Gradient Descent Method

1 Unconstrained Minimization

Our focus today: Unconstrained minimization problem: given a real-valued
function f over R”, find its minimum z* (assuming it exists). That is, solve the
problem
z” = arg min f(z).
e Note: This problem is very general:
— To get maximization, just minimize — f(x).

— To introduce constraints, just consider minimizing f(x)+(x), where
Y(x) = 0, if = satisfies all constraints, and +oo, otherwise. (So, in
principle, this is stronger than LP!)

e To make our discussion simpler, we will assume though that our function
f is “nice”. That is, f is:

— continuous;

— (twice) differentiable. (This requirement can, and often needs to, be
relaxed.)

2 Gradient Descent

How to solve an unconstrained minimization problem?
e Powerful approach: Gradient descent method.
e Key idea: Apply (continuous) local greedy approach.
e Start with some point z°.

e In each iteration: move a bit (locally) in the direction that reduces the
value of f the most (greedily).

= Guarantees that f(z'*1) < f(a?).

Question: What is the direction of the steepest decrease of f7

o Recall (multi-variate) Taylor theorem: for any z € R™ and (vector) dis-
placement § € R", we have that

Fl+8) = F(@) + V)5 + 56TV ()5,

for some y = x + Ad with 0 < X\ < 1, where

— Vf(x) € R™ is the gradient of f at point 2 and

. 9f(=)
Vi =22,
for each .
— V2f(z) € R™*" is the Hessian of f at point x and
0% f(x)
2 st
v f(l‘)” ' ﬁxié)xj’

for each ¢ and j.

e Observe: the gradient term in the Taylor expansion is linear in ||d|| while
the Hessian term is quadratic in ||d]|.

e Consequently, for small enough step, i.e., ||d]|, the Hessian term is negli-
gible. That is,

fla+6) = f(z) + Vf(2)"6 + O(|I0l|*) = f(z) + V f(x)"d

e Key conclusion: Even though f might be very complex, locally it is
”simple”, i.e., it is well approximated by, essentially, the simplest function
possible: the linear function!

= We know how to minimize linear functions. Just take § = —nV f(z),
for some step size n > 0.

Resulting algorithm: Gradient descent method:
e Start with some z° € R".
e In each step t: x'T! « zt — nV f(a?).
Question: What should 7 be?

e Assume that f is 8-smooth, for some 8 > 0. That is,

IVi(y) = V()| < Blly — |,

for any z,y € R™. Intuitively, 8 measures how much the gradient of f can
change between two nearby points.

o Equivalently (for twice differentiable functions): f is f-smooth iff yT V2 f(z)y <
Blly|I?, for any x,y; or, put yet another way, the maximum eigenvalue of
V2f(x) is at most f3.

= We have that

Fle+8) < F@) + Vf(@)5+ 2 o]”

for any x and 0

= Intuitively: For every point x, there is a corresponding quadratic (i.e.,
relatively “simple”) function that upper bounds f everywhere and agrees
with f at the point x.

= Our progress on minimizing this quadratic function at x lowerbounds
our progress on reducing the value of f at x.

— If we plug in our choice of § = —V f(z), we get that
fetd) < @)+ @+ D)
< 1@ =l V@R + S IV @)
< f@) - 5V @R,

for the optimal setting of n = %

= Setting 77 = 5 ensures that

Ft) < fat) - %nwwn%

i.e., we make progress of at least %HV}”(@')HQ towards minimizing the

value of f.

In practice, we choose best n adaptively in each step via binary search —
this is often called line search.

Remaining issue: What if |V f(2*)|| = 0 (or is just very small)?

z* has to be a critical point — means z* is either a local minimum or

maximum (with bad initialization) or a saddle point.
If V2f(2*) = 0, we know it is a local minimum.

We can deal with the other two possibilities by perturbing our point
slightly and resuming the algorithm.

In general: Typically, gradient descent converges to local minimum.
What if we want this local minimum to be a global one?
We need additional (strong) assumption.

f is convex iff, for any x and v,

fAz+ (1 =XNy) <Af(@)+ (1= A)f(y),

for any 0 < A\ < 1. That is, the epigraph of the function is a convex set.

Alternatively: f is convex iff V2f(z*) = 0, for all z.

= The only critical points are local minimums!

e In fact, a much stronger property holds: all critical points are global min-
imums.

To see that, note that by Taylor theorem convexity implies that
1
flo+8) = f(z) + V()76 + 507V f(2)d > f(2) + V(2)"0.

That is, every gradient defines a lowerbounding hyperplane for f that
agrees with f at x.

= If Vf(z) =0 then f(x+) > f(x) for all .

It turns out that convexity is a very widespread phenomena in optimiza-
tion. But there are very important domains, e.g., deep learning, where
the underlying optimization problems are inherently non-convex.

2.1 Convergence Analysis

How fast does gradient descent converge?

e Convexity allows us to bound our (sub-)optimality. Specifically, if z* is
the minimum of f, we have that, for any x,

fa*) = fz) + Vf(2)" (@" ~ 2).

= f(@) — f@) < —Vf(@)T(@* —) < |[Vf(@)]la" -z, where the last
inequality follows by Cauchy-Schwartz inequality.

