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О чем это?

Несмотря на то, что автор сведущ лишь в 
том, как работает поиск Яндекса, слышал о 
том, как работают другие поисковые 
машины, он имеет наглость полагать, что 
приемы, которые накоплены в поисковой 
индустрии будут полезны любому 
высоконагруженному сервису обработки 
данных.



  

Что умеет Яндекс?

● Зарабатывать деньги (реклама в интернете)
● Делать надежные высоконагруженные 

сложные сервисы
● Увязывать тысячи источников данных в один 

продукт
● Решать задачи обработки данных







  

Requirements

● Indexation
● ~1012  known URL's

● ~1010 indexed documents

● ~1010 searchable documents

● Real-time indexation

● Real-time query processing
● 107 user queries per hour in peak

● Development
● 400+ creative search developers

● A lot of experiments on full data (pages, links, clicks)

● Large-scale machine learning

● Many experiments require full-sized copy of Yandex.Search



  

Hardware

● Server's cost:
● Hardware (~$2500 for ~24 computing cores, ~48Gb RAM)
● Place in data center (~$1000 per year)
● Electricity for computation and cooling (~$1000 per year)
● Maintenance (~$300 per year)

● High-end hardware costs too much.
● Low-end hardware needs same electricity and place 

and maintenance as high-end.
● There is optimum point.
● Now Yandex.Search works on ~105 servers.



  

Distribution of Resources

● Main design principles
● Sharding (splitting into almost independent parts) 
● Replication (each piece of data is copied several 

times for performance and failover)
● Full isolation between development and production 

(no read/write access for developer to production 
nodes)

Indexation Real-time serving Development



  

Content System

Content system – system for crawling internet 
urls, building indexes (inverted index for search, 
link index, pagerank, ...) and deployment 
indexes for real-time query processing.



  

Content System

● Content system phases:
● Crawling (building a list of URLs)
● Selection (we can't fetch everything, we need to predict quality 

before fetching)
● Fetching document data from Internet
● Building search representation for documents (inverted indices 

with lemmatization; binding of external host/url information, link 
information)

● Spam detection
● Duplicates detection
● Selection (we can't search on everything we fetch)
● Documents deployment to system of real-time query processing



  

Content System

● In fact we have two content systems now
● Batch (for processing ~1012 URLs)
● Real-time (for processing ~109 URLs we need for 

freshness)

● Different update periods inflects architecture
● Disc-efficient (sort/join) algorithms for batch
● Almost everything in memory for real-time



  

Batch Content System

● We split internet in n parts based on 32-bit hash 
of a hostname. We have ~104 computers, a 
computer for an interval of hash values; it 
crawls “it's” hosts and builds search indexes. 

● We represent “knowledge” of internet as 
relational tables (table of urls, table of links, 
table of hosts).



  

Batch Content System
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● Once per day each indexation node forms a list of urls for fetch.

● Once per day each indexation node receives fetched data and updates “knowledge” about internet 
(update process needs only sorting and joins of big tables on disk).

● Once per three days each indexation node push indexes on search nodes.

Search node Search node Search node



  

Batch Content System

● Each indexation node needs “external” data
● Links from another indexation nodes

– data passing is asynchronous
– death of source or target indexation nodes isn't critical (in 

case of failure data will be received next time)
● Aggregated clicks on URLs from MapReduce
● External data about hosts and pages



  

Real-time Content System

● Main requirement for real-time content system is small time interval 
between availability of information about document and ability to 
search on document's content.

● It implies that data can be stored only in RAM. HDD can only be used 
for eventually consistent backup.

● You have to switch from relational design of data processing to 
services and message passing algorithms.

● You need big and fast key-value storage in RAM.

● Algorithms with smaller guarantees without consistency invariants 
(because any network packet can be lose). 



  

Real-time Content System

● We run each set of services on a node:
● Link database
● Local pagerank calculator
● Global dup-detector
● Anti-spam checker
● Indexer

● We have library of maintaing key-value storage in 
memory with eventual backup/restore to/from HDD.

● A lot of network traffic between nodes of real-time 
content system. Almost no data locality. Nodes of real-
time content system need to be in one datacenter.



  

MapReduce in Yandex.Search

● MapReduce approach is simple, clear data storage 
combined with data processing, which hides complexity of 
parallelizing algorithms on several computation nodes

● MapReduce stores set of relational tables. Each table 
keeps set of records. Each table is physically represented 
of set of chunks on a HDD (~64Mb). One server (master) 
knows about all chunks, keeps constraint of replication 
count >= 3.

