
Gradient Descent Method

1 Unconstrained Minimization

Our focus today: Unconstrained minimization problem: given a real-valued
function f over Rn, find its minimum x∗ (assuming it exists). That is, solve the
problem

x∗ = arg min
x∈Rn

f(x).

• Note: This problem is very general:

– To get maximization, just minimize −f(x).

– To introduce constraints, just consider minimizing f(x)+ψ(x), where
ψ(x) = 0, if x satisfies all constraints, and +∞, otherwise. (So, in
principle, this is stronger than LP!)

• To make our discussion simpler, we will assume though that our function
f is “nice”. That is, f is:

– continuous;

– (twice) differentiable. (This requirement can, and often needs to, be
relaxed.)

2 Gradient Descent

How to solve an unconstrained minimization problem?

• Powerful approach: Gradient descent method.

• Key idea: Apply (continuous) local greedy approach.

• Start with some point x0.

• In each iteration: move a bit (locally) in the direction that reduces the
value of f the most (greedily).

⇒ Guarantees that f(xt+1) < f(xt).

Question: What is the direction of the steepest decrease of f?

• Recall (multi-variate) Taylor theorem: for any x ∈ Rn and (vector) dis-
placement δ ∈ Rn, we have that

f(x+ δ) = f(x) +∇f(x)T δ +
1

2
δT∇2f(y)δ,

for some y = x+ λδ with 0 ≤ λ ≤ 1, where

1



– ∇f(x) ∈ Rn is the gradient of f at point x and

∇f(x)i :=
∂f(x)

∂xi
,

for each i.

– ∇2f(x) ∈ Rn×n is the Hessian of f at point x and

∇2f(x)ij :=
∂2f(x)

∂xi∂xj
,

for each i and j.

• Observe: the gradient term in the Taylor expansion is linear in ‖δ‖ while
the Hessian term is quadratic in ‖δ‖.

• Consequently, for small enough step, i.e., ‖δ‖, the Hessian term is negli-
gible. That is,

f(x+ δ) = f(x) +∇f(x)T δ +O(‖δ‖2) ≈ f(x) +∇f(x)T δ

• Key conclusion: Even though f might be very complex, locally it is
”simple”, i.e., it is well approximated by, essentially, the simplest function
possible: the linear function!

⇒ We know how to minimize linear functions. Just take δ = −η∇f(x),
for some step size η > 0.

Resulting algorithm: Gradient descent method:

• Start with some x0 ∈ Rn.

• In each step t: xt+1 ← xt − η∇f(xt).

Question: What should η be?

• Assume that f is β-smooth, for some β > 0. That is,

‖∇f(y)−∇(x)‖ ≤ β‖y − x‖,

for any x, y ∈ Rn. Intuitively, β measures how much the gradient of f can
change between two nearby points.

• Equivalently (for twice differentiable functions): f is β-smooth iff yT∇2f(x)y ≤
β‖y‖2, for any x, y; or, put yet another way, the maximum eigenvalue of
∇2f(x) is at most β.

⇒ We have that

f(x+ δ) ≤ f(x) +∇f(x)T δ +
β

2
‖δ‖2,

2



for any x and δ

⇒ Intuitively: For every point x, there is a corresponding quadratic (i.e.,
relatively“simple”) function that upper bounds f everywhere and agrees
with f at the point x.

⇒ Our progress on minimizing this quadratic function at x lowerbounds
our progress on reducing the value of f at x.

⇒ If we plug in our choice of δ = −η∇f(x), we get that

f(x+ δ) ≤ f(x) +∇f(x)T δ +
β

2
‖δ‖2

≤ f(x)− η‖∇f(x)‖2 +
β

2
η2‖∇f(x)‖2

≤ f(x)− 1

2β
‖∇f(x)‖2,

for the optimal setting of η = 1
β .

⇒ Setting η = 1
β ensures that

f(xt+1) ≤ f(xt)− 1

2β
‖∇f(x)‖2,

i.e., we make progress of at least 1
2β ‖∇f(x)‖2 towards minimizing the

value of f .

• In practice, we choose best η adaptively in each step via binary search –
this is often called line search.

Remaining issue: What if ‖∇f(xk)‖ = 0 (or is just very small)?

