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Motivation

[Sequence input: ] [Sequence output:]
* Sentiment analysis * Image captioning

[Sequence input and output: ]

* POS tagging

* Language model
 Handwriting generation

* Speech to text / text to speech
* Machine Translation




Recurrent neural network
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Backpropagation through time
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exploding or vanishing gradients
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RNN: modifications

Gradient clipping (Mikolov, 2012; Pascanu et al., 2012)
Gated models:

LSTM (Hochreiter and Schmidhuber, 1997)

GRU (Cho et al., 2014)

SCRN (Mikolov et al., 2015)

Orthogonal and unitary matrices in RNN (Saxe et al., 2014; Le et al.,
2015; Arjovsky and Shah and Bengio, 2016)

Echo State Networks (Jaeger and Haas, 2004; Jaeger, 2012)
Second-order optimization (Martens, 2010; Martens & Sutskever,
2011)

Regularization (Pascanu et al., 2012)

Careful initialization (Sutskever et al., 2013)



Gradient clipping

Algorithm 1 Pseudo-code for norm clipping
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end if

threshold: average norm over a sufficiently large number of updates

[Pascanu et al., 2012]



http://arxiv.org/abs/1211.5063

Long short term memory:

Version 0

[ Gate values in [0,1] ]

i¢, 0¢ - input/output gates
C; - memory

ir = o(Vixe + Wihe_q + b;)
o = a(Voxy + Wohe—q + by)

Ce =Cr—1 + i - gWVexy + Weheq + b,)
hy =0 - g(ct)
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Long short term memory:

Version 1

[ Gate values in [0,1] ]

i¢, O¢, f+ - input/output/forget gates
C; - memory

ir = o(Vixg + Wihy_q + by;)
ft = O-(fot + tht—l + bf)
o = a(Voxy + Wohe_1 + by)

X¢ My ct = fr Ce—q + iy gVexy + W.he—q + b,)
ht = O¢ - g(Ct)
oh dc
Kl ey L £ == Highinitial bs
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Long short term memory:

Examples
Captures info Keeps info Releases info
;é ;\ ;é ;\
\ \
Erases info = RNN

@ -gateisclose

@ -sateisopen
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Long short term memory:

Examples
RNN LSTM
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https://www.cs.toronto.edu/~graves/preprint.pdf

Gated Recurrent Unit

[ Gate values in [0,1] ]

1, U - reset/update gates

ur = o(Vyuxy + Wyhe_q + by)
e = o(Vpxe + Wehe_q + by)

ce = g(Vexe + We(heoq - 11))
he =1 —up) e +up-heyq

Ohy 11 . 0Ci+1
dh,,
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Orthogonal and unitary matrices
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Orthogonal and unitary matrices

Initialize recurrent weights with the identity matrix

[Le et al., 2015]

|

[Pascanu et al., 2012]

[Regularization: }
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http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://arxiv.org/abs/1504.00941

URNN

{W — D3R2F_1D2HR1FD1}

e D. adiagonal matrix with D; ; = "7, with parameters w; € R,
e R=1- 2%;; a reflection matrix in the complex vector v € C™,
e IT, a fixed random index permutation matrix, and

e F and F~!, the Fourier and inverse Fourier transforms.

Complex:
 hidden units, \ _ Re(ht))
* in-to-hidden oy = f(U (Im(ht) + bo)
* hidden-to-hidden
VA
+b) — ] +b=>0
modRelLU(z) = (I ) || 1zl
0 if |1zl +b <0

[Arjovsky et al., 2016]



http://arxiv.org/abs/1511.06464

URNN

Pros:

* No vanishing or exploding gradients

* Memory: 0(n), time: O(n logn)

* Good parametrization: O(n) parameters - more hidden units
 Verylong dependencies

Cons:
 LSTM has stronger local dependencies



Bidirectional RNN
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RNN Bidirectional RNN



Examples



Sequence to sequence

[Synced sequence input and output:]
* POS tagging
* Video frames classification
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Text generation

Next symbol/word * * ’
\ \

\ \

<L
0 \
Current symbol/word start 6 8}




Text generation

PANDARUS:

Alas, | think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

| should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when | perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, | will make did behold your worship.

VIOLA:
I'll drink it.

Andrej Karpathy blog



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Text generation

Proof. Omitted. a

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = 0x(£)

Proof. This is an algebraic space with the composition of sheaves F on X, we
have

Ox (F) = {morphy xo, (G.F)}
where G defines an isomorphism F — F of O-modules. a
Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ?7. a

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complez.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: XY 2Ya2Y Y xxY 2 X.

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

This since F € F and x € G the diagram

S——

l

gor,

Ox:

=a ——a X
Morsets  d(Oxy,,.G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and

Spec(Ky)

e the composition of G is a regular sequence,
e Oy is a sheaf of rings.
]

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. O

Proof. This is clear that G is a finite presentation, see Lemmas 77?.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz—Fz -UOx,n) — 0}:0.\‘*(03(',,)
is an isomorphism of covering of Oy, . If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. (]

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.