● Each record is triple of {key, subKey, value}.



  

MapReduce in Yandex.Search

● What operations are available:
● Append set of records to some table
● Map (iteration over records of some table producing 

another table, can see only one record)
● Reduce (iteration over all values with some key)
● Iteration over table data

● Reduce is implemented with distributed sort.

● Example: calculation of URL click-trought-ratio 
(CTR) for some query.



  

MapReduce in Yandex.Search

● We use MR for
● logs (views, clicks) processing
● development experiments, which need a lot of data 

or a lot of CPU

● We have several independent MR-clusters with 
a total of ~103 nodes (some of them are 
“production”, some of them for data uploading 
and code execution)



  

HPC in Search Quality

● We use 'pools' -- conveniently represented or 
aggregated parts of web data.

● Types of 'pools':
● LETOR data
● n-grams frequencies
● text and HTML samples
● ....
● pages with song lyrics from web
● ....
● any crazy idea? (you can check it in hours) 



  

HPC in Search Quality

● May be the most important task in search quality is relevance 
prediction. Assume that you have URL-query pairs. We have 
statistics about url (pagerank, text length), query (frequency, 
commerciality) and pair {url, query} (text relevance, link 
relevance); which we call relevance features. We want to 
predict relevance of URL on search query by some feature-
based algorithm.

● We need to collect relevance features for thousands queries for 
millions of documents from thousands computers for 
training/evaluation of relevance prediction models.



  

HPC in Search Quality

● Sample of a relevance pool
●

Query URL Label PageRank Text 
Relevance

Link 
Relevance

yandex Yandex.ru Relevant 1 0.5 1

yandex Hdsjdsfs.com Irrelevant 0.1 0.5 0.1

wikipedia Wikipedia.org Relevant 0.9 1 1

wikipedia wiki.livejournal.co
m

Irrelevant 0.01 1 0.01



  

HPC in Search Quality

● One of the most famous formulas in information 
retrieval (TF*IDF):

TextRelevance(Query, Document) = 
Sum(TextFrequency(Word)/CollectionFrequenc
y(Word)).

● We need to calculate frequency of every word 
in our document collection for evaluation of 
TF*IDF text relevance.



  

HPC in Search Quality

● MatrixNet is the name of our machine learning 
algorithm.

● MatrixNet can be run on arbitrary number of 
core processing units.

● It's important because it allows to decrease 
time for experiment from a week to several 
hours (if you have 100 computers :) ).



  

HPC in Search Quality

● Many experiments need analysis of difference between Yandex and 
slightly modified Yandex (beta version).

● Any developer needs the ability to build betas in minutes.

● Requirements:
● strong system of deployment (you always need to know all parts of system 

with versions and how you can put it on any node)

● strong code management (branches, tags, code review)

● dynamic resource management (you need only several betas at one time)

● system of automatic search quality evaluation 

● a lot of resources



  

HPC in Search Quality

● Problems:
● You need full web data and even more
● Any computer can be unavailable at any moment
● You need robust data and code distribution tools
● You have to execute code near data
● You need some coordination between different users on 

development nodes
● You cannot predict load of development node

● But your progress speed determined by development speed

● Solution: data replication, scheduling of tasks, convenient and 
robust APIs for developers

● But.. 



  

HPC in Search Quality

No final solution.

They are developers. They 
can eat all resources they 
can reach.



  

Overview

● Structure of the cluster
● Architectures:

● Data-centric
– Batch
– Real-time

● Development-centric
– MapReduce
– Ad-hoc

● Real-time query processing



What is this about

● Computational model of query processing
● Problems and their solutions in terms of this 
model

● Evolution of Search architecture
● Evolution of Search components



  

Пользователей в день*

(*) по  внутренним данным, в среднем в год; включая 
экстраполяцию



How does Search work

 Merging top relevant 
documents

 Two-stage query

Frontends

Cachers

Indeces/Snippets

IPVS/Balancer

hash(req) % n



Problems

 Connectivity
 Load balancing

 Static (precalculated)
 Dynamic (run-time)

 Fault tolerance
 Latency



Network

 Unpredictability of latency
 Bottleneck of the system
 Throughput grows slower than CPU
 Heterogeneous topology

