\sqrt{n} -методы Алгоритмы index calculus: первая фаза Index calculus: третья фаза и оценка сложности Идеи других алгоритмов

Поиск дискретного логарифма

Сергей Николенко

Computer Science Club, 2015

Алгоритмы index calculus: первая фаза Index calculus: третья фаза и оценка сложности Идеи других алгоритмов

Outline

- $1 \sqrt{n}$ -методы
 - Введение. Атака на гладкие модули
 - Алгоритм Шенкса и ρ-метод Полларда
 - λ-метод Полларда
- - Введение. Основная идея
 - Проверка на гладкость одного числа
 - Проверка на гладкость многих чисел
- - Третья фаза index calculus: поиск логарифма
 - Анализ сложности: гладкие числа и грубая оценка
 - Анализ сложности: точная оценка
- - Number field sieve

Введение. Атака на гладкие модули Алгоритм Шенкса и ρ -метод Полларда λ -метод Полларда

Задача

- На прошлой лекции мы узнали, как раскладывать числа на множители.
- Теперь попробуем решать другую базовую задачу криптографии: дискретный логарифм.

Задача

- На прошлой лекции мы узнали, как раскладывать числа на множители.
- Теперь попробуем решать другую базовую задачу криптографии: дискретный логарифм.
- ullet Дискретный логарифм: в циклической группе G по $g\in G$ и $y\in G$ найти такой x, что $g^x=y$.
- Этот x определяется с точностью до порядка g; если $\langle g \rangle = G$, то логарифм определён с точностью до |G| = n. Мы будем считать, что $\langle g \rangle = G$.

Сложность общей задачи

- Известно, что если не пользоваться ничем, кроме групповой операции и взятия обратного, то ничего лучше, чем \sqrt{n} , не будет: когда алгоритм обращается за определёнными умножениями, можно по ходу строить группу так, что ему придётся обращаться $\Omega(\sqrt{p})$ раз, где p наибольший простой делитель n [Shoup, 1997].
- Мы сначала рассмотрим методы, достигающие этой цели, а потом перейдём к специфически числовым методам, работающим не во всех группах.

Тривиальный подход

- Тривиальный подход: возводить g, g^2, g^3, \ldots , пока не наткнёмся на y.
- Требует примерно $\frac{n}{2}$ операций, имеет смысл только для маленьких n.

- Пусть $n = p_1^{k_1} p_2^{k_2} \dots p_l^{k_l}$.
- Заметим, что для каждого из этих р порядок элемента g^{n/p^k} равен p^k , и порядок элемента y^{n/p^k} не превосходит
- Иначе говоря, g^{n/p^k} порождает подгруппу G порядка p^k , а v^{n/p^k} лежит в этой подгруппе.
- И если мы можем найти логарифм в этой подгруппе:

$$\left(g^{n/p^k}
ight)^{x'}=y^{n/p^k},$$
 то, с другой стороны, $\left(g^{n/p^k}
ight)^x=y^{n/p^k},$ и тем самым $x'\equiv x\pmod{p^k}.$

 Тогда, если мы найдём логарифмы по модулям простых чисел

то сможем по китайской теореме об остатках восстановить x, потому что

$$x \equiv x_1 \pmod{p_1^{k_1}},$$
 $x \equiv x_2 \pmod{p_2^{k_2}},$
 $\vdots \quad \vdots \quad \vdots,$

- Оказывается, найти логарифм по модулю p^k для маленького простого p легко, даже если k большое.
- Разложим предполагаемый логарифм x' по основанию p:

$$x' = z_0 + z_1 p + z_2 p^2 + \ldots + z_k p^k.$$

• Положим сначала $y_0 = y^{n/p}$, $g_0 = g^{n/p}$. Порядок g_0 не больше p, значит,

$$y_0 = y^{n/p} = g^{x \cdot n/p} = g_0^x = g_0^{z_0}$$
.

- ullet Тем самым мы нашли z_0 . Теперь можно его вычесть, положить $y_1 = \left(yg_0^{-z_0}
 ight)^{n/p^2}$ и продолжать.
- В итоге найдём логарифм по модулю p^k за k поисков логарифма по модулю p.

- Значит, гладкие модули использовать нельзя.
- Нужно выбирать такие n, у которых есть большие простые делители.
- Либо, в крайнем случае, разложение *п* неизвестно, но есть причины полагать, что большие простые делители есть.

Baby-step-Giant-step

- ullet Shanks, 1973: алгоритм, работающий за $O(\sqrt{n})$; стандартный time-space tradeoff.
 - **①** Запишем x в виде x = im + j для какого-то m. Тогда $y \cdot (g^{-m})^i = g^j$.
 - ② Предвычислим g^{j} и будем перебирать i, умножая y на g^{im} и проверяя, нет ли его среди g^{j} .
- Если записать g_j в хеш-таблицу, можно считать, что проверка на равенство происходит в среднем за константное время.

