VIRUSES, WORMS,
AND MALWARE

Overview of Today’s Lecture

JViruses

JVirus/antivirus
coevolution paper
discussed

© Intrusion detection
Behavioral detection
Firewalls
Application firewalls

' Worms

What is a Virus?

71 a program that can
infect other
programs by
modifying them to
include a, possibly
evolved, version of
itself

Fred Cohen, 1983

2
Computer Viruses
Theory and Experiments

Fred Cohen

Dept of Computer Science and Eiectric Engineering, Lehigh
Uniersity, Bethlehem PA 18215, USA, and The Foundation for
Camputer Integrity Research, Pittsburgh, PA 15217 USA

This paper introduces “computer viruses” and examines
their potentizl for causing widespread damage to computer
systems. Basic theoretical results are presented, and the infeasi-
bility of viral defense in large classes of systems is shown
Defensive schemes are presented and several experiments are
described

Keywards: Computer Viruses, System Integrity, Data Integrity

Frnd Cohen received a B.S. in Electri-
cal Engineering fro je-Mellon
Umucr‘sﬂy in 1977, an MS in Informa-
tion Science from the University of
Pitisburgh in 1981 and a PhD in
Electrical Engineering from the Uni-
versily of Southern Cah[onm in 1986
He has worked as a freelance con-
sultant since 1977, and has designed
and implemented numerous devices
and systems. He is currently a profes-
sor of Computer Science and Electri-
al Engineering at Lehigh University,
Chairman and Director or Engineering at the Foundation for
Computer Integrity Research, and President of Legal Software
Incorporated.

He is a member of the ACM, IEEE, and IACR. His current
research interests include computer viruses, information flow
model, adaptive systems theory, genetic models of computing,
and evolutionary systems

North-Holland
Computers & Security 6 (1987) 22-35

1. Introduction

This paper defines a major computer security
problem called a virus. The virus is interesting
because of its ability to attach itself to other
programs and cause them to become viruses as
well. Given the widespread use of sharing in cur-
1ent computer systems, the threat of a virus carry-
ing a Trojan horse [1,20] is significant. Although a
considerable amount of work has been done in
implementing policies to protect against the illicit
dissemination of information [4,7], and many sys-
tems have been implemented to provide protection
from this sort of attack [12,19,21,22], little work
has been done in the area of keeping information
entering an area from causing damage [5,18] There
are many types of information paths possible in
systems, some legitimate and authorized, and
others that may be covert [18], the most com-
monly ignored one being through the user We will
ignore covert information paths throughout this
paper.

The general facilities exist for providing prov-
ably correct protection schemes [9], but they de-
pend on a security policy that is effective against
the types of attacks being carried out Even some
quite simple protection systems cannot be proven
‘safe’ [14] Protection from denial of services re-
quires the detection of halting programs which is
well known to be undecidable [11] The problem
of precisely marking information flow within a
system [10] has been shown to be NP-complete
The use of guards for the passing of untrustworthy
information [25] between users has been ex-
amined, but in general depends on the ability to
prove program correctness which is well known to
be NP-complete

The Xerox worm program [23] has demon-
strated the ability to propagate through a network,
and has even accidentally caused denial of services
In a later variation, the game of ‘core wars' [8] was
invented to allow two programs to do battle with
one another Other variations on this theme have
been reported by many unpublished authors,
mostly in the context of nighttime games played
between programmers. The term virus has also
been used in conjunction with an augmentation to

0167-4048 /87 /83 50 © 1987, Elsevier Seience Publishers B V. (North-Holland)

Malware Timeline

A
Lowe
m |

Wonm
Back ™

E Hetcat Orifice

a on

E Wirdows

=

Iﬂ

E‘ g

-E b

]

[=%

e

W

El Tk Brain:

i Firde PC virus T

MesiE
woer v clirkalides
ek ol apahy
= by g)
—

[N A N R D AN IR R NN NN N N BN B (R RN
1981 1984 1987 1990 1993 1996 1999 2002 2005

Virus/Antivirus Coevolution

- Basic idea Computer Virus—
Coevolution

The battle to conquer computer viruses is far from won,
but new and improved antidotes are controlling the field.

