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Outline

Very quick intro to computer networking

The transport layer

◮ reliability

◮ congestion control

◮ brief intro to TCP
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A “Datagram” Network

Packet-switched network
◮ information is transmitted in discrete units called datagrams

Connectionless service
◮ a datagram is a self-contained message
◮ treated independently by the network
◮ no connection setup/tear-down phase

“Best-effort” service
◮ delivery guarantee: none
◮ maximum latency guarantee: none
◮ bandwidth guarantee: none
◮ in-order delivery guarantee: none
◮ congestion indication: none
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Transport-Layer Value-Added Service

Transport-layer multiplexing/demultiplexing
◮ i.e., connecting applications as opposed to hosts

Reliable data transfer
◮ i.e., integrity and possibly ordered delivery

Connections
◮ i.e., streams
◮ can be seen as the same as ordered dalivery

Congestion control
◮ i.e., end-to-end traffic (admission) control so as to avoid

destructive congestions within the network
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Part I

Reliable Streams on Unreliable Networks
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Finite-State Machines

A finite-state machine (FSM) is a mathematical abstraction

◮ a.k.a., finite-state automaton (FSA), deterministic finite-state
automaton (DFA), non-deterministic finite-state automaton (NFA)

Very useful to specify and implement network protocols

Ubiquitous in computer science

◮ theory of formal languages
◮ compiler design
◮ theory of computation
◮ text processing
◮ behavior specification
◮ . . .
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FSMs to Specify Protocols

States represent the state of a protocol

Transitions are characterized by an event/action label

◮ event: typically consists of an input message or a timeout
◮ action: typically consists of an output message

E.g., here’s a specification of a “simple conversation protocol”

input
output

S C

“Hello!”
“Yo”

“Bye.”
“Okay. Bye.”

30s
“Gotta go. Bye.”

“bla”
“aha”
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Example

E.g., a subset of a server-side, SMTP-like protocol

S A

accept
“220 Ok”

60sec
close

R

“RCPT TO”
“250 Ok”

T

“MAIL FROM”
“250 Ok”

D

“MAIL FROM”
“250 Ok”

“RCPT TO”
“250 Ok”

30sec
close

30sec
close

M

“DATA”
“354 end with .”

line

60s
close

“.”
“250 accepted”

“QUIT”
“221 bye”,close
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Reliable Data Transfer Model

sender receiver

reliable-transfer
protocol
(sender)

r_send()

u_send() u_recv()

network

r_recv()

reliable-transfer
protocol

(receiver)

u_send() u_recv()
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Baseline Protocol

Reliable transport protocol that uses a reliable network
(obviously a contrived example)
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Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

How do people deal with such situations?
(Think of a phone call over a noisy line)

◮ error detection: the receiver must be able to know when a
received packet is corrupted (i.e., when it contains flipped bits)

◮ receiver feedback: the receiver must be able to alert the sender
that a corrupted packet was received

◮ retransmission: the sender retransmits corrupted packets
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◮ sender adds one bit that is the xor of all the bits in the message
◮ receiver computes the xor of all the bits and concludes that there

was an error if the result is not 0 (i.e., if it is 1)
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Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice
◮ error iff the receiver hears two different messages
◮ not very efficient: uses twice the number of bits

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message
◮ receiver computes the xor of all the bits and concludes that there

was an error if the result is not 0 (i.e., if it is 1)

Sender:
message is 1001011011101000⇒ send 10010110111010000

Receiver:
receives 10010110101010000
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Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice
◮ error iff the receiver hears two different messages
◮ not very efficient: uses twice the number of bits

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message
◮ receiver computes the xor of all the bits and concludes that there

was an error if the result is not 0 (i.e., if it is 1)

Sender:
message is 1001011011101000⇒ send 10010110111010000

Receiver:
receives 10010110101010000 ⇒ error!
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◮ [data]∗ indicates a packet containing data plus an error-detection

code (i.e., a checksum)

S ACK

r send(data)
data pkt = [data]∗

u send(data pkt)

u recv(pkt)
and pkt is NACK
u send(data pkt)

u recv(pkt)
and pkt is ACK
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Noisy Channel

Sender
◮ [data]∗ indicates a packet containing data plus an error-detection

code (i.e., a checksum)

S ACK

r send(data)
data pkt = [data]∗

u send(data pkt)

u recv(pkt)
and pkt is NACK
u send(data pkt)

u recv(pkt)
and pkt is ACK

Receiver

R
u recv(pkt)
and pkt is corrupted
u send(NACK)

u recv(pkt)
and pkt is good
u send(ACK)
r recv(pkt)
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Noisy Channel

This protocol is “synchronous” or “stop-and-wait” for each packet

◮ i.e., the sender must receive a (positive) acknowledgment before it
can take more data from the application layer
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Noisy Channel

This protocol is “synchronous” or “stop-and-wait” for each packet

◮ i.e., the sender must receive a (positive) acknowledgment before it
can take more data from the application layer

Does the protocol really work?

What happens if an error occurs within an ACK/NACK packet?
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Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can
always figure out what the message is, even if a few bits are
corrupted
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Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”
4. sender hears: “. . . noise . . . ”
5. sender says: “Repeat your ACK please!”
6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can
always figure out what the message is, even if a few bits are
corrupted

◮ good enough for channels that do not loose messages
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Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”
4. sender hears: “. . . noise . . . ”
5. sender says: “Repeat your ACK please!”
6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can
always figure out what the message is, even if a few bits are
corrupted

◮ good enough for channels that do not loose messages

Assume a NACK and simply retransmit the packet
◮ good idea, but it introduces duplicate packets (why?)
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The sender adds a sequence number to each packet so that the
receiver can determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver passes “let’s go see Taxi Driver” to application layer
4. receiver says: “Got it!” (i.e., ACK)
5. sender hears: “. . . noise . . . ”
6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”
7. receiver hears: “7: let’s go see Taxi Driver”
8. receiver ignores the packet

How many bits do we need for the sequence number?

◮ this is a “stop-and-wait” protocol for each packet, so the receiver
needs to distinguish between (1) the next packet and (2) the
retransmission of the current packet
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Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the
receiver can determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver passes “let’s go see Taxi Driver” to application layer
4. receiver says: “Got it!” (i.e., ACK)
5. sender hears: “. . . noise . . . ”
6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”
7. receiver hears: “7: let’s go see Taxi Driver”
8. receiver ignores the packet

How many bits do we need for the sequence number?