= I ||VSf()| < we are by at most ¢ off from optimum.

e
llz*—=|’

e The fact that the above near-optimality condition involves ||z* — x| is
unfortunate (but inherent!). After all, we don’t know what this distance
is.

e To connect this distance to the optimum to the norm of the gradient /difference
in function value, and thus to get rid of this dependence, we need to make
an (even stronger) assumption on f.

e Assume that f is a-strong convexity. That is, assume that, for any x and
Y,

y' V2 f(2)y > ally|*.
= The smallest eigenvalue of V2f(z) is always at least a.

= ”Normal” convexity would correspond to o = 0 (but we require a > 0
here).

= We can now strengthen our lowerbounding inequality we got from con-
vexity. Specifically, for any = and § we have that

Fla+8) > fla) + V)5 + 20V ()6 > fa) + V()75 + 2o

That is, for each point x, there is a quadratic function that lowerbounds
f everywhere and agrees with f at x.

Now, the key consequence of a-strong convexity we will need is that, for
any x,
* T/ % « * |2
f@®) 2 f(2) + Vf(z)" (@ —2) + S llz — 27"

And, as a result, by re-arranging, we get that
«a
V@) (x—a*) > f(z) —f@) + Sl — 2" (1)
Now, to get the convergence bound, let us just put together everything
we derived so far:

— Let us use ||z' — 2*||? as a measure of our progress/potential.
— Let’s analyze its change in one step:
=t —a*[* = 2’ =V f(a") -z
= la" — 2| = 2pV f(2") (2" — 2*) + n?| V()]

ot —a*IP = (207 = F@) + Flla* —2?) =l VTP

IN

where the last line follows by (1).

— Further, observe that as each gradient step guarantees making progress
of at least ﬁHVf(xt)W (whenever we set n = %, which we do here),
it has to be that

@) - F@) > fah) - ft) > %uww)n?

— Plugging this back into our derivation and re-arranging, we obtain:

2P < ot =2 - (2 - £ + Sl =2 IP) — a9 5 E)?)

1 /1 1
< ot —a- L (IIVf(xtW Tallet - 2| IIVf(art)|2>
B\ B 3
1
< ot — 2| - Slat - 2P = (1 =) [l — 27|,
I} K
where K := g is the condition number of f. (Intuitively, condition

number tells us how “nicely” it behaves, i.e., how well can we “sand-
wich” the function f locally by two quadratic functions. The smaller
condition number the faster convergence.)

= After O(k log M) steps we obtain a solution that is within
€ of the optimal value (in norm)!

Note: The dependence on € is only logarithmic, which essentially
allows us to solve the problem exactly by taking sufficiently large e.

3 Dealing with lack of a-strongly convexity

What to do if f is not a-strongly convex for any o > 07 (This is often the
case in applications.)

02
A different analysis gives a (much weaker) convergence bound of O(M)
(Here, the dependence on € is polynomial, so in this regime we can only
get approximate answers.)

Alternatively, we could (almost, i.e., up to O(log 1 factor) recover this

weaker bound by making f a-strongly convex, with @ = m, by

adding aflz — 2°)|? to it. (Note, we do not need to know |z* — 202
exactly. Doing iterative doubling will suffice here.)
This is an example of a more general technique called regularization.

= Adding this new term corresponding to adding « - I to the Hessian
V2f(x) of f. So, f is indeed a-strongly convex now and we can use the
convergence analysis from above.

= Problem: The minimizer of f changed! Still, one can show that the
value attained at the new minimizer is withing § of the optimum. (Left
as an exercise,)

Projections

What to do if we want to solve constrained minimization? (E.g., max
flow.)

Just project (in £3-norm) on the feasible space!

The way we measured progress was by keeping track of ||z* — z*||?. But:
an fo-norm projection will never increase this quantity! Specifically, we
have that if II(z) denotes the projected point z, we have that

(") — 27)|* = (") — (")|* < [l —2"]%,

since the projection II is contractive.

= The analysis follows unchanged.

5

Dealing with Lack of S-Smoothness

We can either use Subgradient descent, i.e., a variant of gradient descent
that uses subgradients instead of gradients, or smoothing, a way to intro-
duce a proxy objective function that is S-smooth while approximating the
objective function well. (The latter is always preferable, as long as we can
find a sufficiently good smoothening proxy.)

For maximum flow, it is the best to smoothen the objective function |||
via soft maz function:

smaxs(z) ;= dln <Zi_1 Tt eé) , (2)

2n

where § > is a parameter.
For every § > 0, the function smax; is convex and 5-smooth. (Exercise.)
For any = we have that, ||z||cc — dIn(2n) < smaxs(x) < ||z]|c. (Exercise)

So, there is a trade-off between how well we approximate || - ||oo and how
smooth the resulting function is.

Plugging the smoothened maximum flow formulation, with § = § into
our bounds for gradient descent (with no a-convexity), we get an e-
approximate solution after

O (ﬁ’llx0 ;w*llz) —o(%)

iterations, where we use the fact that by choosing zy to be an all-zero
vector (and then projecting it on the space of unit s-t flows) and noticing
that optimal solution never flows more than 1 on any coordinate, ||z° —
r*[|?2 < m.

As we can compute projections in nearly-linear time, the resulting algo-
rithm runs in O(m?2s=2) time.