- Attacks and
defenses follow

hand in hand

the virus suthors invent new

s 2 new progrem; exch
the same rasks a3 irs par-
fecent.

y cannoe be dececred cost-

ve solution to

viruses, the programs are

Their newsr creations are significancly more compiex and

now starting to smploy a technique known as gewric deorype
hic viruses

—1 Attackers are
usually one step

nEATAS A

Coevolution: Basic Setup
e 4

- Wait for user to o Identify a sequence of

execute an infected file instructions or data
- Formulate a signature

1 Scan all files

-1 Look for signature
found verbatim

-1 Bottleneck: scanning
- Spread that way speed

o Infect other (binary)
files

Basic Virus Signature Matching

I I —————

A N\vﬂ— -,\4_

=0

Bl Gt Sowch Adkess fodmats Took DVt teb
DERXIBDEQAaE & N2

CF45
cFsC
cE73
CFEA
CFAL
CFBS

CFE6

CFFD

DO14

D0zE
po42
D053
D070
D087
DOSE
DOBS
poce
DOE3

Dora

D11l

D128

D13F
bise
D16D

€3 75 31 930&'3' 3F 32 40 59 41 50 41 58 49 40 SA D8 7B AR F9 0D 33

580800lz41D6628!D$69M61?079070'C22DDB7833CI10

56 18 54 DO 71 6C 08 2F 08 70 72 46 66 84 D3 66 B3 ¥ 49 44 01 53 48
DLSOSL‘DAIDDOC 42 728928 72 5L C.I. 23461&22767104&1 23
45018&2!!0!3“23644629@49 441)7 41 4E 8C AD 71 9158 58:
6C 77 SZTDOZADBS 56 I‘RCCZGDD 279‘0(01)!3861 66 51 ICLSCB_
66 DO CD 31 1c 42 96 91 85 23 SB 19 21 45 09 12 BS 63 OCBS3 3D 73
D1 &8 69&300 44 7.\csuaczx CZDDOD 16 63 F4 CC 9C 68 32 35 3B
80 AC.ZZZGO.CDJI‘COAP FA EC C6 16.12 6'_78vOC‘44 6C 67 49 6F ZG‘DDI
€3 FD 3610 47 21 88 78 C1 66 67 0!'31.‘.36;54_81 9D 4B 2B 6A29 13 86
4D €0 86'37 IA'DS OA 06 10 A8 FD 06 C9'7I'LO 0D 6F §5 70 €4 2F 83 CE

3590029(:9363!3!85705610929842?’8006886992!3405
41 €3 CO SA C3 DL 979089”&027663763377C090960“8175

.l.DS(Z?GlQl'lG38398!0]26&9500060789106’69183!61‘
Lscssasssam.ssorsczscnzsscnssrszvounucsxccc.

18084780!328368(8301)(7D81l933603036176104('ISIl

40696609!1!02364l736l6371810402!530]6970623@66'
7100!272649910239500091339“)!2OI’SLIICZDAIP?‘IS,
73 F4 0A 22 ic 08 B9 IGOCZI 2 LGAI 7&3&1380 §9 14 CC D2 20&35
BZ51001!5955&375620!600C605811182615689842850;
ZIMSODB143930IC6966792830336'79363965130729&8:
ZCCSMAI3373‘3143820001301“50’11’733206&1367'5
l347®82783317'279u64»23194913»358!409&3031‘

10739616697864532381ISILSO?OCBGSGSZd(sCCSSC?SC

Lu{;g{?;qrgngx;ngyggos
X00aAadb 0i0apyDOA-0(*10
voaTPqlO/OpxFt, 6:*51»053
iouuo?osrlizoilyo-vznﬂ;
lﬁ§/1ii+d!)nIDxAH¢ quX
lwR)D =~ nvplc?'-etx-tonvt
t»txun-‘utknlxDUpccﬂsos
ﬁhx;Usznalﬂnuocstahzs,
-hiALOuizoBoxobqunc?
§¥606 1" xAhtoD¥em00K+I)O"
571ﬂnéuuh79hi? Ooupadrssi
souaFchswuoh)'-snxvu.qé
Achizkft-pof-¢+k7100 @4u
0T n2vs %0 ,@p0uxB056:(0
nrc.cssne)xsl,onpnoolzt
DocCus+6, 2icae~qk
aktn£${d§<ovuunlsn;pb £
qurd'Of-DlO')iDéUi ®+E
£60"00°*20. -:o;:pyvnxo 5
*_AOYUSubbs I XAD&3hi,
/‘DDDQH&!tv(O,oy?S!CD)«