◮ this is a “stop-and-wait” protocol for each packet, so the receiver
needs to distinguish between (1) the next packet and (2) the
retransmission of the current packet

◮ so, one bit is sufficient
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Using Sequence Numbers: Sender

S0 ACK0

S1ACK1

r send(data)
data pkt = [0, data]∗

u send(data pkt)
u recv(pkt)
and (pkt is NACK
or pkt is corrupted)
u send(data pkt)

u recv(pkt)
and pkt is good
and pkt is ACK

r send(data)
data pkt = [1, data]∗

u send(data pkt)

u recv(pkt)
and (pkt is NACK
or pkt is corrupted)
u send(data pkt)

u recv(pkt)
and pkt is good
and pkt is ACK
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Using Sequence Numbers: Receiver

R0

R1

u recv(pkt)
and pkt is corrupted
u send([NACK]∗)

u recv(pkt)
and pkt is good
and seq num(pkt) is 1
u send([ACK]∗)

u recv(pkt)
and pkt is corrupted
u send([NACK]∗)

u recv(pkt)
and pkt is good
and seq num(pkt) is 0
u send([ACK]∗)

u recv(pkt)
and pkt is good
and seq num(pkt) is 0
u send([ACK]∗)
r recv(pkt)

u recv(pkt)
and pkt is good
and seq num(pkt) is 1
u send([ACK]∗)
r recv(pkt)
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Better Use of ACKs

Do we really need both ACKs and NACKs?

Idea: now that we have sequence numbers, the receiver can
convey the semantics of a NACK by sending an ACK for the last
good packet it received

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver says: “Got it!”
4. sender hears: “Got it!”
5. sender says: “8: let’s meet at 8:00PM”
6. receiver hears: “. . . noise . . . ”
7. receiver now says: “Got 7” (instead of saying “Please, resend”)
8. sender hears: “Got 7”
9. sender knows that the current message is 8, and therefore

repeats: “8: let’s meet at 8:00PM”
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ACK-Only Protocol: Sender

S0
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ACK1

r send(data)
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u send(data pkt)
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S0 ACK0

r send(data)
data pkt = [0, data]∗

u send(data pkt)

S1

u recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r send(data)
data pkt = [1, data]∗

u send(data pkt)

u recv(pkt)
and pkt is good
and pkt = (ACK, 1)
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ACK1
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ACK-Only Protocol: Sender

S0 ACK0

r send(data)
data pkt = [0, data]∗

u send(data pkt)

S1

u recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r send(data)
data pkt = [1, data]∗

u send(data pkt)

u recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)
u send(data pkt)

u recv(pkt)
and (pkt = (ACK, 0)
or pkt is corrupted)
u send(data pkt)
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ACK-Only Protocol: Receiver

R0

R1

u recv(pkt)
and pkt is good
and seq num(pkt) is 0
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r recv(pkt)

c© 2005–2008 Antonio Carzaniga



ACK-Only Protocol: Receiver

R0
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ACK-Only Protocol: Receiver

R0

R1

u recv(pkt)
and pkt is good
and seq num(pkt) is 0
u send([ACK,0]∗)
r recv(pkt)

u recv(pkt)
and pkt is good
and seq num(pkt) is 1
u send([ACK,1]∗)
r recv(pkt)

u recv(pkt)
and pkt is corrupted
u send([ACK,1]∗)

u recv(pkt)
and pkt is corrupted
u send([ACK,0]∗)
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ACK-Only Protocol: Receiver

R0

R1

u recv(pkt)
and pkt is good
and seq num(pkt) is 0
u send([ACK,0]∗)
r recv(pkt)

u recv(pkt)
and pkt is good
and seq num(pkt) is 1
u send([ACK,1]∗)
r recv(pkt)

u recv(pkt)
and pkt is corrupted
u send([ACK,1]∗)

u recv(pkt)
and pkt is corrupted
u send([ACK,0]∗)

u recv(pkt)
and pkt is good
and seq num(pkt) is 0
u send([ACK,0]∗)

u recv(pkt)
and pkt is good
and seq num(pkt) is 1
u send([ACK,1]∗)
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Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect
transmission errors

Retransmission allows us to recover from transmission errors

ACKs and NACKs give feedback to the sender

◮ ACKs and NACKs are also “protected” with an error-detection
code

◮ corrupted ACKs are interpreded as NACKs, possibly generating
duplicate segments

Sequence numbers allow the receiver to ignore duplicate data
segments
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Reliable transport protocol over a network that may
◮ introduce bit errors
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determine that a packet was lost (how?)
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Lossy And Noisy Channel

Reliable transport protocol over a network that may
◮ introduce bit errors

◮ loose packets

How do people deal with such situations?
(Think of radio transmissions over a noisy and shared medium.
Also, think about what we just did for noisy channels)

Detection: the receiver and/or the sender must be able to
determine that a packet was lost (how?)

ACKs, retransmission, and sequence numbers: lost packets can
be easily treated as corrupted packets
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Sender Using Timeouts

S0
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Sender Using Timeouts

S0 ACK0

r send(data)
data pkt = [0, data]∗

u send(data pkt)
start timer()

timeout
u send(data pkt)
start timer()

u recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)
u send(data pkt)
start timer()

S1

u recv(pkt)
and pkt is good
and pkt = (ACK, 0)
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Sender Using Timeouts

S0 ACK0

r send(data)
data pkt = [0, data]∗

u send(data pkt)
start timer()

timeout
u send(data pkt)
start timer()

u recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)
u send(data pkt)
start timer()

S1

u recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r send(data)
data pkt = [1, data]∗

u send(data pkt)
start timer()

timeout
u send(data pkt)
start timer()

u recv(pkt)
and (pkt = (ACK, 0)
or pkt is corrupted)
u send(data pkt)
start timer()

u recv(pkt)
and pkt is good
and pkt = (ACK, 1)
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Part II

Efficient and Reliable Streams
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Quantifying Data Transfer

How do we measure the “speed” and “capacity” of a network
connection?
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Quantifying Data Transfer

How do we measure the “speed” and “capacity” of a network
connection?