Baby-step-Giant-step

• Алгоритм записывает два массива. Первый (giant steps):

$$S = \left\{ \left(i, g^{i \lceil \sqrt{n} \rceil} \right) \mid i = 0.. \lceil \sqrt{n} \rceil \right\}.$$

Второй (baby steps):

$$T = \{(j, y \cdot g^j) \mid j = 0.. \lceil \sqrt{n} \rceil \}.$$

• Как только списки пересекутся, логарифм можно будет найти как

$$\log_g y \equiv i \left\lceil \sqrt{n} \right\rceil - j \pmod{n}.$$

• Однако этот алгоритм требует экспоненциальной памяти.

р-метод Полларда

- Pollard, 1978. Суть «birthday paradox»: мы выбираем псевдослучайную последовательность элементов в группе и ждём цикла. Цикл будет в среднем через $O(\sqrt{n})$ элементов.
- Разобьём группу на три части (не подгруппы) S_1, S_2, S_3 . Будем вычислять

$$a_{i+1} = egin{cases} y \cdot a_i, & ext{ если } a_i \in S_1, \ a_i^2, & ext{ если } a_i \in S_2, \ g \cdot a_i, & ext{ если } a_i \in S_3. \end{cases}$$

р-метод Полларда

- Если в последовательности найдётся цикл, это с большой вероятностью приведёт к тому, что мы найдём дискретный логарифм, потому что мы найдём соотношение вида $g^a y^b = g^c y^d$.
- Но, казалось бы, всё равно надо хранить всю последовательность, и с памятью лучше не становится.
 Что делать?

Алгоритм Флойда для поиска цикла

- Алгоритм Флойда, он же «tortoise-and-hare algorithm».
- Общая постановка: хотим найти цикл в последовательности $a_{i+1} = f(a_i)$.
- Давайте будем хранить всего два указателя: u и v, причём $u_i = a_i$ (черепаха), а $v_i = a_{2i}$ (заяц).
- Если в последовательности есть цикл периода r, начинающийся с позиции s ($a_i = a_{i+r}$ для $i \geq s$), то для любого $i \geq s$, делящегося на r, $a_i = a_{2i}$.
- Т.е. нам придётся искать не более чем на длину периода (т.е. примерно вдвое) дольше.

Алгоритм Брента

- Другой алгоритм для того же самого алгоритм Брента.
- Теперь черепаха останавливается на степенях двойки, а заяц прыгает шаг за шагом к следующей степени.
 - Пока tortoise≠hare:
 - \bullet если i == pow, то tortoise := hare $pow := 2 \cdot pow$ $i \cdot = 0$
 - hare= f(hare)
 - \bullet + + i
- Шагов в любом случае не больше, чем в алгоритме Флойда, но каждый шаг — это одно вычисление f, а не три.

Введение. Атака на гладкие модули Алгоритм Шенкса и ρ -метод Полларда λ -метод Полларда

λ-метод Полларда

- Раньше были зайцы и черепахи, теперь кенгуру.
- λ-метод Полларда ещё называется «kangaroo method».
- Предположим, что мы знаем некий интервал [a, b], на котором должен лежать неизвестный логарифм x.
- Как это использовать?

λ-метод Полларда

- ullet Определим хеш-функцию h, делящую G на r множеств S_1, S_2, \ldots, S_r : $S_i = h^{-1}(i)$.
- Поставим каждому множеству в соответствие расстояние d_1, d_2, \ldots, d_r и длину прыжка $g^{d_1}, g^{d_2}, \ldots, g^{d_r}$.
- Теперь путь кенгуру определяется как

Идеи других алгоритмов

$$c_{i+1} = c_i \cdot g^{d_{h(c_i)}}.$$

λ-метод Полларда

- Нам будут нужны два кенгуру: дикий и ручной.
- Ручной кенгуру начнёт прыгать из какой-нибудь точки внутри интервала [a,b], например, $g^{\frac{a+b}{2}}$.
- Дикий кенгуру начнёт прыгать из неизвестной точки у.
- Однако, суммируя d_i , мы можем хранить общее пройденное расстояние для обоих кенгуру.

λ-метод Полларда

• Когда ручной и дикий кенгуру встретятся, причём ручной пройдёт к тому времени расстояние t, а дикий — расстояние w, у нас получится, что

$$g^{\frac{a+b}{2}}g^t = g^x g^w$$
, w $x = \frac{a+b}{2} + t - w$.

- Пересечение можно найти, например, храня только $t_1, t_2, t_4, t_8, \ldots$ и $w_1, w_2, w_4, w_8, \ldots$, потому что после пересечения пути кенгуру сойдутся навсегда.
- В результате (без доказательства) ожидаемое время работы получается $O(\sqrt{b-a})$.

Введение. Атака на гладкие модули Алгоритм Шенкса и ρ -метод Полларда λ -метод Полларда

ρ- и λ-методы

• Почему ρ- и λ-методы названы этими буквами?

ρ- и λ-методы

• Почему ρ- и λ-методы названы этими буквами?

Идеи других алгоритмов

- Потому что то, что происходит в алгоритмах, похоже на эти буквы:
 - ρ-метод строит последовательность элементов, которая в какой-то момент возвращается к одному из промежуточных значений, создавая цикл;
 - λ-метод строит две последовательности элементов,
 которые в какой-то момент сливаются и затем совпадают.