iaosscn'-nnuz-aOszo.nu

‘ct
ag-.txxzsouovpl:hsutnqz

(’Ooyncycnrn-séas-x

ABSBFG701'121)3761201)6369]619180381!1(60810086? «kdp” iﬂvﬂﬂciaOlDOu!ﬁLDg

X

E

i

di. dec: 53,218

Char dec: 196 Oversie |

N

Simple Virus Strategy

I 0100 EEBI1C JME 011E
0102 BE1BOZ MOV SI,0Z21B
0105 BF1EO1 MOV DI,011B
0108 BBCE MOV C¥, 58I
010a F7D9 NEG CX
0loc FC CLD
010D BE1EBO1 MOV 2X,011B
0110 06 FUSH E5
0111 50 PUSH X
0112 06 PUSH ES
0113 BE1BOL1 MOV rX,0118
011e 50 PUSH X
0117 CB RETF
01l1lg F3 REFPZ
0118 Rm4 MOVEB
011A CB RETF
0118 EB3221 JME 2250
011E B3CZ4F ADD DX, +4F
0121 EBEBFA MOV DI,DX
0123 B1FF80C0 CME DI, 0080
0127 TZ3E JB 0187
0129 7406 JZ 0131
012B Ce06250273 MOV BYTE FTR
0130 380 NOFP
0131 FECS INC CH
0133 7303 JNB 0138
0135 BOC140 ADD CL, 40
0138 EBEOlOC MOV n¥,0C01
013B B=2D& MOV DX, 5I
013D CD13 INT 13

Coevolution: Entry Point Scanning
N

- Place virus at the o Entry point scanning
entry point or make it
directly reachable - Do exploration of
from the entry point reachable instruction

starting with the entry
point of the program

- Make virus small to

avoid being easily 7 Continue until no more
noticed by user instructions are found

Coevolution: Virus Encryption
I

O

[

[

Decryption routine
Virus body

Decrypt into memory, not
do disk

Set PC to the beginning of
the decryption buffer

Encrypt with a different
key before adding virus to
new executable

-1 Decryption (and encryption)
routines (packers) used by
viruses are easy to fingerprint

-1 Develop signatures to match
these routines

o1 Attempt to decrypt the virus
body to perform a secondary
verification (x-raying)

Coevolution: Polymorphic
I TS

o Use a mutation engine to generate -1 Custom detection program
a (decryption routine, encryption designed to recognize specific
routine) pair detection engines

=1 Functionally similar or the same,

Generic decryption (GD
but syntactically very different - yp ()

o Emulator

o1 Signature matching engine
1 Use the encryption routine to

encode the body of the virus o Scan memory/disk at regular

intervals in hopes of finding
decoded virus body

= No fixed part of the virus preserved
(decryption, encryption, body)

GD Challenges

How long to emulate the execution? Viruses use
padding instructions to delay execution. Can also
use sleep for a while to slow down the scanner.

What is the quality of the emulator? How many
CPUs to support?

What if decryption starts upon user interactions?
How do we trigger it? What about anti-emulation

tricks?

False Positives in Virus Detection

A "false positive" is when antivirus software identifies a non-malicious file as a
virus. When this happens, it can cause serious problems.

For example, if an antivirus program is configured to immediately delete or
qguarantine infected files, a false positive in an essential file can render the
operating system or some applications unusable.

In May 2007, a faulty virus signature issued by
Symantec mistakenly removed essential operating
system files, leaving thousands of PCs unable to boot

Also in May 2007, the executable file required by
Pegasus Mail was falsely detected by Norton AntiVirus
as being a Trojan and it was automatically removed,
preventing Pegasus Mail from running. Norton anti-
virus had falsely identified three releases of Pegasus
Mail as malware, and would delete the Pegasus Mail
installer file when that happened n response to this
Pegasus Mail stated:

On the basis that Norton/Symantec has done this for
every one of the last three releases of Pegasus Mail,
we can only condemn this product as too flawed to
use, and recommend in the strongest terms that our
users cease using it in favor of alternative, less buggy
anti-virus packages

In April 2010, McAfee VirusScan detected svchost.exe,
a normal Windows binary, as a virus on machines
running Windows XP with Service Pack 3, causing a
reboot loop and loss of all network access

In December 2010, a faulty update on the AVG anti-
virus suite damaged 64-bit versions of Windows 7,
rendering it unable to boot, due to an endless boot
loop created

In October 2011, Microsoft Security Essentials
removed the Google Chrome browser, rival to
Microsoft's own Internet Explorer. MSE flagged
Chrome as a Zbot banking trojan

Top 20 Malware on Internet/user Computer

Current rank Delta Verdict
1 + 4 AdWare Win32 FunWeb_gq
2 % New Hoax Win32 ArchSMS_pxm
3 + 3 AdWare Win32 HotBar.dh
4 +8 Trojan HTML . Iframe.dI
5 = New Hoax HTML.OdKlas.a
(5} “ New Trojan.JS.Popupper.aw
7 + 1 Exploit.JS Pdfka.ddt
8 + -8 Trojan.JS Agent. bty
9 +-9 Trojan-Downloader. JS_Agent fun
10 + -10 Trojan-Downloader_Java.QpenStream bi
1" * -7 Exploit HTML.CVE-2010-1885.ad
12 “ New Trojan.JS Agent.uo
13 « New Trojan-Downloader JS Iframe.cdh
14 = New Packed.Win32.Katusha.o
15 = New Exploit. Java. CVE-2010-0840.d
16 + Trojan.JS . Agent.bhr
17 = New Trojan-Clicker JS _Agent.om
18 = New Trojan.J5 . Fraud bl
19 = New Exploit. Java CVE-2010-0840.¢c
20 = New Trojan-Clicker HTML Iframe aky