• xk has to be a critical point – means xk is either a local minimum or
maximum (with bad initialization) or a saddle point.

• If ∇2f(xk) � 0, we know it is a local minimum.

• We can deal with the other two possibilities by perturbing our point
slightly and resuming the algorithm.

• In general: Typically, gradient descent converges to local minimum.

• What if we want this local minimum to be a global one?

• We need additional (strong) assumption.

• f is convex iff, for any x and y,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

for any 0 ≤ λ ≤ 1. That is, the epigraph of the function is a convex set.

3



• Alternatively: f is convex iff ∇2f(xk) � 0, for all x.

⇒ The only critical points are local minimums!

• In fact, a much stronger property holds: all critical points are global min-
imums.

• To see that, note that by Taylor theorem convexity implies that

f(x+ δ) = f(x) +∇f(x)T δ +
1

2
δT∇2f(x)δ ≥ f(x) +∇f(x)T δ.

That is, every gradient defines a lowerbounding hyperplane for f that
agrees with f at x.

⇒ If ∇f(x) = 0 then f(x+ δ) ≥ f(x) for all δ.

• It turns out that convexity is a very widespread phenomena in optimiza-
tion. But there are very important domains, e.g., deep learning, where
the underlying optimization problems are inherently non-convex.

2.1 Convergence Analysis

How fast does gradient descent converge?

• Convexity allows us to bound our (sub-)optimality. Specifically, if x∗ is
the minimum of f , we have that, for any x,

f(x∗) ≥ f(x) +∇f(x)T (x∗ − x).

⇒ f(x)− f(x∗) ≤ −∇f(x)T (x∗ − x) ≤ ‖∇f(x)‖‖x∗ − x‖, where the last
inequality follows by Cauchy-Schwartz inequality.

⇒ If ‖∇f(x)‖ ≤ ε
‖x∗−x‖ , we are by at most ε off from optimum.

• The fact that the above near-optimality condition involves ‖x∗ − x‖ is
unfortunate (but inherent!). After all, we don’t know what this distance
is.

• To connect this distance to the optimum to the norm of the gradient/difference
in function value, and thus to get rid of this dependence, we need to make
an (even stronger) assumption on f .

• Assume that f is α-strong convexity. That is, assume that, for any x and
y,

yT∇2f(x)y ≥ α‖y‖2.

⇒ The smallest eigenvalue of ∇2f(x) is always at least α.

⇒ ”Normal” convexity would correspond to α = 0 (but we require α > 0
here).

4



⇒We can now strengthen our lowerbounding inequality we got from con-
vexity. Specifically, for any x and δ we have that

f(x+ δ) ≥ f(x) +∇f(x)T δ +
1

2
δT∇2f(x)δ ≥ f(x) +∇f(x)T δ +

α

2
‖δ‖2.

That is, for each point x, there is a quadratic function that lowerbounds
f everywhere and agrees with f at x.

• Now, the key consequence of α-strong convexity we will need is that, for
any x,

f(x∗) ≥ f(x) +∇f(x)T (x∗ − x) +
α

2
‖x− x∗‖2.

And, as a result, by re-arranging, we get that

∇f(x)T (x− x∗) ≥ f(x)− f(x∗) +
α

2
‖x− x∗‖2. (1)

• Now, to get the convergence bound, let us just put together everything
we derived so far:

– Let us use ‖xt − x∗‖2 as a measure of our progress/potential.

– Let’s analyze its change in one step:

‖xt+1 − x∗‖2 = ‖xt − η∇f(xt)− x∗‖2

= ‖xt − x∗‖2 − 2η∇f(xt)T (xt − x∗) + η2‖∇f(xt)‖2

≤ ‖xt − x∗‖2 − η
(

2(f(xt)− f(x∗) +
α

2
‖xt − x∗‖2)− η‖∇f(xt)‖2

)
,

where the last line follows by (1).