Intuition
◮ water moves in a pipeline
◮ cars move on a road

Latency

◮ the time it takes for one bit to go through the connection (from one
end to the other)

Throughput
◮ the amount of information that can get into (or out of) the

connection in a time unit
◮ at “steady-state” we assume zero accumulation of traffic, therefore

the input throughput is the same as the output throughput
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Latency and Throughput

connection
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Latency and Throughput
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Latency and Throughput

connection

t0 t1

100 · · · 110

t2

n bits
︷ ︸︸ ︷

Latency L = t1 − t0 sec

Throughput T =
n

t2 − t1
bits/sec
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Latency and Throughput

connection

t0 t1

100 · · · 110

t2

n bits
︷ ︸︸ ︷

Latency L = t1 − t0 sec

Throughput T =
n

t2 − t1
bits/sec

Transfer time ∆ = L +
n
T

sec

c© 2005–2008 Antonio Carzaniga



Examples

How long does it take to tranfer a file between, say, Lugano and
St. Petersburg?
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Examples

How long does it take to tranfer a file between, say, Lugano and
St. Petersburg?

How big is this file? And how fast is our connection?

E.g., a (short) e-mail message

S = 4Kb
L = 500ms
T = 1Mb/s
∆ = ?
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Examples

How long does it take to tranfer a file between, say, Lugano and
St. Petersburg?

How big is this file? And how fast is our connection?

E.g., a (short) e-mail message

S = 4Kb
L = 500ms
T = 1Mb/s
∆ = 500ms + 4ms = 504ms
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Examples

How about a big file? (E.g., a CD)
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How about a big file? (E.g., a CD)
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L = 500ms
T = 1Mb/s
∆ = ?
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Examples
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Examples

How about a big file? (E.g., a CD)

S = 400Mb
L = 500ms
T = 1Mb/s
∆ = 500ms + 400s = 400.5s = 6′40′′

How about a bigger file? (E.g., 10 DVDs)
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L = 500ms
T = 1Mb/s
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Examples

How about a big file? (E.g., a CD)

S = 400Mb
L = 500ms
T = 1Mb/s
∆ = 500ms + 400s = 400.5s = 6′40′′

How about a bigger file? (E.g., 10 DVDs)

S = 40Gb
L = 500ms
T = 1Mb/s
∆ = ǫ + 40000s = 11h 6′40′′
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Examples

How about flying to St. Petersburgh?
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Examples

How about flying to St. Petersburgh?
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Examples

How about flying to St. Petersburgh?

◮ assuming you can carry more or less 100 DVDs in your backpack
◮ assuming it takes you four seconds to take the DVDs out of your

backpack

S = 40Gb
L = 6h
T = 100Gb/s
∆ = 6h

If you need to transfer 10 DVDs from Lugano to St.
Petersburg and time is of the essence (and you have plenty
of money). . . then you’re better off talking a plane rather than
using the Internet
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sender receiver
r send(pkt1)

u send([pkt1,0]) [pkt1 ,0]

u send([ACK,0])

r recv(pkt1)[ACK,0]
r send(pkt2)

u send([pkt2,1]) [pkt2 ,1]

u send([ACK,1])

r recv(pkt2)[ACK,1]
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Network Usage

sender receiver

[pkt1 ,0]

[ACK,0]

[pkt2 ,1]

[ACK,1]

L

Spkt1 /T

L

utilization
factor

U =
Spkt/T

2L+Spkt/T
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How do we achieve a better utilization factor?
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[ACK,1]
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Improving Network Usage

How do we achieve a better utilization factor?

sender receiver

[pkt1 ,0]

[ACK,0]

[ACK,1]

[pkt2 ,1]

· · ·

· · ·

[ACK,w − 1]

[pktw ,w − 1]
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Go-Back-N

Idea: the sender transmits multiple packets without waiting for an
acknowledgement
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Go-Back-N

Idea: the sender transmits multiple packets without waiting for an
acknowledgement

The sender has up to W unacknowledged packets in the pipeline
◮ the sender’s state machine gets very complex
◮ we represent the sender’s state with its queue of

acknowledgements

acknowledged pending available unavailable

first pending
acknowledgement

(base)

next available
sequence number

(next seq num)

window size (W )
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Sliding Window Protocol: Sender

base

sliding window

next seq num
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sliding window

next seq num

r send(pkt1)
◮ u send([pkt1,next seq num])
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base

sliding window

next seq num

A

r send(pkt1)
◮ u send([pkt1,next seq num])
◮ next seq num ← next seq num + 1

u recv([ACK,A])
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base

sliding window

next seq num

A

r send(pkt1)
◮ u send([pkt1,next seq num])
◮ next seq num ← next seq num + 1

u recv([ACK,A])
◮ base← A + 1
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Sliding Window Protocol: Sender

base

sliding window

next seq num

A

r send(pkt1)
◮ u send([pkt1,next seq num])
◮ next seq num ← next seq num + 1

u recv([ACK,A])
◮ base← A + 1
◮ notice that acknewledgements are “cumulative”
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◮ or the highest acknowledged sequence number
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The sender responds to three types of events
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Sliding Window Protocol: Sender

The sender remembers the first sequence number that has not
yet been acknowledged

◮ or the highest acknowledged sequence number

The sender remembers the first available sequence number

◮ or the highest used sequence number (i.e., sent to the receiver)

The sender responds to three types of events
◮ r send(): invocation from the application layer: send more data if a

sequence number is available
◮ ACK: receipt of an acknowledgement: shift the window (it’s a