Current rank Delta Verdict
1 LUN0] Net-Worm.Win32.Kido.ir
2 LL1] Virus. Win32 Sality aa
3 1 Net-Worm Win32 Kido.ih
4 = New Hoax Win32 ArchSMS_pxm
5 00 Virus. Win32 Sality.bh
6 +-3 HackTool Win32_Kiser.zv
7 * -1 Hoax.Win32.Screensaver.b
8 + 1 AdWare Win32.HotBar.dh
9 +8 Trojan Win32 Starter yy
10 * 1 Packed.Win32 Katusha.o
11 *1 Worm Win32 FlyStudio.cu
12 + -2 HackTool. Win32 Kiser.il
13 * -4 Trojan.JS.Agent bhr
14 *2 Trojan-Downloader Win32 Geral.cnh
15 « New Porn-Tool Win32 StripDance.d
16 = New Exploit.JS_Agent.bbk
17 “ New Trojan Win32 AutoRun.azq
18 * -5 Trojan-Downloader. Win32.VB.eql
19 *-5 Worm.Win32.Mabezat.b
20 * -5 Packed Win32_ Klone bqg

http://www.securelist.com/en/analysis/204792170/Monthly Malware Statistics March

2011

http://www.securelist.com/en/analysis/204792170/Monthly_Malware_Statistics_March_2011

Vulnerability Gap

o1 As long as user has the right virus signatures and computer has recently
been scanner, detection will likely work

o1 But the virus landscape changes fast

=1 This calls for monitoring techniques for unknown viruses

Users : : Users : : Users ! Window of

_ Vulnerable ; Nulmerable ! ' WVulnerable @ Vulnerability

© rall P E—— 5 =
CVE-2010-0249 2 Days
CVE-2009-4324 30 Days
CVE-2009-3672 19 Days
CVE-2009-2493 8 Days
CVE-2009-18652 10 Days
CVE-2009-2496 27 Days
CVE-2008-0015 30 Days

Jul-09 Aug-09 sep-09 Qct-09 Mov-09 Dec-09 Jan-10

http://www.m86security.com/documents/pdfs/security labs/m86 security labs vulnerability report.pdf

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

CVE-2009-4324: December 2009

Adobe Reader/Acrobat "Doc.media.newPlayer()" Memory Corruption
Secunia Advisory: SA37690 =
Release Date: 2009-12-15 Secunia
Last Update: 2009-12-16 S
Popularity: 6,450 views
Critical: oI

Extremely critical
Impact: System access
Where: From remote
Solution Status: Vendor Workaround
Software: Adobe Acrobat 30 8.x

A Acr Professional

Adobe Acrobat 8.x

Adobe Acrobat 9.x

Adobe Reader 8.x

A R r Q.
Description:
A vulnerability has been reported in Adobe Reader and Acrobat, which can be exploited by
malicious people to compromise 3 user's system.
The vulnerability is caused due to an unspecified error in the implementation of the
“"Doc.media.newPlayer()” JavaScript method. This can be exploited to corrupt memory and
execute arbitrary code via a specially crafted POF file.

@: This vulnerability is currently being actively uploE‘ 2

http://www.m86security.com/documents/pdfs/security labs/m86 security labs vulnerability report.pdf

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

Exploit in the PDF Unfolding...
N

st ream

xOuRMo : CREAE= ' OFER- »=E8° , u

Doy0*vsyGmpOe-,, " ; CEERy . wEREN" | H-%ag_«< Tce }=0-+ o (nvoi EEEROt f£<

nn e p-n@Nn OEEREER| 41

EEROO0;=i0u%[,.1_ . @REER)0'p<F 01 ' T«neHf¢is z;0\og*WlpA~ EEllln-My(Ng Sp0 Lveldl<s /. PI1EE*>; [UA~A¥M =" 1=F"1:i
+W__ #4v°O0nei€3gi*c <FAWZS