Введение. Основная идея Проверка на гладкость одного числа Проверка на гладкость многих чисел

Outline

- $1 \sqrt{n}$ -методь
 - Введение. Атака на гладкие модули
 - Алгоритм Шенкса и ρ-метод Полларда
 - λ-метод Полларда
- Алгоритмы index calculus: первая фаза
 - Введение. Основная идея
 - Проверка на гладкость одного числа
 - Проверка на гладкость многих чисел
- ③ Index calculus: третья фаза и оценка сложности
 - Третья фаза index calculus: поиск логарифма
 - Анализ сложности: гладкие числа и грубая оценка
 - Анализ сложности: точная оценка
- 4 Идеи других алгоритмов
 - Number field sieve

От общих групп к частным случаям

- Алгоритмов лучше, чем вышеописанные довольно простые соображения, для общих групп не известно.
- Однако можно сделать лучше при дополнительных предположениях на структуру группы.
- ullet Они выполняются, в частности, в группах чисел \mathbb{Z}_p .

От общих групп к частным случаям

• Предположения простые: можно выбрать разумную базу факторизации p_1, \ldots, p_s , для которой многие элементы будут представляться в виде

$$r = p_1^{k_1} p_2^{k_2} \dots p_s^{k_s}.$$

- Для чисел это легко: берём простые числа, меньшие B; «многие» это в точности B-гладкие элементы.
- ullet В дальнейшем будем считать, что мы работаем над \mathbb{Z}_p .

Общая идея index calculus

- Алгоритм index calculus очень похож на алгоритм факторизации, использующий квадратичное решето.
- Так что заодно в каком-то смысле и повторим прошлую лекцию.
- Мы знаем свойства логарифма, а именно

$$\begin{split} \log_g(ab) &= \log_g a + \log_g b, \\ \log_g(a^e) &= e \log_g a. \end{split}$$

Введение. Основная идея

Проверка на гладкость одного числа Проверка на гладкость многих чисел

Общая идея index calculus

 Общая идея: логарифм гладкого элемента можно представить как

$$\log_g r \equiv k_1 \log_g p_1 + k_2 \log_g p_2 + \ldots + k_s \log_g p_s \pmod{p-1}.$$

- Если мы знаем $\log_g r$ (например, сами выбирали u и вычисляли $r=g^u$) и наберём достаточно много таких соотношений, у нас получится линейная система на $\log_g p_i$.
- Её можно решить и найти $\log_g p_i$, а затем с их помощью найти $\log_g y$.

Введение. Основная идея Проверка на гладкость одного числа Проверка на гладкость многих чисел

Общая идея index calculus

- Итак, получаются три фазы.
 - lacktriangle Найти достаточно много соотношений на $\log_{g} p_{i}$.
 - Решить линейную систему.
 - **3** Найти логарифм интересующего нас y, зная логарифмы p_i .
- Линейные системы будем решать так же, как в алгоритме факторизации.
- А остальные фазы сейчас рассмотрим.

Гладкие числа

- Нам нужно выбрать границу гладкости B, а затем найти кучу соотношений на $\log_g p_i$, $p_i \leq B$, при помощи гладких чисел u.
- Иначе говоря, нужно проверить кучу чисел на гладкость.
- Мы начнём с методов проверки индивидуальных чисел на гладкость (тоже пригодится), а потом вспомним метод полиномиального решета.

Метод Полларда

- Если просто проверять на B-гладкость перебором, сложность будет порядка $O(\pi(B))$.
- Можно воспользоваться методом, очень похожим на ho-метод Полларда: определим последовательность чисел $a_{i+1} \equiv a_i^2 + 1 \pmod n$, где n интересующее нас число.
- По birthday paradox, она начнёт повторяться в среднем через $O(\sqrt{n})$.
- Более того, если у n есть простой делитель q, то в среднем через $O(\sqrt{n})$ начнёт повторяться последовательность a_i (mod q).

Метод Полларда

• Мы не знаем q, но можем проверять просто каждый раз a_i и a_{2i} , не даёт ли

$$\gcd(n, a_{2i} - a_i)$$
 или $\gcd(n, a_{2i} + a_i)$

чего-нибудь интересного. При таком подходе мы ожидаем найти делитель n за $O(\sqrt{q})$, где q — наименьший простой делитель n.

• Значит, на гладкость проверить ожидаем за $O(\sqrt{B})$; если через $O(\sqrt{B})$ шагов совпадений не найдено, можно просто предположить с большой вероятностью, что не гладкое.

Алгоритм Ленстры

- Мы знаем эффективные алгоритмы разложения чисел на множители.
- У нас были алгоритмы, работающие за время $L_n\left[\frac{1}{2};\sqrt{2}\right]$ и даже $L_n\left[\frac{1}{2};1\right]$.
- Но непонятно, как их обобщить так, чтобы оценка зависела от размера простых делителей (от B), а не от n.

