ApPXNTEKTYPa NONCKOBOTIO K/1lacTepa

AHOEeKC
Den Raskovalov
denplusplus@yandex-team.ru
CaHkT-lNeTepbypr
25.02.2012

O yeM 3107

HecmoTpa Ha TO, YTO aBTOpP CBeayLL fNLIb B
TOM, KaK paboTaeT nouck AHaekca, cnblwan o
TOM, Kak paboTtaloT aApyrme nonuckoBble
MaLlWHbI, OH UMEET Har/10CTb nosaraTb, 4YTO
npmMemMsbl, KOTOPble HaKoM/1eHbI B MONCKOBOW
NHOYCTPWUM ByayT NMoses3Hbl 1060oMy
BbICOKOHarpy>xeHHOMY cepBucy 00paboTKu
NaHHbIX.

UTto ymeet AHAOeKC?

e 3apabarbiBaTb AeHbIN (PEKNamMa B UHTEPHETE)

e lenatb HaEXHble BbICOKOHArpy>XeHHbIe
C/10XXHble CepBUCHI

* YBA3bIBATb TbICAYN UCTOYHUKOB AAaHHbLIX B OA4MH
NPOAYKT
* Pewatb 3agaun 06paboTkm AaHHbIX

N ANV

Reqguirements

« Indexation
« ~10'2 known URL's
« ~10'° indexed documents
« ~10% searchable documents
« Real-time indexation
« Real-time query processing
« 107 user queries per hour in peak
« Development
« 400+ creative search developers
« A lot of experiments on full data (pages, links, clicks)
« Large-scale machine learning
« Many experiments require full-sized copy of Yandex.Search

Hardware

Server's cost:

« Hardware (~$2500 for ~24 computing cores, ~48Gb RAM)
e Place in data center (~$1000 per year)

 Electricity for computation and cooling (~$1000 per year)
« Maintenance (~$300 per year)

High-end hardware costs too much.

Low-end hardware needs same electricity and place
and maintenance as high-end.

There Is optimum point.
Now Yandex.Search works on ~10° servers.

Distribution of Resources

* Main design principles

« Sharding (splitting into almost independent parts)

* Replication (each piece of data Is copied several
times for performance and failover)

* Full isolation between development and production

(no read/write access for developer to production
nodes)

Content System

Content system — system for crawling internet
urls, building indexes (inverted index for search,
link iIndex, pagerank, ...) and deployment
Indexes for real-time query processing.

Content System

« Content system phases:

Crawling (building a list of URLS)

Selection (we can't fetch everything, we need to predict quality
before fetching)

Fetching document data from Internet

Building search representation for documents (inverted indices
with lemmatization; binding of external host/url information, link
Information)

Spam detection

Duplicates detection

Selection (we can't search on everything we fetch)

Documents deployment to system of real-time query processing

Content System

 |n fact we have two content systems now

« Batch (for processing ~10* URLS)

» Real-time (for processing ~10° URLs we need for
freshness)

» Different update periods inflects architecture

» Disc-efficient (sort/join) algorithms for batch
* Almost everything in memory for real-time

Batch Content System

* We split internet in n parts based on 32-bit hash
of a hostname. We have ~10‘ computers, a
computer for an interval of hash values; it
crawls “Iit's” hosts and builds search indexes.

 We represent “knowledge” of internet as
relational tables (table of urls, table of links,
table of hosts).

Batch Content System

Fetcher cluster

H %

Ny
Indexation node ﬁldexatlon node Indexation node
Search node Search node Search node

. Once per day each indexation node forms a list of urls for fetch.

. Once per day each indexation node receives fetched data and updates “knowledge” about internet
(update process needs only sorting and joins of big tables on disk).

. Once per three days each indexation node push indexes on search nodes.

Batch Content System

e Each indexation node needs “external”’ data

 Links from another indexation nodes

- data passing is asynchronous

- death of source or target indexation nodes isn't critical (in
case of failure data will be received next time)

* Aggregated clicks on URLs from MapReduce
« External data about hosts and pages

Real-time Content System

« Main requirement for real-time content system is small time interval
between availability of information about document and ability to
search on document's content.

o It Implies that data can be stored only in RAM. HDD can only be used
for eventually consistent backup.

« You have to switch from relational design of data processing to
services and message passing algorithms.

« You need big and fast key-value storage in RAM.

« Algorithms with smaller guarantees without consistency invariants
(because any network packet can be lose).

Real-time Content System

e We run each set of services on a node:

Link database

Local pagerank calculator
Global dup-detector
Anti-spam checker

Indexer

« We have library of maintaing key-value storage in
memory with eventual backup/restore to/from HDD.

« Alot of network traffic between nodes of real-time
content system. Almost no data locality. Nodes of real-
time content system need to be in one datacenter.