(OERE ERr - " EW-ER: R :*0L°ERcn) eKEHRD, 765 EM@sKeEN, « ~ERm0S

agd - EEE: ;AR LO; Te x0T 0)) nok@EBz—1 " 0T ; EEEEE= WS RS N0 S EE

sPOES=LERE ¢ 19 EE0y)70 FASIENEC.. -) B <e \nn, @80 MER

k10p DO0, -3 'FOp’ 2" GO0 AEAS o EE-7 EFEOp0 - 0A7; 944 (EE00 EDEEE=01"« 8 007 100EEEo@#E:, BiRE-1ie#31<°
endst ream

endobj

111112 0 okbj<</Filter/FlateDecode/Length 178>>stream

#0=0AEW, OEEAD7<01/0 MeER, f{7<CHEAMTh [ERBRE , »" "«?0&0 fh+ EREH~ 0 oD R, BN EERY o o@@ e — cT.a| anEiiE-c R
KX

endstream

vlerati?=new Arravl():

var fzfpaB = TARGY090DARGI090'.replace (/ARG/g, "%u");

var imkujn2 = "ZS54EBZVSBBIZBB3CZI35V4ZH3VBZ0BFSZTEBBIHI2ZHEI3F5Z49COZAD41ZDB33ZXF36Z14BEZS0828Z74E
fzfpabB=une=scape (fzfpal) ;

imkuijn?=unescaps (imkujn?) ;endstream

endobj

1111112 0 obij<</Filter/FlateDecode/Length 178>>stream

while (fzfpaB.length <= 0x8000) {fzfpab+=fzfpab;)

fzfpaB=fzfpaB.sgubstr (0, 0xB000 - imkuijn?.length) ;

for (gofmeq=0;gofmeq<xsbrgm;gofmeq++
if (xshrgm) {dwdsfl () ;dwdsfl () ;try ((this.media.newPlayer (null) ;
endobj

‘trailer<</Root 1 0 R /S8ize 11>>

B + imkuijn?2;}
catoch(e) {}jdwdsfl(); jendstream

http://www.m86security.com/documents/pdfs/security labs/m86 security labs vulnerability report.pdf

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

Automatic Zero-Day Blocking

o Scanning engine recognizes the newPlayer () vulnerability (checked in red)

o Because this is a zero-day vulnerability, the newPlayer() vulnerability would be
considered unknown

o Subsequently, the M86 Secure Web Gateway falls back to its behavioral analysis capability

o Below, the behavior of the JavaScript is suspicious; therefore it is blocked by this default rule,
requiring no update

Incoming

Incoming
Behavior Profile (Script)

Default Profile - Script Behavior
Generic Shellcode detection
Suspected Malicious String Content

Rule Acti

Block
Blocked

http://www.m86security.com/documents/pdfs/security labs/m86 security labs vulnerability report.pdf

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

Proactive Detection Techniques
19 |

-1 heuristic analyzer
-1 policy-based security
- intrusion detection/prevention systems

1 etc.

http://www.securelist.com/en/downloads/vlpdfs/wp_nikishin_proactive_en.pdf

Heuristic Analyzers

= A heuristic analyzer looks at
code of executable files
Macros
Scripts
memory or boot sectors

to detect malicious programs that cannot be identified using the
usual (signature-based) methods

- Heuristic analyzers search for unknown malicious software

-1 Detection rates are usually low: 20-30% at most

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

Policy-based Security

The Cisco-Microsoft approach

Scan computers of users
connecting to the network

Use an overall security policy
to restrict certain types of
actions on the machine

Limit network access from
machines that are not found

For instance

Don’t open email
attachments

Don’t open files from the
internet whose reputation is
unknown

Only allow access to a
whitelist of web sites

Disallow software installation

to be fully compliant (i.e.
virus definitions are out of
date)

Force access to an update
server

“Shepherd” the user into
compliance

Behavioral Monitoring Techniques
2 4

Cisco Mcafee Panda Symantec Trend Micrc BitDefender Kaspersky

Heuristic Analyzer

IPS

Buffer Overrun

Policy based

Alerting system

Behaviour Blocker

IDS: Intrusion Detection Systems

What it is Components
Security guards and

Collect signhals
“beware of dog” signs &

are forms of IDS Process and
create alerts
Serve two purposes: Notify system
Detect something bad operators

was happening
deter the perpetrator

Host-Based vs. Network-Based IDS

Log analyzers

Signature-based
SEeNsors

System call analyzers

Application behavior
analyzers

File integrity checkers

Scan incoming and
outgoing traffic
Primarily signature-
based

Combined into
firewalls

Can be located on a
different machine

Host-Based Intrusion Detection

open()

f(int x) {
x ? getuid() : geteuid(); .—'.'

X++ ‘/

}
g() { _
fd = open("foo", O_RDONLY); close() C‘\ “getuid() | géteuid()

f(0); close(fd); f(1);
exit(0); exit()

} - o

If the observed code behavior is inconsistent with the statically inferred model,
something is wrong

Indersiat and Web Secuyily

Butilding Internet

Firewalls

Nt -

* Elezabeth L) Zwicky, Stmain Coofer
O REILLY & D Brent Chagman

Elizabeth D. Zwicky
Simon Cooper
D. Brent Chapman

Firewalls: Network and App-level

Michael Becher

Web Application
Firewalls

Applied Web application security

VDM Verlag Dr. Maller

Michael Becher

Basic Firewall Concept

-1 Separate local area net from internet

Firewall

Local network

Internet

‘E

g
S

All packets between LAN and internet routed through firewall

Firewall Goals

Prevent malicious attacks
on hosts

Port sweeps, ICMP echo to
broadcast addr, syn flooding,

Worm propagation

Prevent general disruption
of internal network

Monitor and control
quality of service (QoS)

Provide defense in depth

Programs contain bugs and
are vulnerable to attack

Network protocols may
contain;

Design weaknesses (SSH CRC)

Implementation flaws (SSL,
NTP, FTP, SMTP...)

