

© Fernando Pedone

The consensus problem

– Accuracy
• Strong accuracy

No process is suspected before it crashes.

• Weak accuracy
Some correct process is never suspected.

• Eventual strong accuracy
Eventually correct processes are not suspected.

• Eventual weak accuracy
Eventually some correct process is not suspected.

 6

© Fernando Pedone

The consensus problem
– Classes of failure detectors

Eventually
Weak, W

QWeak, WQWeak

Eventually
Strong, S

Eventually
Perfect, P

Strong, SPerfect, PStrong

Eventual
Weak

Eventual
StrongWeakStrong

Accuracy
Completeness

© Fernando Pedone

The consensus problem
– Classes of failure detectors (cont’d)

C C’ : C’ is strictly weaker than C’

C C’ : C’ is equivalent to C’
W

SS

W

Q

PP

Q

© Fernando Pedone

The consensus problem
– Solving consensus with S

var v ← input
r ← 0
t ← 0

while undecided do
… (next) …

upon receiving (decide, w)
p sends (decide, w) to all
p decides on w and halts

© Fernando Pedone

The consensus problem
while undecided do

r ← r + 1
c ← (r mod n) + 1

send (p,r,v,t) to c

c waits for first (n+1)/2 estimates
c chooses the estimate w with the largest timestamp
c proposes that value as (c,r,w)

p waits for a proposal or suspects c
if proposal (c,r,w) is received then

v ← w; t ← r
send (r, ACK) to c

else
send (r, NACK) to c

c waits for (n+1)/2 ACK/NACK messages
if there are (n+1)/2 ACK messages then

c sends (decide, w) to all

ph
as

e
1

ph
as

e
2

ph
as

e
3

ph
as

e
4

 7

© Fernando Pedone

reliable diffusion
of decision value

The consensus problem

p1

p2

p3

p4

p5

(p5,r:0,v5,t:0)

(p1,r:0,v1)

choose the
estimate with

the largest
timestamp

wait for a proposal or
suspect coordinator

wait for (n+1)/2
ACK/NACK

(decide, v1)

(r:0,ACK)

(r:0,ACK)

(r:0,ACK)

© Fernando Pedone

The consensus problem

p1

p2

p3

p4

p5

(r:1,NACK) (p3,r:2,v1)

(decide, v1)

(r:0,NACK)

(r:0,ACK)

(r:0,ACK)

suspect

(p5,r:2,v1,t:0) (r:2,ACK)

(decide,v1)

round r0

round r1 round r2

(p5,r:1,v5,t:0)

(p3,r:1,v1,t:1)