Алгоритм Ленстры

- Алгоритм Ленстры (ECM, elliptic curve method) делает как раз это. Он основан на эллиптических кривых, и мы его разбирать не будем.
- Важно, что работает он за время

$$O\left(e^{\sqrt{(2+o(1))\log B\log\log B}}(\log n)^2\right) = L_B\left[\frac{1}{2};\sqrt{2}\right].$$

Итоги

- Итак, у нас есть два разумных подхода к проверке *одного* числа на гладкость:
 - метод Полларда проверяет на B-гладкость за $O(\sqrt{B})$;
 - ullet ЕСМ проверяет на B-гладкость за $L_B\left[rac{1}{2};\sqrt{2}
 ight] = O\left(\mathrm{e}^{\sqrt{(2+o(1))\log B\log\log B}}
 ight).$

Задача

 Нам нужно на первой фазе породить много соотношений вида

$$\log_g r = k_1 \log_g p_1 + k_2 \log_g p_2 + \ldots + k_s \log_g p_s, \quad p_i \leq B.$$

• Для этого нужно проверить массу чисел на B-гладкость. Вообще говоря, мы должны выбрать много случайных u, а потом проверить $g^u \pmod p$ на B-гладкость.

Квадратичное решето

- Мы для подобной задачи знаем метод квадратичного решета.
- Рассмотрим последовательность $Q(x) = x^2 n$ для $x = x_0 = \lceil \sqrt{n} \rceil, x_0 + 1, \ldots$
 - Если n квадрат по модулю p, то $x^2 n \equiv 0 \pmod{n}$ iff $x \equiv a$ или $b \pmod{p}$, где a и b корни из n по модулю p.
 - Если n не квадрат \pmod{p} , то делиться никогда не будет.
- Значит, можно просто так же вычёркивать те Q(x), для которых x делится на a или b.
- Причём этот алгоритм можно применить к любому многочлену (нам нужны будут квадратичные и линейные).
- Сложность этого алгоритма: $O\left(\pi(B)(1+\log B)^{o(1)}+N\log\log B\right)$, где N количество

Проблема

- Но сейчас у нас не всё так просто.
- Если выбирать u, то g^u , которые нужно проверять на гладкость, не похожи ни на какой многочлен, и так просто всё не получится.
- Как обойти эту проблему?

Решение

- Рассмотрим $H = \lceil \sqrt{p} \rceil$ и будем рассматривать последовательность $(H+c_1)(H+c_2)$ для маленьких c_1 и c_2 .
- ullet Тогда для $p_i \leq B$ получаются соотношения вида $\log_g(H+c_1)(H+c_2) = k_1\log_g p_1 + k_2\log_g p_2 + \ldots + k_s\log_g p_s.$
- Если $H^2 = p + J$, то

$$(H+c_1)(H+c_2) \equiv J+(c_1+c_2)H+c_1c_2 \pmod{p},$$

и это линейный многочлен, к которому можно применить решето (если в каждый конкретный момент фиксировать c_1 и варьировать c_2).

• Но ведь мы по прежнему не знаем $\log_g(H+c_1)(H+c_2)$, и отдельных $\log_g(H+c_1)$ тоже не знаем. :) Чем же нам стало лучше?

Решение

- Нам стало лучше тем, что теперь с одними и теми же c_1 и c_2 получаются сразу много соотношений!
- ullet Мы просто добавляем $\log_g(H+c_i)$ как новые неизвестные.
- Но количество уравнений растёт быстрее, чем количество неизвестных, и на практике получается, что для базы B нужно не больше $4\pi(B)$ уравнений.
- А затем мы их решим при помощи алгоритма Видеманна, за время $\pi(B)^2$.
- ullet Будем варьировать $0 \le c_1 < c_2 \le C$, C выберем позже.

Третья фаза index calculus: поиск логарифма Анализ сложности: гладкие числа и грубая оценка Анализ сложности: точная оценка

Outline

- $1 \sqrt{n}$ -методы
 - Введение. Атака на гладкие модули
 - Алгоритм Шенкса и р-метод Полларда
 - λ-метод Полларда
- 2 Алгоритмы index calculus: первая фаза
 - Введение. Основная идея
 - Проверка на гладкость одного числа
 - Проверка на гладкость многих чисел
- ③ Index calculus: третья фаза и оценка сложности
 - Третья фаза index calculus: поиск логарифма
 - Анализ сложности: гладкие числа и грубая оценка
 - Анализ сложности: точная оценка
- 4 Идеи других алгоритмов
 - Number field sieve

Промежуточный итог

- Итак, по итогам первых двух фаз мы вычислили $\log_g p_i$ для $p_i \leq B$. Как теперь найти $\log_g y$?
- Мы будем брать случайные числа w, пока yg^w не станет достаточно гладким.
- Но здесь «достаточно» не B-гладкости, а U-гладкости для некоторого U > B (все константы выберем потом, когда будем сложность оценивать).

Идея третьей фазы

- Итак, выбираем w и проверяем yg^w на U-гладкость (заодно раскладывая на множители).
- Затем, когда yg^w станет U-гладким, задача сведётся к логарифмированию нескольких простых чисел «среднего размера» (от B до U). Такое простое m мы логарифмируем так.
 - lacktriangle Начиная с $u = \lceil \sqrt{p}/m \rceil$ и увеличивая u, найдём B-гладкое u.
 - $oldsymbol{eta}$ Начиная с $v=H=\lceil \sqrt{p}
 ceil$ и увеличивая v, найдём B-гладкое

$$n \equiv uvm \pmod{p}$$
.