Control traffic between
“zones of trusts”

Can control traffic between
separate local networks, etc.

Review: TCP Protocol Stack
1

Application protocol

TCP, UDP protocol

IP protocol IP protocol
Data Data
Link Link

Transport layer provides ports, logical channels identified by number

Review: Data Formats
1

TCP_ Header

message
segment
packet
frame P TCP
|P Headlcler Lir{;((Ethernet) Link (E\\thernet)

Header Trailer

Packet Filtering

Uses transport-layer Examples
information only DNS uses port 53

IP Source Address,
Destination Address

Protocol (TCP, UDP, ICMP,
etc.)

TCP or UDP source &
destination ports

TCP Flags (SYN, ACK, FIN, RST,
PSH, etc.)

ICMP message type

Block incoming port 53
packets except known trusted
servers

Issues
Stateful filtering

Encapsulation: address
translation, other
complications

Fragmentation

Firewall Configuration (Incoming)
o2 4

Inbound Rules

Name Group Profile Enabled Action Override Program Local Address Remote Address Protocol Local Port Remote Port Allowed Users Allowed Computers =
5 Allow authenticated IPsec bypass (Vista a... All Yes Secure.. Yes Any Any Any Any Any Any Any REDMONDYGP-ICF ...

@Bﬂmﬂur Service Domain Yes Allow No CA\Progr.. Any Any uop Any Any Any Any L
oBor\JDur Service Domain Yes Allow No C\Progr.. Any Any TCP Any Any Any Any 1
@Boruour Service Domain Yes Allow No C\Progr.. Any Any upp Any Any Any Any

@ Bonjour Service Domain Yes Allow No Ci\Progr... Any Any TCP Any Any Any Any

@CIient Notification Channel Private Yes Allow Mo Any Any Any upp 1745 Any Any Any

@CIient Notification Channel Domain Yes Allow No Any Any Any upp 1745 Any Any Any

0 CorpNet: [SATAP - Allow All Yes Allow No Any Any Any IPvE Any Any Any Any

0 CORPNET: PNRP Allow Private Yes Allow Mo Any fe80::/10 fe80::/10 upp 3540 Any Any Any

5 CORPMET: PNRP Secure All Yes Secure No Any Any Any upp 3540 Any Any Any

@Corpl\let: WTT TCP Client - Allow All Yes Allow Mo FWTTBL. Any Any TCP 1778 Any Any Any

. Daemonu.exe Private No Allow No CA\Progr.. Any Any TCP Any Any Any Any

. Daemonu.exe Private No Allow No C\Progr.. Any Any upe Any Any Any Any

olntemet Explorer Domain Yes Allow No Chpregr.. Any Any upp Any Any Any Any

@Intemet Explorer Domain Yes Allow No Chprogr.. Any Any TCP Any Any Any Any

0 iTunes All Yes Allow No C\Progr.. Any Any Any Any Any Any Any

@Micmsoﬁ: Lync 2010 All Yes Allow No CA\Progr.. Any Any Any Any Any Any Any

0 Microsoft Office Live Meeting 2007 Domain Yes Allow No CAProgr.. Any Any upp Any Any Any Any

0 Microsoft Office Live Meeting 2007 Domain Yes Allow No C\Progr.. Any Any TCP Any Any Any Any

@ Microsoft Office Live Meeting 2007 Private Yes Allow No CA\Progr.. Any Any uop Any Any Any Any

0 Microsoft Office Live Meeting 2007 Private Yes Allow No C\Progr.. Any Any TCP Any Any Any Any

@ Microsoft Office Qutlock Private Yes Allow No C\Progr.. Any Any upp 6004 Any Any Any

(@ Microsoft Office Outlook Al Yes Allow No %Progra.. Any Any uopP 6004 Any Any Any

oMicrosoﬁ: OneMote Private Yes Allow No C\Progr.. Any Any TCP Any Any Any Any

@Micmsm‘t OneMote Private Yes Allow No CA\Progr.. Any Any uop Any Any Any Any

oMlcmsoﬂ: SharePoint Workspace Private Yes Allow No C\Progr.. Any Any TCP Any Any Any Any