“cumulative” ACK)
◮ timeout: “Go-Back-N.” I.e., resend all the packets that have been

sent but not acknowledged
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Sliding Window Protocol: Sender

init
base← 1
next seq num← 1
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Sliding Window Protocol: Sender

init
base← 1
next seq num← 1

r send(data)
if (next seq num < base + W ) {

pkt[next seq num]← [next seq num, data]∗

u send(pkt[next seq num])
if (next seq num = base) {

start timer()
}
next seq num← next seq num + 1

} else {
refuse data(data) // block the sender

}
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Sliding Window Protocol: Sender

u recv(pkt) and pkt is corrupted
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Sliding Window Protocol: Sender

u recv(pkt) and pkt is corrupted

u recv(ACK,ack num)
base← ack num + 1 // resume the sender
if (next seq num = base) {

stop timer()
} else {

start timer()
}
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Sliding Window Protocol: Sender

u recv(pkt) and pkt is corrupted

u recv(ACK,ack num)
base← ack num + 1 // resume the sender
if (next seq num = base) {

stop timer()
} else {

start timer()
}

timeout
start timer()
foreach i in base . . . next seq num− 1 {

u send(pkt[i])
}
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Sliding Window Protocol: Receiver

Simple: as in the stop-and-wait case, the receiver maintains a
counter representing the expected sequence number

The receiver waits for a (good) data packet with the expected
sequence number

◮ acknowledges the expected sequence number
◮ delivers the data to the application
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Sliding Window Protocol: Receiver

init
expected seq num← 1
ackpkt ← [ACK , 0]∗
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Sliding Window Protocol: Receiver

init
expected seq num← 1
ackpkt ← [ACK , 0]∗

u recv([data, seq num]) and good
and seq num = expected seq num
r recv(data)
ackpkt ← [ACK , expected seq num]∗

expected seq num← expected seq num + 1
u send(ackpkt)
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Sliding Window Protocol: Receiver

init
expected seq num← 1
ackpkt ← [ACK , 0]∗

u recv([data, seq num]) and good
and seq num = expected seq num
r recv(data)
ackpkt ← [ACK , expected seq num]∗

expected seq num← expected seq num + 1
u send(ackpkt)

u recv([data, seq num])
and (corrupted or seq num 6= expected seq num)
u send(ackpkt)
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Comments

Concepts

◮ sequence numbers
◮ sliding window
◮ cumulative acknowledgements
◮ checksums, timeouts, and sender-initiated retransmission

Advantages: simple

◮ the sender maintains two counters and a one timer
◮ the receiver maintains one counter

Disadvantages: not optimal, not adaptive
◮ the sender can fill the window without filling the pipeline
◮ the receiver may buffer out-of-order packets. . .
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Performance Analysis

What is a good value for W?
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Performance Analysis

What is a good value for W?

◮ W that achieves the maximum utilization of the connection

S = stream
L = 500ms
T = 1Mb/s

W = ?

The problem may seem a bit underspecified. What is the
(average) packet size?

Spkr = 1Kb
L = 500ms
T = 1Mb/s

W = 2L×T
Spkt

= 1000
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Performance Analysis

The RTT–throughput product (2L× T ) is the crucial factor
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Performance Analysis

The RTT–throughput product (2L× T ) is the crucial factor

◮ W × Spkt ≤ 2L× T

◮ why W × Spkt > 2L× T doesn’t make much sense?

◮ maximum channel utilization when W × Spkt = 2L× T

◮ 2L× T can be thought of as the capacity of a connection
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Problems with Go-Back-N

Let’s consider a fully utilized connection
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Let’s consider a fully utilized connection

Spkr = 1Kb
L = 500ms
T = 1Mb/s

W = T×L
Spkt

= 1000

What happens if the first packet (or acknowledgement) is lost?
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Sender retransmits the entire content of its buffers

c© 2005–2008 Antonio Carzaniga



Problems with Go-Back-N

Let’s consider a fully utilized connection

Spkr = 1Kb
L = 500ms
T = 1Mb/s

W = T×L
Spkt

= 1000

What happens if the first packet (or acknowledgement) is lost?

Sender retransmits the entire content of its buffers

◮ W × Spkt = 2L× T = 1Mb
◮ retransmitting 1Mb to recover 1Kb worth of data isn’t exactly the

best solution. Not to mention conjestions. . .
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Problems with Go-Back-N

Let’s consider a fully utilized connection

Spkr = 1Kb
L = 500ms
T = 1Mb/s

W = T×L
Spkt

= 1000

What happens if the first packet (or acknowledgement) is lost?

Sender retransmits the entire content of its buffers

◮ W × Spkt = 2L× T = 1Mb
◮ retransmitting 1Mb to recover 1Kb worth of data isn’t exactly the

best solution. Not to mention conjestions. . .

Is there a better way to deal with retransmissions?

c© 2005–2008 Antonio Carzaniga



Selective Repeat

Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted
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◮ sender maintains a vector of acknowledgement flags

◮ receiver maintains a vector of acknowledged falgs

◮ in fact, receiver maintains a buffer of out-of-order packets

◮ sender maintains a timer for each pending packet

◮ sender resends a packet when its timer expires
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Selective Repeat

Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

◮ sender maintains a vector of acknowledgement flags

◮ receiver maintains a vector of acknowledged falgs

◮ in fact, receiver maintains a buffer of out-of-order packets

◮ sender maintains a timer for each pending packet

◮ sender resends a packet when its timer expires

◮ sender slides the window when the lowest pending sequence
number is acknowledged
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Selective Repeat: Sender

base

sliding window

next seq num
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Selective Repeat: Sender

base

sliding window

next seq num

r send(pkt1)
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Selective Repeat: Sender

base

sliding window

next seq num

r send(pkt1)
◮ u send([pkt1,next seq num])
◮ start timer(next seq num)
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Selective Repeat: Sender

base

sliding window

next seq num

r send(pkt1)
◮ u send([pkt1,next seq num])
◮ start timer(next seq num)
◮ next seq num ← next seq num + 1

c© 2005–2008 Antonio Carzaniga



Selective Repeat: Sender

base

sliding window

next seq num

A

r send(pkt1)
◮ u send([pkt1,next seq num])
◮ start timer(next seq num)
◮ next seq num ← next seq num + 1

u recv([ACK,A])
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Selective Repeat: Sender

base

sliding window

next seq num

A

r send(pkt1)
◮ u send([pkt1,next seq num])
◮ start timer(next seq num)
◮ next seq num ← next seq num + 1

u recv([ACK,A])

◮ acks[A]← 1 // remember that A was ACK’d
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Selective Repeat: Sender

base

sliding window

next seq num

A

r send(pkt1)
◮ u send([pkt1,next seq num])
◮ start timer(next seq num)
◮ next seq num ← next seq num + 1

u recv([ACK,A])