- **③** Теперь $\log_g m = \log_g n \log_g u \log_g v$, и все логарифмы справа мы знаем.
- Оба числа и и и можно найти полиномиальным решетом (оба многочлена линейные).

О равномерной сложности дискретного логарифма

- Обратите внимание: все дискретные логарифмы искать одинаково трудно.
- Если какой-нибудь $\log_g y$ было бы труднее вычислить, чем для большинства других y, достаточно было бы брать случайные w, пока yg^w не стало бы легко логарифмировать.
- А логарифмы по другому основанию, если умеем искать логарифмы по основанию g, тоже искать несложно, ведь

$$\log_h a \equiv \frac{\log_g a}{\log_\sigma h} \pmod{p-1}.$$

Какие есть параметры

- Итак, мы хотим найти оптимальные параметры для алгоритма index calculus.
- Параметры это:
 - B базовая оценка гладкости;
 - C число, до которого варьируются $0 \le c_1 < c_2 \le C$ в решете;
 - *U* новая оценка гладкости на последнем этапе.
- Для начала предположим, что третья фаза быстрее первых двух, и соптимизируем В и С.

Числа $L_p[s;c]$

• Вспомним обозначения:

$$L_p[s;c] = e^{c(\log n)^s(\log\log n)^{1-s}}.$$

- Мы сейчас всё будем делать в терминах $L_p[s;c]$, поэтому сначала установим простые свойства $L_p[s;c]$.
- Замечание: мы будем включать все константные множители внутрь L_p , т.е. читать L_p как O(...).

Числа $L_p[s;c]$

• Крайние случаи:

если
$$s=0, L_p[s;c]=(\log p)^c$$
 (полиномиальная сложность); если $s=1, L_p[s;c]=e^{c\log p}$ (экспоненциальная сложность).

• Сумма:

$$L_p[s_1; c_1] + L_p[s_2; c_2] = L_p[\max\{s_1, s_2\}; \max\{c_1, c_2\} + o(1)]$$

(на самом деле $\max\{c_1, c_2\}$ — это только для случая $s_1 = s_2$, но в любом случае это верхняя оценка, и нам её хватит).

Произведение:

$$L_p[s_1; c_1] \cdot L_p[s_2; c_2] = L_p[\max\{s_1, s_2\}; c_1 + c_2 + o(1)]$$

(то же замечание про $c_1 + c_2$).

Количество гладких чисел

- Итак, будем оптимизировать В и С.
- Сначала повторим и расширим некоторые рассуждения из прошлой лекции.
- ullet Теорема из теории чисел (без доказательства): для любого $\epsilon>0$, если $X\to\infty$, $u\to\infty$, причём $X^{1/u}>(\log X)^{1+\epsilon}$, то

$$\frac{\psi(X, X^{1/u})}{X} = u^{-(1+o(1))u},$$

где $\psi(X,B)$ — количество B-гладких чисел от 1 до X.

ullet Если $B=X^{1/u}$, значит, $u=rac{\log X}{\log B}$.

Количество гладких чисел

• Нас интересуют B и X вида $L_p[s;c]$; подставим $X = L_p[s;c]$ и $B = L_p[s_B;c_B]$ в эту формулу:

$$\frac{\psi(X,B)}{X} = u^{-(1+o(1))u} =$$

$$= \left(\frac{c(\log p)^{s}(\log\log p)^{1-s}}{c_{B}(\log p)^{s}(\log\log p)^{1-s}}\right)^{-\frac{c(\log p)^{s}(\log\log p)^{1-s}}{c_{B}(\log p)^{s}(\log\log p)^{1-s}B} + o(u)} =$$

$$e^{(s-s_{B})\frac{c}{c_{B}}(\log p)^{s-s_{B}}(\log\log p)^{-s+s_{B}}(\log\log p + O(\log\log\log p))} =$$

$$L_p\left[s-s_B;-(s-s_B)\frac{c}{c_B}+o(1)\right].$$

• Это вероятность того, что случайное число от 1 до *X* будет *B*-гладким. Как обычно, про значения многочленов мы ничего не знаем, только предполагаем.

Количество гладких чисел

- ullet Всего в нашей базе факторизации $\pi(B)pprox rac{B}{\log B}$ простых чисел.
- Итого, если нам нужны $\frac{DB}{\log B}$ соотношений, а гладким будем каждое u^u число, мы должны выполнить

$$\frac{DBu^u}{\log B}$$

тестов на гладкость.

 Здесь мы, конечно, воспользуемся решетом и получим, что общее время на генерацию системы соотношений равно

$$\frac{DBu^u}{\log B}\log\log B.$$

• Найдём минимум этого значения по В.

• Перейдём к логарифму: минимизируем теперь

$$\log D + \log B + u \log u - \log \log B + \log \log \log B$$
.

