

Архитектура поискового кластера

Яндекс
Den Raskovalov

denplusplus@yandex-team.ru
Санкт-Петербург

25.02.2012

О чем это?

Несмотря на то, что автор сведущ лишь в
том, как работает поиск Яндекса, слышал о
том, как работают другие поисковые
машины, он имеет наглость полагать, что
приемы, которые накоплены в поисковой
индустрии будут полезны любому
высоконагруженному сервису обработки
данных.

Что умеет Яндекс?

● Зарабатывать деньги (реклама в интернете)
● Делать надежные высоконагруженные

сложные сервисы
● Увязывать тысячи источников данных в один

продукт
● Решать задачи обработки данных

Requirements

● Indexation
● ~1012 known URL's

● ~1010 indexed documents

● ~1010 searchable documents

● Real-time indexation

● Real-time query processing
● 107 user queries per hour in peak

● Development
● 400+ creative search developers

● A lot of experiments on full data (pages, links, clicks)

● Large-scale machine learning

● Many experiments require full-sized copy of Yandex.Search

Hardware

● Server's cost:
● Hardware (~$2500 for ~24 computing cores, ~48Gb RAM)
● Place in data center (~$1000 per year)
● Electricity for computation and cooling (~$1000 per year)
● Maintenance (~$300 per year)

● High-end hardware costs too much.
● Low-end hardware needs same electricity and place

and maintenance as high-end.
● There is optimum point.
● Now Yandex.Search works on ~105 servers.

Distribution of Resources

● Main design principles
● Sharding (splitting into almost independent parts)
● Replication (each piece of data is copied several

times for performance and failover)
● Full isolation between development and production

(no read/write access for developer to production
nodes)

Indexation Real-time serving Development

Content System

Content system – system for crawling internet
urls, building indexes (inverted index for search,
link index, pagerank, ...) and deployment
indexes for real-time query processing.

Content System

● Content system phases:
● Crawling (building a list of URLs)
● Selection (we can't fetch everything, we need to predict quality

before fetching)
● Fetching document data from Internet
● Building search representation for documents (inverted indices

with lemmatization; binding of external host/url information, link
information)

● Spam detection
● Duplicates detection
● Selection (we can't search on everything we fetch)
● Documents deployment to system of real-time query processing

Content System

● In fact we have two content systems now
● Batch (for processing ~1012 URLs)
● Real-time (for processing ~109 URLs we need for

freshness)

● Different update periods inflects architecture
● Disc-efficient (sort/join) algorithms for batch
● Almost everything in memory for real-time

Batch Content System

● We split internet in n parts based on 32-bit hash
of a hostname. We have ~104 computers, a
computer for an interval of hash values; it
crawls “it's” hosts and builds search indexes.

● We represent “knowledge” of internet as
relational tables (table of urls, table of links,
table of hosts).

Batch Content System

Internet

Fetcher cluster

Indexation node Indexation node Indexation node

Urls for fetch Fetched data

U
rls

 fo
r

fe
tc

h

Urls for fetch

F
etched data

Fetched data

Fetched data

Fetched data Urls for fe
tch

● Once per day each indexation node forms a list of urls for fetch.

● Once per day each indexation node receives fetched data and updates “knowledge” about internet
(update process needs only sorting and joins of big tables on disk).

● Once per three days each indexation node push indexes on search nodes.

Search node Search node Search node

Batch Content System

● Each indexation node needs “external” data
● Links from another indexation nodes

– data passing is asynchronous
– death of source or target indexation nodes isn't critical (in

case of failure data will be received next time)
● Aggregated clicks on URLs from MapReduce
● External data about hosts and pages

Real-time Content System

● Main requirement for real-time content system is small time interval
between availability of information about document and ability to
search on document's content.

● It implies that data can be stored only in RAM. HDD can only be used
for eventually consistent backup.

● You have to switch from relational design of data processing to
services and message passing algorithms.

● You need big and fast key-value storage in RAM.

● Algorithms with smaller guarantees without consistency invariants
(because any network packet can be lose).

Real-time Content System

● We run each set of services on a node:
● Link database
● Local pagerank calculator
● Global dup-detector
● Anti-spam checker
● Indexer

● We have library of maintaing key-value storage in
memory with eventual backup/restore to/from HDD.

● A lot of network traffic between nodes of real-time
content system. Almost no data locality. Nodes of real-
time content system need to be in one datacenter.