◮ acks[A]← 1 // remember that A was ACK’d
◮ acknewledgements are no longer “cumulative”
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Selective Repeat: Receiver
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Selective Repeat: Receiver

received acceptable not usable

rcv base

sliding window
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Selective Repeat: Receiver

received acceptable not usable

rcv base

sliding window

X1

u recv([pkt1,X1]) and rcv base ≤ X1 < rcv base + W
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Selective Repeat: Receiver

received acceptable not usable

rcv base

sliding window

X1

u recv([pkt1,X1]) and rcv base ≤ X1 < rcv base + W
◮ buffer [X1]← pkt1
◮ u send([ACK ,X1]∗) // no longer a “cumulative” ACK
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Selective Repeat: Receiver

received acceptable not usable

rcv base

sliding window
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Selective Repeat: Receiver

received acceptable not usable

rcv base

sliding window

X2

u recv([pkt2,X2]) and rcv base ≤ X2 < rcv base + W
◮ buffer [X2]← pkt2
◮ u send([ACK ,X2]∗)
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Selective Repeat: Receiver

received acceptable not usable

rcv base

sliding window

X2

u recv([pkt2,X2]) and rcv base ≤ X2 < rcv base + W
◮ buffer [X2]← pkt2
◮ u send([ACK ,X2]∗)
◮ if (X2 = rcv base) {
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Selective Repeat: Receiver

received acceptable not usable

rcv base

sliding window

X2 B

u recv([pkt2,X2]) and rcv base ≤ X2 < rcv base + W
◮ buffer [X2]← pkt2
◮ u send([ACK ,X2]∗)
◮ if (X2 = rcv base) {

B ← first missing seq num()
foreach i in rcv base . . .B − 1 {

r recv(buffer [i]) }
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Selective Repeat: Receiver

received acceptable not usable

rcv base

sliding window

u recv([pkt2,X2]) and rcv base ≤ X2 < rcv base + W
◮ buffer [X2]← pkt2
◮ u send([ACK ,X2]∗)
◮ if (X2 = rcv base) {

B ← first missing seq num()
foreach i in rcv base . . .B − 1 {

r recv(buffer [i]) }
rcv base← B }
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Selective Repeat: Sender
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Selective Repeat: Sender

base

sliding window

next seq num
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Selective Repeat: Sender

base

sliding window

next seq num

T

Timeout for sequence number T
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Selective Repeat: Sender

base

sliding window

next seq num

T

Timeout for sequence number T
◮ u send([pkt[T ], T ]∗)
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Selective Repeat: Sender

base

sliding window

next seq num
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Selective Repeat: Sender

base

sliding window

next seq num

A

u recv([ACK,A])
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Selective Repeat: Sender

base

sliding window

next seq num

A

u recv([ACK,A])
◮ acks[A]← 1
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Selective Repeat: Sender

base

sliding window

next seq num

A

u recv([ACK,A])
◮ acks[A]← 1
◮ if (A = base) {
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Selective Repeat: Sender

base

sliding window

next seq num

u recv([ACK,A])
◮ acks[A]← 1
◮ if (A = base) {

base← first missing ack num() }
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Part III

Congestion Control
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Understanding Congestion

A router behaves a lot like a kitchen sink
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Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = T /2 λ2 = T /2

throughput = T

λ3 = T /2

max throughput
T
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Queuing Delay
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Queuing Delay

Total latency is the sum of link latency, processing time, and the
time that a packet spends in the input queue

L = ∆TX + ∆CPU + ∆q where ∆q = |q|/T
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Queuing Delay

Total latency is the sum of link latency, processing time, and the
time that a packet spends in the input queue

L = ∆TX + ∆CPU + ∆q where ∆q = |q|/T

Ideal case: constant input data rate

λin < T

In this case the ∆q = 0, because |q| = 0
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Queuing Delay

Total latency is the sum of link latency, processing time, and the
time that a packet spends in the input queue

L = ∆TX + ∆CPU + ∆q where ∆q = |q|/T

Ideal case: constant input data rate

λin < T

In this case the ∆q = 0, because |q| = 0

Extreme case: constant input data rate

λin > T

In this case |q| = (λin − T )t and therefore

∆q =
λin − T

T
t
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Queuing Delay
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Queuing Delay

Steady-state queuing delay

∆q =

{

0 λin < T
λin−T

T t λin > T
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Queuing Delay

Steady-state queuing delay

∆q =

{

0 λin < T
λin−T

T t λin > T

∆q

λin
T

ideal input flow
λin constant
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Queuing Delay

Steady-state queuing delay

∆q =

{

0 λin < T
λin−T

T t λin > T

∆q

λin
T

ideal input flow
λin constant

∆q

λin
T

realistic input flow
λin variable
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Queuing Delay
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Queuing Delay

Conclusion: as the input rate λin approaches the maximum
throughput T , packets will experience very long delays

c© 2005–2008 Antonio Carzaniga



Queuing Delay

Conclusion: as the input rate λin approaches the maximum
throughput T , packets will experience very long delays

More realistic assumptions and models
◮ finite queue length (buffers) in routers
◮ effects of retransmission overhead
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Queuing Delay

Conclusion: as the input rate λin approaches the maximum
throughput T , packets will experience very long delays

More realistic assumptions and models
◮ finite queue length (buffers) in routers
◮ effects of retransmission overhead

λout

λin

T

congestion
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What to Do?

What to do when the network is congested and queues are full?

λ1 = T /2 λ2 = T /2

λ3 = T /2

max throughput
T

throughput = T
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What to Do?

What to do when the network is congested and queues are full?