• Возьмём производную по В и приравняем нулю:

$$\frac{1}{B} + \frac{du}{dB}\log u + \frac{du}{dB} = 0.$$

• Вспомним, что $u = \frac{\log X}{\log B}$:

$$\frac{1}{B} - \frac{\log X \log u}{B(\log B)^2} - \frac{\log X}{B(\log B)^2} = 0,$$
$$\log X (1 + \log \log X - \log \log B) = (\log B)^2.$$

Оценка

• Мы получили, что

$$\log X(1 + \log\log X - \log\log B) = (\log B)^2.$$

• Поскольку $1 < \log \log B < \log \log X$,

$$\log X < \log X (1+\log\log X - \log\log B) < \log X \log\log X,$$
 и $e^{\sqrt{\log X}} < B < e^{\sqrt{\log X \log\log X}}.$

• Раз уж мы ищем B в виде $L_p[s_B; c_B]$, это значит, что оптимальный выбор — что-то в духе

$$B = L_p \left[\frac{1}{2}; c_B \right]$$

для некоторого c_B .

Сколько же на самом деле проверок

- Мы там ничего не говорили о D; а оно связано с C и, в конечном счёте, B.
- Поэтому сейчас оценим поточнее. Пусть $B = L_p[s_B; c_B + o(1)], \ C = L_p[s_C; c_C + o(1)];$ напоминаю, что C это оценка на c_1 и c_2 .
- ullet Мы проверяем все $0 \le c_1 < c_2 \le {\mathcal C}$, то есть всего будет проверок

$$\frac{1}{2}C^2 = L_p[s_C; 2c_C + o(1)].$$

• А всего гладких чисел нужно найти

$$\begin{split} B + C &= L_p[s_B; c_B + o(1)] + L_p[s_C; c_C + o(1)] = \\ &= L_p[\max\{s_B, s_C\}; \max\{c_B, c_B\} + o(1)]. \end{split}$$

Вывод точной оценки

• Если P_{sm} — вероятность обнаружить гладкое число, то нужно выбрать B и C так, чтобы

$$\frac{1}{2}C^2P_{sm}\geq B+C.$$

• Какого порядка будут эти числа? Мы брали числа вида $x=(H+c_1)(H+c_2)$, где $H=\lceil \sqrt{p}\rceil=\lceil L_p\left[1;\frac{1}{2}\right]\rceil$. Поскольку $J=H^2-p\leq 2H$:

$$x = J + (c_1 + c_2)H + c_1c_2 \le (2 + c_1 + c_2)H + c_1c_2 \le$$

$$\le 2L_{\rho}[s_C; c_C + o(1)]L_{\rho}\left[1; \frac{1}{2}\right] + L_{\rho}[s_C; 2c_C + o(1)] = L_{\rho}\left[1; \frac{1}{2} + o(1)\right].$$

Вывод точной оценки

• А вероятность P_{sm} , как мы уже говорили,

$$P_{sm} = rac{\psi(x,B)}{x} = L_{
ho} \left[1 - s_{B}; rac{-(1-s_{B})}{2c_{B}} + o(1)
ight].$$

• Тогда условие $\frac{1}{2}C^2P \ge B + C$ превращается в

$$L_p[s_C; 2c_C + o(1)]L_p\left[1 - s_B; \frac{-(1 - s_B)}{2c_B} + o(1)\right] \ge$$
 $\ge L_p[\max\{s_B, s_C\}; \max\{c_B, c_B\} + o(1)], \ ext{то есть}$

$$\begin{aligned} & L_p[s_C; 2c_C + o(1)] \ge \\ & \ge L_p[\max\{s_B, s_C\}; \max\{c_B, c_C\} + o(1)] L_p \left[1 - s_B; \frac{(1 - s_B)}{2c_B} + o(1) \right]. \end{aligned}$$

• Отсюда, как минимум (точнее позже),

- С другой стороны, давайте вернёмся к времени работы.
- Решето наше C раз проверяет по C чисел (фиксирует c_1 и варьирует c_2), то есть работает время

$$C \cdot \left(\pi(B)(1 + \log B)^{o(1)} + C \log \log B \right) =$$

$$= L_p[s_C; c_C] \left(L_p[s_B; c_B] + L_p[s_C; c_C] \right) =$$

$$= L_p[\max\{s_B, s_C\}; c_C + \max\{c_B, c_C\} + o(1)].$$

• А на линейную алгебру нужно время

$$(B+C)^2 = L_p[\max\{s_B, s_C\}; \max\{2c_B, 2c_C\} + o(1)].$$

• В итоге первая и вторая фазы занимают

$$L_p[\max\{s_B, s_C\}; \max\{2c_B, 2c_C\} + o(1)].$$

• Нужно минимизировать в первую очередь $\max\{s_B, s_C\}$ при условии

$$s_C \geq \max\{s_B, 1-s_B\}.$$

• Получается $s_B = s_C = \frac{1}{2}$. При этом

$$P_{sm} = L_p \left[1 - s_B; \frac{-(1 - s_B)}{2c_B} + o(1) \right] = L_p \left[\frac{1}{2}; -\frac{1}{4c_B} + o(1) \right].$$

ullet Т.к. $P_{sm}=L_p\left[rac{1}{2};-rac{1}{4c_B}+o(1)
ight]$, условие на достаточное количество гладких чисел $rac{1}{2}\mathit{C}^2P\geq \mathit{B}+\mathit{C}$ превращается в

$$L_p[rac{1}{2};2c_C+o(1)]\geq L_p\left[rac{1}{2};\max\{c_B,c_C\}+o(1)
ight]L_p\left[rac{1}{2};rac{1}{4c_B}+o(1)
ight],$$
 то есть $2c_C\geq \max\{c_B,c_C\}+rac{1}{4c_B}.$