– Further, observe that as each gradient step guarantees making progress
of at least 1

2β ‖∇f(xt)‖2 (whenever we set η = 1
β , which we do here),

it has to be that

f(xt)− f(x∗) ≥ f(xt)− f(xt+1) ≥ 1

2β
‖∇f(xt)‖2

– Plugging this back into our derivation and re-arranging, we obtain:

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − η
(

2(f(xt)− f(x∗) +
α

2
‖xt − x∗‖2)− η‖∇f(xt)‖2

)
≤ ‖xt − x∗‖2 − 1

β

(
1

β
‖∇f(xt)‖2 + α‖xt − x∗‖2 − 1

β
‖∇f(xt)‖2

)
≤ ‖xt − x∗‖2 − α

β
‖xt − x∗‖2 =

(
1− 1

κ

)
‖xt − x∗‖2,

where κ := β
α is the condition number of f . (Intuitively, condition

number tells us how “nicely” it behaves, i.e., how well can we “sand-
wich” the function f locally by two quadratic functions. The smaller
condition number the faster convergence.)

5



⇒ After O(κ log (f(x0)−f(x∗)
ε ) steps we obtain a solution that is within

ε of the optimal value (in norm)!
Note: The dependence on ε is only logarithmic, which essentially
allows us to solve the problem exactly by taking sufficiently large ε.

3 Dealing with lack of α-strongly convexity

• What to do if f is not α-strongly convex for any α > 0? (This is often the
case in applications.)

• A different analysis gives a (much weaker) convergence bound ofO(β‖x
∗−x0‖2
ε ).

(Here, the dependence on ε is polynomial, so in this regime we can only
get approximate answers.)

• Alternatively, we could (almost, i.e., up to O(log 1
ε factor) recover this

weaker bound by making f α-strongly convex, with α = ε
2‖x∗−x0‖2 , by

adding α‖x − x0‖2 to it. (Note, we do not need to know ‖x∗ − x0‖2
exactly. Doing iterative doubling will suffice here.)

• This is an example of a more general technique called regularization.

⇒ Adding this new term corresponding to adding α · I to the Hessian
∇2f(x) of f . So, f is indeed α-strongly convex now and we can use the
convergence analysis from above.

⇒ Problem: The minimizer of f changed! Still, one can show that the
value attained at the new minimizer is withing ε

2 of the optimum. (Left
as an exercise,)

4 Projections

• What to do if we want to solve constrained minimization? (E.g., max
flow.)

• Just project (in `2-norm) on the feasible space!

• The way we measured progress was by keeping track of ‖xt − x∗‖2. But:
an `2-norm projection will never increase this quantity! Specifically, we
have that if Π(x) denotes the projected point x, we have that

‖Π(xt)− x∗‖2 = ‖Π(xt)−Π(x∗)‖2 ≤ ‖xt − x∗‖2,

since the projection Π is contractive.

⇒ The analysis follows unchanged.

6



5 Dealing with Lack of β-Smoothness

• We can either use Subgradient descent, i.e., a variant of gradient descent
that uses subgradients instead of gradients, or smoothing, a way to intro-
duce a proxy objective function that is β-smooth while approximating the
objective function well. (The latter is always preferable, as long as we can
find a sufficiently good smoothening proxy.)

• For maximum flow, it is the best to smoothen the objective function ‖·‖∞
via soft max function:

smaxδ(x) := δ ln

(∑n
i=1 e

xi
δ + e

−xi
δ

2n

)
, (2)

where δ > is a parameter.

• For every δ > 0, the function smaxδ is convex and 1
δ -smooth. (Exercise.)

• For any x we have that, ‖x‖∞ − δ ln(2n) ≤ smaxδ(x) ≤ ‖x‖∞. (Exercise)

• So, there is a trade-off between how well we approximate ‖ · ‖∞ and how
smooth the resulting function is.

• Plugging the smoothened maximum flow formulation, with δ = ε
2 into

our bounds for gradient descent (with no α-convexity), we get an ε-
approximate solution after

O

(
β‖x0 − x∗‖2

ε

)
= O

(m
ε2

)
iterations, where we use the fact that by choosing x0 to be an all-zero
vector (and then projecting it on the space of unit s-t flows) and noticing
that optimal solution never flows more than 1 on any coordinate, ‖x0 −
x∗‖2 ≤ m.

• As we can compute projections in nearly-linear time, the resulting algo-
rithm runs in Õ(m2ε−2) time.

7