λ1 = T /2

max throughput
T

throughput = T
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Part IV

Brief Overview of TCP
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Transmission Control Protocol

The Internet’s primary transport protocol
◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and

RFC 2581

c© 2005–2008 Antonio Carzaniga
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The Internet’s primary transport protocol
◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and

RFC 2581

Connection-oriented service
◮ endpoints “shake hands” to establish a connection
◮ not a circuit-switched connection, nor a virtual circuit
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Transmission Control Protocol

The Internet’s primary transport protocol
◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and

RFC 2581

Connection-oriented service
◮ endpoints “shake hands” to establish a connection
◮ not a circuit-switched connection, nor a virtual circuit

Full-duplex service
◮ both endpoints can both send and receiver, at the same time
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Preliminary Definitions
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TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments
◮ TCP segments are usually sent within an IP packet
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Preliminary Definitions

TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments
◮ TCP segments are usually sent within an IP packet

Maximum segment size (MSS): maximum amount of application
data transmitted in a single segment

◮ typically related to the MTU of the connection, to avoid
network-level fragmentation (we’ll talk about all of this later)
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Preliminary Definitions

TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments
◮ TCP segments are usually sent within an IP packet

Maximum segment size (MSS): maximum amount of application
data transmitted in a single segment

◮ typically related to the MTU of the connection, to avoid
network-level fragmentation (we’ll talk about all of this later)

Maximum transmission unit (MTU): largest link-layer frame
available to the sender host

◮ path MTU: largest link-layer frame that can be sent on all links
from the sender host to the receiver host
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TCP Segment Format

0 31

source port destination port

sequence number

acknowledgment number

hdrlen unused U A P R S F receive window

Internet checksum urgent data pointer

options field

data
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TCP Header Fields
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TCP Header Fields

Source and destination ports: (16-bit each) application identifiers
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TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data
transfer

Acknowledgment number: (32-bit) used to implement reliable
data transfer
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TCP Header Fields
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TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data
transfer

Acknowledgment number: (32-bit) used to implement reliable
data transfer

Receive window: (16-bit) size of the “window” on the receiver end

Header length: (4-bit) size of the TCP header in 32-bit words

Optional and variable-length options field: may be used to
negotiate protocol parameters
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TCP Header Fields
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TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the
acknowledgment number represents a valid acknowledgment
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RST flag: (1-bit) used during connection setup and shutdown
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SYN flag: (1-bit) used during connection setup and shutdown
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FIN flag: (1-bit) used during connection shutdown
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acknowledgment number represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass
the data to the application immediately
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TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the
acknowledgment number represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass
the data to the application immediately

URG flag: (1-bit) “urgent” flag, used to inform the receiver that
the sender has marked some data as “urgent”. The location of
this urgent data is marked by the urgent data pointer field
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TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the
acknowledgment number represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass
the data to the application immediately

URG flag: (1-bit) “urgent” flag, used to inform the receiver that
the sender has marked some data as “urgent”. The location of
this urgent data is marked by the urgent data pointer field

Checksum: (16-bit) used to detect transmission errors
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Sequence Numbers
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Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before
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sequence number of the first byte carried by that segment
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Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the
sequence number of the first byte carried by that segment

application data stream
4Kb
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Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the
sequence number of the first byte carried by that segment

application data stream
4Kb

MSS=1024b
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Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the
sequence number of the first byte carried by that segment

application data stream
4Kb

MSS=1024b
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Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the
sequence number of the first byte carried by that segment

application data stream
4Kb

MSS=1024b

1. . . . . . 1024 1025. . . 2048 2049. . . 3072 3073. . . 4096
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Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the
sequence number of the first byte carried by that segment

application data stream
4Kb

MSS=1024b

1. . . . . . 1024 1025. . . 2048 2049. . . 3072 3073. . . 4096

a TCP segment
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Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the
sequence number of the first byte carried by that segment

application data stream
4Kb

MSS=1024b

1. . . . . . 1024 1025. . . 2048 2049. . . 3072 3073. . . 4096

a TCP segment

20
49
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Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the
sequence number of the first byte carried by that segment

application data stream
4Kb

MSS=1024b

1. . . . . . 1024 1025. . . 2048 2049. . . 3072 3073. . . 4096

a TCP segment

20
49

sequence number
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Acknowledgment Numbers
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Acknowledgment Numbers

An acknowledgment number represents the first sequence
number not yet seen by the receiver

◮ TCP acknowledgments are cumulative
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An acknowledgment number represents the first sequence
number not yet seen by the receiver

◮ TCP acknowledgments are cumulative

A B
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Acknowledgment Numbers

An acknowledgment number represents the first sequence
number not yet seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000
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Acknowledgment Numbers

An acknowledgment number represents the first sequence
number not yet seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000

[Seq# = 2200, . . .], size(data) = 500
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Acknowledgment Numbers

An acknowledgment number represents the first sequence
number not yet seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000

[Seq# = 2200, . . .], size(data) = 500

[Seq# = . . . ,Ack# = 2700]
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Sequence Numbers and ACK Numbers
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Sequence Numbers and ACK Numbers

Notice that a TCP connection consists of is a full-duplex link
◮ therefore, there are two streams
◮ two different sequence numbers
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Sequence Numbers and ACK Numbers

Notice that a TCP connection consists of is a full-duplex link
◮ therefore, there are two streams
◮ two different sequence numbers

E.g., consider a simple “Echo” application:
A B
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Sequence Numbers and ACK Numbers

Notice that a TCP connection consists of is a full-duplex link
◮ therefore, there are two streams
◮ two different sequence numbers

E.g., consider a simple “Echo” application:
A B

[Seq# = 100,Data =“C”]
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Sequence Numbers and ACK Numbers

Notice that a TCP connection consists of is a full-duplex link
◮ therefore, there are two streams
◮ two different sequence numbers

E.g., consider a simple “Echo” application:
A B

[Seq# = 100,Data =“C”]

[Ack# = 101,Seq# = 200,Data =“C”]
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◮ two different sequence numbers

E.g., consider a simple “Echo” application:
A B

[Seq# = 100,Data =“C”]

[Ack# = 101,Seq# = 200,Data =“C”]

[Seq# = 101,Ack# = 201,Data =“i”]

[Seq# = 201,Ack# = 102,Data =“i”]
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Sequence Numbers and ACK Numbers

Notice that a TCP connection consists of is a full-duplex link
◮ therefore, there are two streams
◮ two different sequence numbers

E.g., consider a simple “Echo” application:
A B

[Seq# = 100,Data =“C”]

[Ack# = 101,Seq# = 200,Data =“C”]

[Seq# = 101,Ack# = 201,Data =“i”]

[Seq# = 201,Ack# = 102,Data =“i”]

Acknowledgments are “piggybacked” on data segments
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Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost
segments

◮ timeout without an ACK→ lost packet→ retransmission
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Retransmission timeouts should be larger than the round-trip
time RTT = 2L

◮ as close as possible to the RTT

c© 2005–2008 Antonio Carzaniga



Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost
segments

◮ timeout without an ACK→ lost packet→ retransmission

How long to wait for acknowledgments?