MapReduce in Yandex.Search

● MapReduce approach is simple, clear data storage
combined with data processing, which hides complexity of
parallelizing algorithms on several computation nodes

● MapReduce stores set of relational tables. Each table
keeps set of records. Each table is physically represented
of set of chunks on a HDD (~64Mb). One server (master)
knows about all chunks, keeps constraint of replication
count >= 3.

● Each record is triple of {key, subKey, value}.

MapReduce in Yandex.Search

● What operations are available:
● Append set of records to some table
● Map (iteration over records of some table producing

another table, can see only one record)
● Reduce (iteration over all values with some key)
● Iteration over table data

● Reduce is implemented with distributed sort.

● Example: calculation of URL click-trought-ratio
(CTR) for some query.

MapReduce in Yandex.Search

● We use MR for
● logs (views, clicks) processing
● development experiments, which need a lot of data

or a lot of CPU

● We have several independent MR-clusters with
a total of ~103 nodes (some of them are
“production”, some of them for data uploading
and code execution)

HPC in Search Quality

● We use 'pools' -- conveniently represented or
aggregated parts of web data.

● Types of 'pools':
● LETOR data
● n-grams frequencies
● text and HTML samples
●
● pages with song lyrics from web
●
● any crazy idea? (you can check it in hours)

HPC in Search Quality

● May be the most important task in search quality is relevance
prediction. Assume that you have URL-query pairs. We have
statistics about url (pagerank, text length), query (frequency,
commerciality) and pair {url, query} (text relevance, link
relevance); which we call relevance features. We want to
predict relevance of URL on search query by some feature-
based algorithm.

● We need to collect relevance features for thousands queries for
millions of documents from thousands computers for
training/evaluation of relevance prediction models.

HPC in Search Quality

● Sample of a relevance pool
●

Query URL Label PageRank Text
Relevance

Link
Relevance

yandex Yandex.ru Relevant 1 0.5 1

yandex Hdsjdsfs.com Irrelevant 0.1 0.5 0.1

wikipedia Wikipedia.org Relevant 0.9 1 1

wikipedia wiki.livejournal.co
m

Irrelevant 0.01 1 0.01

HPC in Search Quality

● One of the most famous formulas in information
retrieval (TF*IDF):

TextRelevance(Query, Document) =
Sum(TextFrequency(Word)/CollectionFrequenc
y(Word)).

● We need to calculate frequency of every word
in our document collection for evaluation of
TF*IDF text relevance.

HPC in Search Quality

● MatrixNet is the name of our machine learning
algorithm.

● MatrixNet can be run on arbitrary number of
core processing units.

● It's important because it allows to decrease
time for experiment from a week to several
hours (if you have 100 computers :)).

HPC in Search Quality

● Many experiments need analysis of difference between Yandex and
slightly modified Yandex (beta version).

● Any developer needs the ability to build betas in minutes.

● Requirements:
● strong system of deployment (you always need to know all parts of system

with versions and how you can put it on any node)

● strong code management (branches, tags, code review)

● dynamic resource management (you need only several betas at one time)

● system of automatic search quality evaluation

● a lot of resources

HPC in Search Quality

● Problems:
● You need full web data and even more
● Any computer can be unavailable at any moment
● You need robust data and code distribution tools
● You have to execute code near data
● You need some coordination between different users on

development nodes
● You cannot predict load of development node

● But your progress speed determined by development speed

● Solution: data replication, scheduling of tasks, convenient and
robust APIs for developers

● But..

HPC in Search Quality

No final solution.

They are developers. They
can eat all resources they
can reach.

Overview

● Structure of the cluster
● Architectures:

● Data-centric
– Batch
– Real-time

● Development-centric
– MapReduce
– Ad-hoc

● Real-time query processing

What is this about

● Computational model of query processing
● Problems and their solutions in terms of this
model

● Evolution of Search architecture
● Evolution of Search components

Пользователей в день*

(*) по внутренним данным, в среднем в год; включая
экстраполяцию

How does Search work

 Merging top relevant
documents

 Two-stage query

Frontends

Cachers

Indeces/Snippets

IPVS/Balancer

hash(req) % n

Problems

 Connectivity
 Load balancing

 Static (precalculated)
 Dynamic (run-time)