• А суммарное время работы алгоритма превращается в

$$L_p[\max\{s_B, s_C\}; \max\{2c_B, 2c_C\} + o(1)].$$

- Оптимизируя это при условии $2c_C \ge \max\{c_B, c_C\} + \frac{1}{4c_B}$, получим $c_B = c_C = \frac{1}{2}$.
- В итоге $B=C=L_p\left[\frac{1}{2};\frac{1}{2}+o(1)\right]$, а суммарное время работы первой и второй фаз составляет

$$L_p\left[\frac{1}{2};1+o(1)\right]$$
.

Время работы третьей фазы алгоритма

- Мы предполагали, что третья фаза будет быстрее первых двух. Верно ли это?
- Напоминаю, что мы выбираем w и проверяем yg^w на U-гладкость, пока не попадём.
- Давайте оценим; у нас теперь новый параметр $U = L_p [s_U; c_U + o(1)]$, а вероятность найти подходящее число w будет P_w :

$$P_{w} = \frac{\psi(p, U)}{p} = L_{p} \left[1 - s_{U}; -\frac{1 - s_{U}}{c_{U}} + o(1) \right].$$

Время работы третьей фазы алгоритма

• Если мы пользуемся ЕСМ, то каждое число проверяется за

$$e^{\sqrt{(2+o(1))\log U\log\log U}}(\log n)^2 =$$

$$= L_p\left[\frac{s_U}{2}; \sqrt{2s_Uc_U} + o(1)\right].$$

• А нам нужно провести $\frac{1}{P_W}$ таких тестов, т.е. общее время на поиск w равно

$$L_{p}\left[\frac{s_{U}}{2}; \sqrt{2s_{U}c_{U}} + o(1)\right] \cdot L_{p}\left[1 - s_{U}; \frac{1 - s_{U}}{c_{U}} + o(1)\right] =$$

$$= L_{p}\left[\max\{\frac{s_{U}}{2}, 1 - s_{U}\}; \frac{1 - s_{U}}{c_{U}} + \sqrt{2s_{U}c_{U}} + o(1)\right].$$

Время работы третьей фазы алгоритма

• Итак, нужно оптимизировать

$$L_p\left[\max\{rac{s_U}{2},1-s_U\};rac{1-s_U}{c_U}+\sqrt{2s_Uc_U}+o(1)
ight].$$

ullet Минимизируя $\max\{rac{s_U}{2},1-s_U\}$, получим $s_U=rac{2}{3}$, а минимизируя $rac{1}{3c_U}+2\sqrt{c_U/3}$, получим $c_U=\left(rac{1}{3}
ight)^{1/3}$. Итак:

$$U=L_p\left[\frac{2}{3};\left(\frac{1}{3}\right)^{1/3}+o(1)\right],$$

а общее время работы третьей фазы составляет

$$L_p\left[\frac{1}{3}; 3^{1/3} + o(1)\right]$$
.

Анализ

- ullet У нас получилось $L_p\left[rac{1}{3};3^{1/3}+o(1)
 ight]$, что гораздо быстрее, чем $L_p\left[rac{1}{2};1+o(1)
 ight]$ (время первой и второй фазы).
- Но так получилось только благодаря ЕСМ; если использовать для проверки на гладкость метод Полларда, получится то же самое $L_p\left[\frac{1}{2};1+o(1)\right]$, а с тривиальным алгоритмом проверки (пробным делением) и вовсе $L_p\left[\frac{1}{2};\sqrt{2}+o(1)\right]$.

Упражнение. Доказать эти оценки.

Но это ещё не всё

- Нужно ещё оценить логарифмирование «среднего размера» простых чисел.
- Нам для каждого такого простого m надо найти B-гладкое $u>\sqrt{p}/m$. Здесь u число порядка $L_p[1;\frac{1}{2}]$, а вероятность выбрать гладкое u $L_p\left[\frac{1}{2};-\frac{1}{2}+o(1)\right]$.
- Т.е. нужно прогнать через решето $L_p\left[\frac{1}{2};\frac{1}{2}+o(1)\right]$ вариантов; это быстрее первой и второй фазы.
- А самый последний шаг найти такое $v>\sqrt{p}$, что uvm (mod p) будет B-гладким. Здесь v тоже порядка $L_p[1;\frac{1}{2}]$, и точно так же получается сложность $L_p\left[\frac{1}{2};\frac{1}{2}+o(1)\right]$.
- Так что этот шаг оказался сложнее, чем «основная часть» третьей фазы, но всё равно быстрее первой и второй фазы.