 1 datacenter => many datacenters
 Many datacenters => datacenters in many 

countries



Load Balancing

 Machines and indexes are different
 3 generations of hardware

 Uncontrollable processes at nodes
 OS decided to clear buffers
 Monitoring system daemon writes core dump
 RAID Rebuilding
 Whatever



Fault tolerance

 Machines fail
 1% of resources is always unavailable

 Packets are lost in the network
 Datacenters get turned off

 Summer, heat, cooling doesn’t cope with workload
 Forgot to pay for energy
 Drunk worker cut the cable

 Cross-country links fail



Latency

 Different system parts reply with different speed
 3 generations of machines
 Indexes are different

 Random latency
 Packets are lost in the network
 Scheduler in the OS doesn’t work
 Disk is slow (200 S/PS)

 Slow “tail” of queries



15 years ago

 Everything is on 1 machine
 Actually, 3, with different DNS names

 Problems are obvious
 Query volume is growing
 Base is growing
 Fault Intolerance

Index



10 years ago

 1 datacenter, 10 base searchers – the 
base got distributed

 Can grow query volume and base size

 Got clients and money – delays are 
unacceptable

 Machine fails – system doesn’t live

 There are too few machines – subtle 
things are not noticable yet

…..

Frontend/Cacher

Base Searchers(Indeces)

ONE Data Center



7 years ago

 300 machines, 1 datacenter, 
10 frontends, 20 cachers, 
250 base searches

 Problem of machine failures 
is solved

 IPVS over frontends
 Re-Asks at all levels

Frontends

Cachers

Indeces — 2 replicas

X



7 years ago - problems

 Latency
 Wait for the last source
 Slow “tail”

 Limit of growth in one datacenter
 Base is growing
 Delay because of datacenter failure is unacceptable



4 years ago

 “Live” in several datacenters
 Don’t wait for the slowest 

nodes
 Latency is better
 Partial replies
 Cache updates after reply 

to the user
X

DNS/IPVS

Many Symmetrical Data Centers



4 years ago - problems

 Datacenters are different, the base is growing, 
one datacenter can’t hold the whole base

 Need more network even inside the datacenter
 Manual configuration
 “No-reply”s – the scariest word
 Different behavior for different users



Scary Story 2008

● Dynamic Load 
Balancing

● Hard to implement 
properly
● Many sources
● Fast changes

● Converge 
guarantee? 



What now?

 10^5 machines, 10^1 
datacenters

 Problem of growth in different 
datacenters solved

 Integrators – less traffic, can 
cross DC boundaries

 Cluster structure optimization
 “Annealing”

 «cost» → min with fixed RPS 
and base

Many Datacenters, working as single cluster



Frontier

 New Markets
 Distributed Data Centers
 Slow channels
 Database upload
 Independent DCs again?

 Latency is “not modern”
 Ask 2 replicas simultaneously
 Wait only for the best



Resume

 Succession of architectures
 Linear horizontal scaling

 By queries
 By base

 Growth limits are years ahead
 Robustness of computational model



Base Search

 “Conservative” component
 Stable external interface
 Complication/optimization of ranking

 Filtering iterator
 Pruning
 Early query termination
 Selection Rank



Cacher/metasearch

 Synchronous -> asynchronous
 Message passing
 Early decision making

 Merge tree
 Rerankings

 Metasearch statistics
 Data enrichment



Balancer

 DNS
 IPVS

 Only inside VLAN
 Distribution by IP

 HTTP balancer
 Keepalive
 Ssl
 Honest frontend balancing
 Early robots elimination



Also...

 Tiers
 Golden
 Common
 Garbage

 Index update frequency
 Main – slow updates (days)
 Fast – fast updates (hours, minutes)
 Real-time – ultra-fast updates (seconds)

GOLD
COMMON

GARBAGE

Cacher



  

Further Reading

● Yet Another MapReduce

http://prezi.com/p4uipwixfd4p/yet-another-mapreduce/
● Оптимизация алгоритмов ранжирования 

методами машинного обучения

http://romip.ru/romip2009/15_yandex.pdf
● Как работают поисковые системы

http://download.yandex.ru/company/iworld-
3.pdf

http://prezi.com/p4uipwixfd4p/yet-another-mapreduce/
http://romip.ru/romip2009/15_yandex.pdf


  

Thank you.

Questions?
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