MapReduce in Yandex.Search

« MapReduce approach is simple, clear data storage
combined with data processing, which hides complexity of
parallelizing algorithms on several computation nodes

« MapReduce stores set of relational tables. Each table
keeps set of records. Each table is physically represented
of set of chunks on a HDD (~64Mb). One server (master)
knows about all chunks, keeps constraint of replication
count >= 3.

« Each record is triple of {key, subKey, value}.

MapReduce in Yandex.Search

« What operations are available:

« Append set of records to some table

« Map (iteration over records of some table producing
another table, can see only one record)

 Reduce (iteration over all values with some key)
* [teration over table data

« Reduce is implemented with distributed sort.

« Example: calculation of URL click-trought-ratio
(CTR) for some query.

MapReduce in Yandex.Search

* \We use MR for
* |logs (views, clicks) processing
e development experiments, which need a lot of data
or a lot of CPU

 We have several independent MR-clusters with
a total of ~10° nodes (some of them are
“production”, some of them for data uploading
and code execution)

HPC in Search Quality

* We use 'pools' -- conveniently represented or
aggregated parts of web data.

* Types of 'pools"
« LETOR data

n-grams frequencies
text and HTML samples

pages with song lyrics from web

any crazy idea? (you can check it in hours)

HPC In Search Quality

- May be the most important task in search quality is relevance
prediction. Assume that you have URL-query pairs. We have
statistics about url (pagerank, text length), query (frequency,
commerciality) and pair {url, query} (text relevance, link
relevance); which we call relevance features. We want to

predict relevance of URL on search query by some feature-
based algorithm.

« We need to collect relevance features for thousands queries for
millions of documents from thousands computers for
training/evaluation of relevance prediction models.

HPC in Search Quality

 Sample of a relevance pool

yandex Hdsjdsfs.com Irrelevant 0.1

wikipedia WIkI livejournal.co Irrelevant 0.01

HPC in Search Quality

e One of the most famous formulas in information
retrieval (TF*IDF):

TextRelevance(Query, Document) =
Sum(TextFrequency(Word)/CollectionFrequenc

y(Word)).

* We need to calculate frequency of every word
In our document collection for evaluation of

TF*IDF text relevance.

HPC in Search Quality

* MatrixNet Is the name of our machine learning
algorithm.

e MatrixNet can be run on arbitrary number of
core processing units.

* |t's Important because it allows to decrease
time for experiment from a week to several
hours (if you have 100 computers :)).

HPC in Search Quality

« Many experiments need analysis of difference between Yandex and
slightly modified Yandex (beta version).

« Any developer needs the ability to build betas in minutes.

« Requirements:

strong system of deployment (you always need to know all parts of system
with versions and how you can put it on any node)

strong code management (branches, tags, code review)

dynamic resource management (you need only several betas at one time)
system of automatic search quality evaluation

a lot of resources

HPC In Search Quality

 Problems:

You need full web data and even more

Any computer can be unavailable at any moment
You need robust data and code distribution tools
You have to execute code near data

You need some coordination between different users on
development nodes

You cannot predict load of development node

« But your progress speed determined by development speed

« Solution: data replication, scheduling of tasks, convenient and
robust APIs for developers

e But..

HPC in Search Quality

No final solution.

They are developers. They
can eat all resources they
can reach.

Overview

e Structure of the cluster

e Architectures:

« Data-centric
- Batch
- Real-time
* Development-centric
- MapReduce
- Ad-hoc
« Real-time query processing

What is this about

Computational model of query processing

Problems and their solutions in terms of this
model

Evolution of Search architecture
Evolution of Search components

[lonb30BaTe/ien B AeHb’

14000000
12000000
10000000
8000000
6000000
4000000

2000000

—

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

(*) N0 BHYTPEHHWUM OaHHbIM, B CPeOHEM B o, BKJtO4a
ﬂ 3KCTpanonaum

How does Search work

IPVS/Balancer

Cachers Merging top relevant

documents
00

Two-stage query

Frontends

hash(req) % n

O

Indeces/Snippets

Connectivity
Load balancing

Static (precalculated)
Dynamic (run-time)
Fault tolerance
Latency

Unpredictability of latency
Bottleneck of the system
Throughput grows slower than CPU
Heterogeneous topology

1 datacenter => many datacenters

Many datacenters => datacenters in many
countries

Load Balancing

Machines and indexes are different
3 generations of hardware

Uncontrollable processes at nodes
OS decided to clear buffers

Monitoring system daemon writes core dump
RAID Rebuilding

Whatever

Fault tolerance

Machines fall
1% of resources is always unavailable

Packets are lost in the network
Datacenters get turned off

Summer, heat, cooling doesn’t cope with workload
Forgot to pay for energy
Drunk worker cut the cable

Cross-country links fall

Different system parts reply with different speed
3 generations of machines
Indexes are different

Random latency

Packets are lost in the network
Scheduler in the OS doesn’t work
Disk is slow (200 S/PS)