@Microsoﬁ: SharePoint Workspace Private Yes Allow No C\Progr.. Any Any upp Any Any Any Any

(@) MSIT DA - ICMPd Echo Request Al Yes Allow No Any Any Any ICMPW Any Any Any Any

0 MSIT DA - ICMP& Echo Request All Yes Allow Mo Any Any Any ICMP6 Any Any Any Any

@ Metworking - Address Mask Request (IC... Domain Yes Allow No Any Any Any ICMPwd Any Any Any Any

oNetworkmg - Echo Request (ICMPw4-In) Domain Yes Allow No Any Any Any ICMPvd Any Any Any Any

@Networking - Echo Request (ICMPvG-In) Domain Yes Allow Mo Any Any Any ICMP6 Any Any Any Any

(@ Networking - Redirect (ICMPv4-In) Domain Yes Allow No Any Any Any ICMPw Any Any Any Any -

Web Application Firewalls
_ 33|

7 When it comes to HTTP traffic, regular firewalls are not very
helpful

1 Yet we know that most web attacks use regular HTTP
channels: XSS, SQL injection

Worms: A Working Definition

7 Aworm is a program that
can run by itself and can
propagate a fully working
version of itself to other
machines

o Itis derived from the word
tapeworm, a parasitic
organism that lives inside a
host and saps its resources
to maintain itself

=t e e e e
THE INTERNET WORM

Crisis and Aftermath

Last November the Internet ivas infected with a worm program that
eventually spread to thousands of machines, disrupting normal
activities and Internet connectivity for many days. The following
article examines just how this worm operated.

Eugene H. Spafford

On the evening of November 2, 1988 the [nternet came
under attack from within, Sometime after 5 pm.," a
program was execuled on one or more hosts connected
to the Internat. Tha program eollacted hnst, natwork,
and user informatio, then used that information to
break into other mazhines using flaws present in those
systems’ software. After breaking in, the program
would replicate itse f and the replica would attempl to
infect other systems in the same manner.

Although the program would only infect Sun Micro-
systems’ Sun 3 systems and VAX® computers running
variants of 4 BSD UNLX,” the program spread quickly,
as did the confusion and consternation of system ad-
ministrators and users as they discovered the invasion
of their systems. Th scope of the break-ins came as a
great surprise to alm ost everyone, despite the fact that
UNIX has long been known to have some security
weaknesses (cf. [4, 12, 13]).

The program was mysterious to users at sites where
it appeared. Unusual files were left in the /usr/tmp
directories of some inachines, and strange messages
appeared in the log ‘iles of some of the utilities, such
as the sendmail mail handling agent. The most notice-
able effect, however, was that systems became more
and more loaded wi'h running processes as they be-
came repeatedly infocted. As time went on, some of
these machines bece me so loaded that they were una-
ble to continue any srocessing; some machines failed
completely when th:ir swap space or process tables
were exhausted.

By early Thursday morning, November 3, personnel
at the University of Zalifornia at Berkeley and Massa-
chusetts Institute of Technology (MIT) had “capturad”
copies of the prograrn and began 1o analyze it. People at
ather sites also bega to study the program and were
developing methods of eradicating it. A common fear

A times cited are BST.
@VAX is a teademark of Dig tal Equipment Corporation.
®UNIX is 4 rogistered tradeinarh. of ATST Laboratories.

T 1989 ACM 0001-0782/89, 06000678 5150

Communications of the ACM

was that the program was somehow tampering with
system resources in a way that could not be readily
detected—that while a cure was being sought, system
files were being altered or information destroyed. By
5 a.m. Thursday morning, less than 12 hours after the
program was first discovered on the network, the Com-
puter Systems Research Group at Berkeley had devel-
oped an interim set of steps to halt its spread. This
included a preliminary patch to the sendmail mail
agent. The suggestions were published in mailing lists
and on the Usenet, although their spread was ham-
pered by systems disconnecting from the Internet to
attempt a “quarantine.”

By about 9 p.m. Thursday, another simple, effective
method of stopping the invading program, without al-
tering system utilities, was discovered at Purdue and
also widely published. Software patches were posted by
the Betkeley group at the same time to mend all the
flaws that enabled the program to invade systems. All
that remained was to analyze the code that caused the
problems and discover who had unleashed the worm—
and why. In the weeks that followed, other well-
publicized computer break-ins occurred and a number
of debates began about how to deal with the individ-
uals staging these invasions. There was also much dis-
cussion on the future roles of networks and security.
Due to the lexity of the topics, ions drawn
from these discussions may be some time in coming.
The on-going debate should be of interest to computer
professionals everywhere, however.