Andrej Karpathy blog



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Text generation
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Cell sensitive to position in line:

Cell that turns on inside quotes:



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Handwriting generation:

handwriting -> handwriting

Next pen position (we predict parameters):
x1, x2 - mixture of bivariate Gaussians
x3 - Bernoulli distribution \ \

\ \

LI
Current pen position: ¢ \ \
x1, X2 — pen offset start

X3 —is it end of the stroke




Handwriting generation:

example
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Sequence output

[Sequence generation: ]
* Handwriting synthesis
* Image captioning

2p?
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Handwriting synthesis:

text -> handwriting

Next pen position * ? ’
\ \

\ \

L
N \
Current pen position start

Which letter we write now @

Demo


http://www.cs.toronto.edu/~graves/handwriting.html

Handwriting synthesis:

biased sampling

o b Hu Jungles e 5
0.1 Mald{g 10¢ /om‘@v@é@%mw_g
0.5 }’%@7/ 7@% easier to read

but less diverse.

5 M/VLH 7[[’16& all {Ook
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bias

0 EXACTY the same



Handwriting synthesis:

primed sampling

%%MWWMM

MWWW
%JW Arem ¢

%Wm%



Handwriting synthesis:

primed sampling




Handwriting synthesis:

primed and biased sampling

Mm/ﬁam%mfé/s/onwd




Image Caption Generation

Vision Language A grou_p of people
Deep CNN  Generating shopping at an
RNN outdoor market.

-
o
E] @ There are many

vegetables at the
fruit stand.

Demo (images)
Demo (top images for test texts)

Demo (more sophisticated model)


http://cs.stanford.edu/people/karpathy/deepimagesent/generationdemo/
http://cs.stanford.edu/people/karpathy/deepimagesent/rankingdemo/
http://deeplearning.cs.toronto.edu/i2t

Sequence input

[Sequence classification: ]
e Sentiment analysis

L A o

> P> > P>

000 0060




Sequence to sequence

* Handwriting to text / text to ’ ? ’

handwriting NN

» Speech to text / text to speech
[ Input and output have different length! ] é é é

* Machine Translation ININ

PP

Demo with bidirectional RNN f f I


http://104.131.78.120/

Translation with attention

decoder RNN

hy [TH h 77 s hy
hy (171 a1 s hy
5N X X X7

si = f(si—1,Yi—1,¢;)

Ty
C; — E Ofijh,j
j=1

eij =alsi—1, hyj)
_exp(egy)
Oéz'j = T.
Zk:l exXp (ez'k>

bidirectional RNN

[Bahdanau et al. 2015]



https://arxiv.org/abs/1409.0473

Tips and tricks



Tips and tricks

Embeddlng

[Train data for text generation: ]
e Sequences of the same length
* Sequences of different lengths and a N N

mask (sentences)
* Sequences of the same length and

accurate initialization of hidden units f f f




Tips and tricks

e Gradient clipping: 2 variants
* Truncated BPTT
 Numerically stable log-softmax with crossentropy

exp(xj) _
e BRI

]
Xj = Xj — mlslxxk

p; = logsoftmax(x); = x; — log (Z exp(xk)>

k
L=—2ajpj

J

p; = softmax(x); =



Deep RNN

P29
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Dropout

p — probability of dropping unit
Train: for each case a new thinned network is sampled and trained.
Test: net without dropout, but w = pw

Net can be seen as a collection of exponential number of thinned
neural networks.

(a) Standard Neural Net (b) After applving dropont.

[Srivastava et al., 2014]



https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout and BN for RNN

'Only to non-recurrent connections! |

| | |
L2 Li—1 Ut L1 Li42

[Zaremba et al., 2015]

[Laurent et al., 2016]



https://arxiv.org/pdf/1409.2329v5.pdf
https://arxiv.org/pdf/1409.2329v5.pdf
https://arxiv.org/abs/1510.01378
https://arxiv.org/pdf/1409.2329v5.pdf
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A list of resources dedicated to RNNs: Awesome Recurrent Neural Networks
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Reference: examples

Sequence generation

° Character-wise text generation with Multiplicative RNN

llya Sutskever, James Martens, and Geoffrey Hinton. Generating Text with Recurrent Neural Networks // ICML 2011.

demo, slides
° Word-wise text generation with RNN (RNN vs n-grams)

Mikolov Tom4, Karafiat Martin, Burget Lukd, Eernocky Jan, Khudanpur Sanjeev. Recurrent neural network based language
model. // Proceedings of the 11th Annual Conference of the International Speech Communication Association (INTERSPEECH
2010).

Mikolov Toma. Statistical Language Models based on Neural Networks // PhD thesis, Brno University of Technology, 2012.

lib+demo
° Both character and word-wise text generation + handwritten generation + handwritten synthesis (all with LSTM)

A. Graves. Generating Sequences With Recurrent Neural Networks.

slides, handwritten synthesis demo



http://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf
http://www.cs.toronto.edu/~ilya/rnn.html
https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CEMQFjAF&url=http://archer.ee.nctu.edu.tw/groupmeeting_2013/wlching/Generating Text with Recurrent Neural Networks.pptx&ei=Kpw_VdLAJ4biywOX5oHYCw&usg=AFQjCNHRuPjtBR8RS3i9wMn53qipRsDjdQ&sig2=eDq-7Joxl3qgmV0Dn2JW3w&bvm=bv.91665533,d.bGQ
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Reference: examples

Sequence translation

llya Sutskever, Oriol Vinyals, Quoc Le. Sequence to Sequence Learning with Neural Networks // NIPS 2014

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation // EMNLP 2014.

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate // ICLR,
2015.

demo

Image Caption Generation

0. Vinyals, A. Toshey, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator // CVPR, 2015.

Andrej Karpathy, Li Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions // CVPR, 2015.

demo (images), demo (top images for test texts)

Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel. Unifying Visual-Semantic Embeddings with Multimodal Neural Language
Models // TACL, 2015

demo
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