 Fault tolerance
 Latency

Network

 Unpredictability of latency
 Bottleneck of the system
 Throughput grows slower than CPU
 Heterogeneous topology

 1 datacenter => many datacenters
 Many datacenters => datacenters in many

countries

Load Balancing

 Machines and indexes are different
 3 generations of hardware

 Uncontrollable processes at nodes
 OS decided to clear buffers
 Monitoring system daemon writes core dump
 RAID Rebuilding
 Whatever

Fault tolerance

 Machines fail
 1% of resources is always unavailable

 Packets are lost in the network
 Datacenters get turned off

 Summer, heat, cooling doesn’t cope with workload
 Forgot to pay for energy
 Drunk worker cut the cable

 Cross-country links fail

Latency

 Different system parts reply with different speed
 3 generations of machines
 Indexes are different

 Random latency
 Packets are lost in the network
 Scheduler in the OS doesn’t work
 Disk is slow (200 S/PS)

 Slow “tail” of queries

15 years ago

 Everything is on 1 machine
 Actually, 3, with different DNS names

 Problems are obvious
 Query volume is growing
 Base is growing
 Fault Intolerance

Index

10 years ago

 1 datacenter, 10 base searchers – the
base got distributed

 Can grow query volume and base size

 Got clients and money – delays are
unacceptable

 Machine fails – system doesn’t live

 There are too few machines – subtle
things are not noticable yet

…..

Frontend/Cacher

Base Searchers(Indeces)

ONE Data Center

7 years ago

 300 machines, 1 datacenter,
10 frontends, 20 cachers,
250 base searches

 Problem of machine failures
is solved

 IPVS over frontends
 Re-Asks at all levels

Frontends

Cachers

Indeces — 2 replicas

X

7 years ago - problems

 Latency
 Wait for the last source
 Slow “tail”

 Limit of growth in one datacenter
 Base is growing
 Delay because of datacenter failure is unacceptable

4 years ago

 “Live” in several datacenters
 Don’t wait for the slowest

nodes
 Latency is better
 Partial replies
 Cache updates after reply

to the user
X

DNS/IPVS

Many Symmetrical Data Centers

4 years ago - problems

 Datacenters are different, the base is growing,
one datacenter can’t hold the whole base

 Need more network even inside the datacenter
 Manual configuration
 “No-reply”s – the scariest word
 Different behavior for different users

Scary Story 2008

● Dynamic Load
Balancing

● Hard to implement
properly
● Many sources
● Fast changes

● Converge
guarantee?

What now?

 10^5 machines, 10^1
datacenters

 Problem of growth in different
datacenters solved

 Integrators – less traffic, can
cross DC boundaries

 Cluster structure optimization
 “Annealing”

 «cost» → min with fixed RPS
and base

Many Datacenters, working as single cluster

Frontier

 New Markets
 Distributed Data Centers
 Slow channels
 Database upload
 Independent DCs again?

 Latency is “not modern”
 Ask 2 replicas simultaneously
 Wait only for the best

Resume

 Succession of architectures
 Linear horizontal scaling

 By queries
 By base

 Growth limits are years ahead
 Robustness of computational model

Base Search

 “Conservative” component
 Stable external interface
 Complication/optimization of ranking

 Filtering iterator
 Pruning
 Early query termination
 Selection Rank

Cacher/metasearch

 Synchronous -> asynchronous
 Message passing
 Early decision making

 Merge tree
 Rerankings

 Metasearch statistics
 Data enrichment

Balancer

 DNS
 IPVS

 Only inside VLAN
 Distribution by IP

 HTTP balancer
 Keepalive
 Ssl
 Honest frontend balancing
 Early robots elimination

Also...

 Tiers
 Golden
 Common
 Garbage

 Index update frequency
 Main – slow updates (days)
 Fast – fast updates (hours, minutes)
 Real-time – ultra-fast updates (seconds)

GOLD
COMMON

GARBAGE

Cacher

Further Reading

● Yet Another MapReduce

http://prezi.com/p4uipwixfd4p/yet-another-mapreduce/
● Оптимизация алгоритмов ранжирования

методами машинного обучения

http://romip.ru/romip2009/15_yandex.pdf
● Как работают поисковые системы

http://download.yandex.ru/company/iworld-
3.pdf

http://prezi.com/p4uipwixfd4p/yet-another-mapreduce/
http://romip.ru/romip2009/15_yandex.pdf

Thank you.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