Slow “tail” of queries

15 years ago

o O
~_

Everything is on 1 machine
Actually, 3, with different DNS names
Problems are obvious

Query volume Is growing
@ Base Is growing
Fault Intolerance

10 years ago

Frontend/Cacher

1 datacenter, 10 base searchers — the
base got distributed

Can grow query volume and base size

Got clients and money — delays are
unacceptable

Machine fails — system doesn’t live

There are too few machines — subtle
Base Searchers(Indeces) things are not noticable yet

ONE Data Center

Frontends

300 machines, 1 datacenter,
10 frontends, 20 cachers,
Cachers 250 base searches

o0

Problem of machine failures
IS solved

IPVS over frontends

Q Q Q Re-Asks at all levels

Indeces — 2 replicas

7 years ago - problems

00
00 /
/
an
a0
20
| alell(:y ///”/
R T @ 4 e @ ato o A0 10 s a3 20 #0 s A a0 w0 0 0 a3 80 40 w0 40 &0 o e sk g0 8 60 60 M ser @0 00 7 d0 d0 0 g0 3 ELTI L T T T R 5]

Wait for the last source

Slow “tall”
Limit of growth in one datacenter

Base Is growing

Delay because of datacenter failure is unacceptable

“Live” In several datacenters

Don’t wait for the slowest
nodes

Q Q _atency Is better

Partial replies

Cache updates after reply
to the user

@ o

Many Symmetrical Data Centers

4 years ago - problems

Datacenters are different, the base Is growing,
one datacenter can’t hold the whole base

Need more network even inside the datacenter
Manual configuration

“No-reply”s — the scariest word

Different behavior for different users

350

300 z

250

200 z

150 +

100 1=

4l

Scary Story 2008

400 T

5 + & &

110 1 A R e

1% 16 -1 18 19 &0

== ws3-030.yandex.ru-
== ws3-030.yandex.ru-
=k ws3-030.yandex.ru-
= 153030 yanden.ru -
== ws3-030 yandex.ru-
=8 ws3-030 yandex.ru-
== 53-030 yandex.ru-
e 153030 yandex ru -
e 1153030 yandex.ru -
== w53-030 yandex.ru-
== ws3-030 yandex.ru-
=g ws3-030 yandex.ru-

== 1153030 yandex.ru -

- ==ws3-030.yandex.ru-

=8 ws3-030.yandex.ru-
== 153-030.yandex.ru-
== 153-030 yandex.ru-
= 53-030 yandex.ru-

== w53-030.yandex.ru-

mmeta3-00
mmeta3-01
mmeta3-02
mmeta3-03
mmeta3-04
mmeta3-05
mmeta3-06
mmeta3-07
mmeta3-08
mmeta3-03
mmeta3-10
mmeta3-11
mmeta3-12
mmeta3-13
mmetad-14
mmetad-13
mmetad-16
mmeta3-17

mmetad-18

* Dynamic Load
Balancing

* Hard to implement
properly
* Many sources
* Fast changes

* Converge
guarantee?

What now?

Q Q 1075 machines, 101

datacenters
Problem of growth in different

Q “ * datacenters solved
4\\‘\ / Integrators — less traffic, can
‘ <> ‘ cross DC boundaries
& ". , Cluster structure optimization
Q A* A” A” “Annealing”
«cost» — min with fixed RPS

D000 T

Many Datacenters, working as single cluster

New Markets

Distributed Data Centers
Slow channels

Database upload
Independent DCs again?

Latency Is “not modern”

Ask 2 replicas simultaneously
Wait only for the best

Succession of architectures
Linear horizontal scaling

By queries
By base

Growth limits are years ahead

Robustness of computational model

“Conservative” component

Stable external interface
Complication/optimization of ranking

Filtering Iterator
Pruning

Early query termination
Selection Rank

Cacher/metasearch

Synchronous -> asynchronous
Message passing
Early decision making
Merge tree

Rerankings

Metasearch statistics
Data enrichment

Balancer

DNS

IPVS
Only inside VLAN
Distribution by IP
HTTP balancer
Keepalive
Ssl

Honest frontend balancing
Early robots elimination

Also...
Tiers Cw
Golden GOLD/ \

COMMON
Common GARBAGE

Garbage

Index update frequency
Main — slow updates (days)
Fast — fast updates (hours, minutes)
Real-time — ultra-fast updates (seconds)

Further Reading

* Yet Another MapReduce
http://prezi.com/p4uipwixfd4p/yet-another-mapredu

e ONTMMM3aALMS aSTTOPUTMOB PaHXMPOBaHUS
MeTogamMn MallMHHOIo 0by4yeHuns

http://romip.ru/romip2009/15 yandex.pdf
e Kak paboTtaloT NonckoBble CUCTEMbI

http://download.yandex.ru/company/iworld-
3.pdf

http://prezi.com/p4uipwixfd4p/yet-another-mapreduce/
http://romip.ru/romip2009/15_yandex.pdf

Thank you.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