Третья фаза index calculus: поиск логарифма Анализ сложности: гладкие числа и грубая оценка Анализ сложности: точная оценка

Теперь всё

- Теперь всё. Уффф.
- Важное замечание: одни и те же результаты первой и второй фазы можно использовать для вычисления многих дискретных логарифмов; каждый новый логарифм будет стоить как третья фаза, а не как первая+вторая, что дешевле.

Outline

- $1 \sqrt{n}$ -методь
 - Введение. Атака на гладкие модули
 - Алгоритм Шенкса и ρ-метод Полларда
 - λ-метод Полларда
- 2 Алгоритмы index calculus: первая фаза
 - Введение. Основная идея
 - Проверка на гладкость одного числа
 - Проверка на гладкость многих чисел
- ③ Index calculus: третья фаза и оценка сложности
 - Третья фаза index calculus: поиск логарифма
 - Анализ сложности: гладкие числа и грубая оценка
 - Анализ сложности: точная оценка
- Идеи других алгоритмов
 - Number field sieve

Решето числового поля

- Полиномиальное решето не предел мечтаний.
- Ещё эффективнее оказывается метод *решета числового поля* (number field sieve).
- По сути метод аналогичен квадратичному решету, но теперь всё происходит над другими кольцами.
- Мы рассмотрим только основную идею, безо всяких доказательств.

Идея

- Мы рассмотрим решето числового поля для задачи разложения чисел на множители.
- Мы хотим разложить n. Предположим, что у нас есть неприводимый многочлен f(x) и число m, такое, что $f(m) \equiv 0 \pmod{n}$.
- ullet Рассмотрим комплексный корень lpha многочлена f(x) и кольцо $\mathbb{Z}[lpha].$
- $f(m)\equiv 0\pmod n$ и $f(\alpha)=0$, следовательно, есть естественный гомоморфизм колец $\varphi:\mathbb{Z}[\alpha]\to\mathbb{Z}_n$, который отображает α в m.

Идея

- Теперь предположим, что у нас есть множество таких пар чисел (a,b), что:
 - произведение всех $(a \alpha b)$ квадрат в кольце $Z[\alpha]$, скажем, γ^2 ;
 - ullet произведение всех (a-mb) квадрат в \mathbb{Z} , скажем, v^2 .
- ullet Заменим в выражении для γ lpha на m; получим $\phi(\gamma) \equiv u$ mod n. Теперь

$$u^{2} \equiv \varphi(\gamma)^{2} = \varphi(\gamma^{2}) = \varphi(\prod(a - \alpha b)) =$$

$$= \prod(\varphi(a - \alpha b)) = \prod(a - mb) = v^{2} \pmod{n},$$

и мы тем самым сможем разложить n на множители.

Многочлен f

- Но откуда взять f? Он сам собой появится.
 - ullet Выберем степень d, положим $m=\lfloor n^{1/d} \rfloor$.
 - Запишем n по основанию m: $n = m^d + c_{d-1}m^{d-1} + \ldots + c_0$.
 - Вот и многочлен: $f(x) = x^d + c_{d-1}x^{d-1} + \ldots + c_0$.
- Отдельный вопрос: будет ли он неприводимым? Если не будет, то n = f(m) = g(m)h(m), и мы уже (с высокой вероятностью) разложили n. Так что будет. :)

Числа а и в

- Откуда взять *а* и *b*? Из такого же решета.
- Чтобы $\prod (a-mb)$ было квадратом, нужно решить линейную систему на коэффициенты, как раньше.
- Чтобы $\prod (a \alpha b)$ было квадратом, нужно решить линейную систему на коэффициенты в кольце $\mathbb{Z}[\alpha]$, если это хорошее кольцо (с единственностью разложения). Хорошее кольцо можно добыть (без д-ва).
- Теперь можно просто объединить две системы нам нужно, чтобы оба свойства выполнялись.

Оценка сложности

- Чем хорошо решето числового поля?
- Наши оценки были основаны на X количестве чисел, из которых можно сделать квадрат.
- ullet У нас было $X = n^{1/2 + \epsilon}$.
- А в number field sieve получается $X = e^{c(\log n)^{2/3}(\log\log n)^{1/3}}$, что даёт общую оценку сложности

$$L_n\left[\frac{1}{3};c\right] = e^{(c+o(1))(\log n)^{1/3}(\log\log n)^{2/3}}.$$

• Теоретический рекорд: $c \approx 1,902$, из анализа нашего алгоритма получилось бы

$$L_p\left[\frac{1}{3};\left(\frac{64}{9}\right)^{1/3}+o(1)\right]\approx L_p\left[\frac{1}{3};1,923+o(1)\right].$$

Но главное — основная асимптотика стала лучше.

Number field sieve для дискретного логарифма

 Аналогичные соображения проходят и для задачи дискретного логарифма, и тоже время работы получается

$$L_p\left[\frac{1}{3};\left(\frac{64}{9}\right)^{1/3}+o(1)\right] \approx L_p\left[\frac{1}{3};1,923+o(1)\right].$$

 На практике решето числового поля начинает выигрывать, где-то начиная со 100-значных чисел.

Thank you!

Спасибо за внимание!