Retransmission timeouts should be larger than the round-trip
time RTT = 2L

◮ as close as possible to the RTT

TCP controls its timeout by continuously estimating the current
RTT
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Round-Trip Time Estimation
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Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1−α)RTT
′
+αS
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◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1−α)RTT
′
+αS

◮ RFC 2988 recommends α = 0.125

TCP also measures the variability of RTT

DevRTT = (1−β)DevRTT
′
+ β|RTT

′
− S|
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Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1−α)RTT
′
+αS

◮ RFC 2988 recommends α = 0.125

TCP also measures the variability of RTT

DevRTT = (1−β)DevRTT
′
+ β|RTT

′
− S|

◮ RFC 2988 recommends β = 0.25
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Timeout Value

The timeout interval T must be larger than the RTT
◮ so as to avoid unnecessary retransmission

However, T should not be too far from RTT
◮ so as to detect (and retransmit) lost segments as quickly as

possible
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Timeout Value

The timeout interval T must be larger than the RTT
◮ so as to avoid unnecessary retransmission

However, T should not be too far from RTT
◮ so as to detect (and retransmit) lost segments as quickly as

possible

TCP sets its timeouts using the estimated RTT (RTT ) and the
variability estimate DevRTT :

T = RTT + 4DevRTT
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Reliable Data Transfer (Sender)

A simplified TCP sender

r send(data)
if (timer not running)

start timer()
u send([data,next seq num])
next seq num← next seq num + length(data)
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Reliable Data Transfer (Sender)

A simplified TCP sender

r send(data)
if (timer not running)

start timer()
u send([data,next seq num])
next seq num← next seq num + length(data)

timeout
u send(pending segment with smallest sequence number)
start timer()
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Reliable Data Transfer (Sender)

A simplified TCP sender

r send(data)
if (timer not running)

start timer()
u send([data,next seq num])
next seq num← next seq num + length(data)

timeout
u send(pending segment with smallest sequence number)
start timer()

u recv([ACK,y ])
if (y > base)

base← y
if (∃ pending segments)

start timer()
else . . .
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Acknowledgment Generation (Receiver)
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Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all
data up to expected sequence number already acknowledged
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◮ Delayed ACK: wait 500ms for another in-order segment. If that
doesn’t happen, send ACK
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◮ Delayed ACK: wait 500ms for another in-order segment. If that
doesn’t happen, send ACK

Arrival of in-order segment with expected sequence number.
One other in-order segment waiting for ACK (see above)

◮ Cumulative ACK: immediately send cumulative ACK (for both
segments)

Arrival of out of order segment with higher-than-expected
sequence number (gap detected)

◮ Duplicate ACK: immediately send duplicate ACK

Arrival of segment that (partially or completely) fills a gap in the
received data
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Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all
data up to expected sequence number already acknowledged

◮ Delayed ACK: wait 500ms for another in-order segment. If that
doesn’t happen, send ACK

Arrival of in-order segment with expected sequence number.
One other in-order segment waiting for ACK (see above)

◮ Cumulative ACK: immediately send cumulative ACK (for both
segments)

Arrival of out of order segment with higher-than-expected
sequence number (gap detected)

◮ Duplicate ACK: immediately send duplicate ACK

Arrival of segment that (partially or completely) fills a gap in the
received data

◮ Immediate ACK: immediately send ACK if the packet start at the
lower end of the gap
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Reaction to ACKs (Sender)
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Reaction to ACKs (Sender)

u recv([ACK,y ])
if (y > base)

base← y
if (∃ pending segments)

start timer()
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Reaction to ACKs (Sender)

u recv([ACK,y ])
if (y > base)

base← y
if (∃ pending segments)

start timer()
else

ack counter [y ]← ack counter [y ] + 1
if (ack counter [y ] = 3)

u send(segment with sequence number y)
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Connection Setup
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[SYN ,Seq# = cli init seq]
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Connection Setup

Three-way handshake

client server

[SYN ,Seq# = cli init seq]

[SYN ,ACK ,Ack# = cli init seq + 1,Seq# = srv init seq]
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Connection Setup

Three-way handshake

client server

[SYN ,Seq# = cli init seq]

[SYN ,ACK ,Ack# = cli init seq + 1,Seq# = srv init seq]

[ACK ,Seq# = cli init seq + 1,Ack# = srv init seq + 1]
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Connection Shutdown

“This is it.”
“Okay, Bye now.”

“Bye.”

c© 2005–2008 Antonio Carzaniga



Connection Shutdown

“This is it.”
“Okay, Bye now.”

“Bye.”

client server

c© 2005–2008 Antonio Carzaniga



Connection Shutdown

“This is it.”
“Okay, Bye now.”

“Bye.”

client server

[FIN]

c© 2005–2008 Antonio Carzaniga



Connection Shutdown

“This is it.”
“Okay, Bye now.”

“Bye.”

client server

[FIN]

[ACK ]

c© 2005–2008 Antonio Carzaniga



Connection Shutdown

“This is it.”
“Okay, Bye now.”

“Bye.”

client server

[FIN]

[ACK ]

[FIN]

c© 2005–2008 Antonio Carzaniga



Connection Shutdown

“This is it.”
“Okay, Bye now.”

“Bye.”

client server

[FIN]

[ACK ]

[FIN]

[ACK ]
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The TCP State Machine (Client)

CLOSED
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The TCP State Machine (Client)
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ESTABLISHED

receive SYN,ACK
send ACK

FIN WAIT 1

application
closes connection
send FIN
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The TCP State Machine (Client)

CLOSED

SYN SENT

application
opens connection
send SYN

ESTABLISHED

receive SYN,ACK
send ACK

FIN WAIT 1

application
closes connection
send FIN

FIN WAIT 2

receive ACK

TIME WAIT

receive FIN
send ACK
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The TCP State Machine (Client)

CLOSED

SYN SENT

application
opens connection
send SYN

ESTABLISHED

receive SYN,ACK
send ACK

FIN WAIT 1

application
closes connection
send FIN

FIN WAIT 2

receive ACK

TIME WAIT

receive FIN
send ACK

wait 30 seconds
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The TCP State Machine (Server)

CLOSED
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The TCP State Machine (Server)

CLOSED

LISTEN

application
opens server socket
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The TCP State Machine (Server)

CLOSED

LISTEN
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opens server socket
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receive SYN
send SYN,ACK

ESTABLISHED

receive ACK
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receive FIN
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The TCP State Machine (Server)

CLOSED

LISTEN

application
opens server socket

SYN RCVD

receive SYN
send SYN,ACK

ESTABLISHED

receive ACK

CLOSE WAIT

receive FIN
send ACK

LAST ACK

send FIN

receive ACK
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Part V

Congestion Control in TCP
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Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the
network (λin)
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Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the
network (λin)

Issues

◮ how does the sender “measure” the status of the network?
◮ i.e., how does the sender detect congestion?

◮ how does the sender effectively limit its output rate?

◮ how should the sender “modulate” its output rate?
◮ i.e., what algorithm should the sender use to decrease or increase

its output rate?
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Detecting Congestion
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Detecting Congestion

If all traffic is correctly acknowledged, then the sender assumes
(quite correctly) that there is no congestion
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If all traffic is correctly acknowledged, then the sender assumes
(quite correctly) that there is no congestion

Congestion means that queue overflow in one or more routers
between the sender and the receiver

◮ the visible effect is that some segments are dropped
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Detecting Congestion

If all traffic is correctly acknowledged, then the sender assumes
(quite correctly) that there is no congestion

Congestion means that queue overflow in one or more routers
between the sender and the receiver

◮ the visible effect is that some segments are dropped

Therefore the server assumes that the network is congested
when it detects a segment loss

◮ time out (i.e., no ACK)
◮ multiple acknowledgements (i.e., NACK)
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Congestion Window

The sender maintains a congestion window W
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The sender maintains a congestion window W

The congestion window limits the amount of bytes that the
sender pushes into the network before blocking waiting for
acknowledgments
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Congestion Window

The sender maintains a congestion window W

The congestion window limits the amount of bytes that the
sender pushes into the network before blocking waiting for
acknowledgments

LastByteSent − LastByteAcked ≤ W

where

W = min (CongestionWindow ,ReceiverWindow)
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Congestion Window

The sender maintains a congestion window W

The congestion window limits the amount of bytes that the
sender pushes into the network before blocking waiting for
acknowledgments

LastByteSent − LastByteAcked ≤ W

where

W = min (CongestionWindow ,ReceiverWindow)

The resulting maximum output rate is roughly

λ =
W
2L
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Congestion Control

How does TCP “modulate” its output rate?

c© 2005–2008 Antonio Carzaniga



Congestion Control

How does TCP “modulate” its output rate?

Additive-increase and multiplicative-decrease
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Congestion Control

How does TCP “modulate” its output rate?

Additive-increase and multiplicative-decrease

Slow start
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Congestion Control

How does TCP “modulate” its output rate?

Additive-increase and multiplicative-decrease

Slow start

Reaction to timeout events
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Additive-Increase/Multiplicative-Decrease
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Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the
congestion window
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How W is reduced: at every loss event, TCP halves the
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◮ e.g., suppose the window size W is currently 20Kb, and a loss is
detected

◮ TCP reduces W to 10Kb
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Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the
congestion window

◮ e.g., suppose the window size W is currently 20Kb, and a loss is
detected

◮ TCP reduces W to 10Kb

How W is increased: at every (good) acknowledgment, TCP
increments W by 1MSS/W , so as to increase W by MSS every
round-trip time 2L. This process is called congestion avoidance
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Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the
congestion window

◮ e.g., suppose the window size W is currently 20Kb, and a loss is
detected

◮ TCP reduces W to 10Kb

How W is increased: at every (good) acknowledgment, TCP
increments W by 1MSS/W , so as to increase W by MSS every
round-trip time 2L. This process is called congestion avoidance

◮ e.g., suppose W = 14600 and MSS = 1460, then the sender
increases W to 16060 after 10 acknowledgments
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Additive-Increase/Multiplicative-Decrease

Window size W over time

W

Time
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Slow Start

What is the initial value of W?
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Slow Start

What is the initial value of W?

The initial value of W is MSS, which is quite low for modern
networks

In order to get quickly to a good throughput level, TCP increases
its sending rate exponentially for its first growth phase

After experiencing the first loss, TCP cuts W in half and
proceeds with its linear push
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Slow Start

What is the initial value of W?

The initial value of W is MSS, which is quite low for modern
networks

In order to get quickly to a good throughput level, TCP increases
its sending rate exponentially for its first growth phase

After experiencing the first loss, TCP cuts W in half and
proceeds with its linear push

This process is called slow start, because of the small initial
value of W
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Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK
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Both timeouts and NACKs signal a loss, but they say different
things about the status of the network

A timeout indicates congestion

Three (duplicate) ACKs suggest that the network is still able to
deliver segments along that path
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Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

Both timeouts and NACKs signal a loss, but they say different
things about the status of the network

A timeout indicates congestion

Three (duplicate) ACKs suggest that the network is still able to
deliver segments along that path

So, TCP reacts differently to a timeout and to a triple duplicate
ACKs
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Timeouts vs. NACKs

Assuming the current window size is W = W

c© 2005–2008 Antonio Carzaniga



Timeouts vs. NACKs

Assuming the current window size is W = W

Timeout

◮ go back to W = MSS

◮ run slow start until W reaches W/2

◮ then proceed with congestion avoidance
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Timeouts vs. NACKs

Assuming the current window size is W = W

Timeout

◮ go back to W = MSS

◮ run slow start until W reaches W/2

◮ then proceed with congestion avoidance

NACK

◮ cut W in half: W = W/2

◮ run congestion avoidance, ramping up W linearly

◮ This is called fast recovery
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Sender Behavior

W

Time
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Sender Behavior

W

Time

MSS

NACK

timeout

NACK

NACK

SS CA SS CA CA CA

SS=slow start CA=congestion avoidance
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