HOW THE WORM OPERATED

The worm took advantage of some flaws in standard
software installed on many UNIX systems. It also took
advantage of a mechanism used to simplify the sharing
of resources in local area networks. Specific patches for
these flaws have been widely circulated in days since
the worm program attacked the Internet,

Fingerd

The finger program is a utility that allows users to
obtain information about other users. It is usually used

June 1989 Volume 32 Number 6

The Morris Worm (1988)

The Morris Internet Worm
source code

& ik conaim the complete suce code of the Morms Internet
. v

wastm program This iy,) fime program beowght Large preces of
e Ioternet W 8 tandetil) on November 2, 1958

The wiatn was the (oot OF ey IWIIVE PRy hat wse iy
fuernet W sprend
e € oot Wity Mhansan

Robert T. Morris Boston Museum of Science

Morris Worm Account by Spafford (1989)

By early Thursday morning, November 3, personnel

at the Universitv of "a]ifgrnia at Berkelev alfjfd Massa-
chu By about 9 p.m. Thursday, another simple, effective ,,

co method of stopping the invading program, without al-
tering system utilities, was discovered at Purdue and
oth also widely published. Software patches were posted by
€V the Berkeley group at the same time to mend all the '
wa! flaws that enabled the program to invade systems. All
SYs' that remained was to analyze the code that caused the
det problems and discover who had unleashed the worm— n
file and why. In the weeks that followed, other well-
5 a,publicized computer break-ins occurred and a number g
pro of debates began about how to deal with the individ- m-
put uals staging these invasions. There was also much dis- |_
cussion on the future roles of networks and security.
e Due to the complexity of the topics, conclusions drawn
‘from these discussions may be some time in coming.
The on-going debate should be of interest to computey

professionals everywhere, however.
perea Dy sysiems dlsconnecung Irom ine Interne

attempt a “quarantine.”

Worms: A Brief History

Native

O

O
Morris Worm (1988)

O
Melissa (1999) O
Code Red (2001)
Nimda (2001)

Blaster (2003) m

SQL Slammer (2003)

JavaScript

Samy/MySpace (2005)
xanga.com (2005)
SpaceFlash/MySpace
Yamanner/Yahoo! Mail
QSpace/MySpace
adultspace.com
gaiaonline.com

u-dominion.com (2007)

I |

| = d I ~
£ £ € E
S Z < o =

~ —_— —
= © @ L c o
2 3 o S > o 2
5 3 3T % 5 S8
= = S = A >

1998 1999 2001 2003 2005 2006

Morris Worm (1988)

Damage: 6,000 computers in just a few hours
What: just copied itself; didn’t touch data

Exploited:
buffer overflow in fingerd (UNIX)
sendmall debug mode (exec arbitrary cmds)
dictionary of 432 frequently used passwords

Melissa (1999)

What: just copied itself; did not touch data

When date=time, “Twenty-two points, plus triple word score, plus
fifty points for using all my letters. Game’s over. I’'m outta here.”

Exploited:
MS Word Macros (VB)

MS Outlook Address Book (Fanout = 50)
“Important message from <user name> ...”

Code Red (2001)

Runs on WiIinNT 4.0 or Windows
2000

Scans port 80 on up to 100
random IP addresses

Resides only in RAM; no files

Exploits buffer overflow in
Microsoft 11S 4.0/5.0

(Virus appeared one month after
advisory went out)

Two flavors:

Code Red I: high traffic, web
defacements, DDOS on
whitehouse.gov, crash systems

Code Red II: high traffic,
backdoor install, crash systems

Three phases: propagation
(1-19), flood (20-27),
termination (28-31)

Other victims: Cisco 600
Routers, HP JetDirect Printers

Nimda (2001)

Multiple methods of spreading
(email, client-to-server, server-to-client, network
sharing)

Server-to-client: |IE auto-executes readme.eml (that is
attached to all HTML files the server sends back to the
client)

Client-to-server: “burrows”: scanning is local 75% of time

Email: readme.exe is auto executed upon viewing HTML
email on IE 5.1 or earlier

More on Slammer

When
Jan 25 2003

How

Exploit Buffer-overflow

MS SQL/MS SQL Server
Desktop Engine

known vulnerability,
publicized in July 2002

Scale
At least 74,000 hosts

Feature

Fast propagation speed

>55million scans per
second

two orders of magnitude
faster than Code Red
worm

No harmful payload

Countermeasure
Patch
Firewall (port blocking)

Case Study: Slammer

Buffer overflow vulnerability in Microsoft SQL Server
(MS02-039).

Vulnerability of the following kind:

ProcessUDPPacket() {
char SmallBuffer[100];

UDPRecv(LargeBuff);
strcpy(SmallBuf, LargeBuf);

Slammer Propagation Map

Sat Jan 25 06:00:00 2003 (UTC) www.caida.org
Number of hosts infected with Slammer: 74, 855 Copyright © 2003 UC Regents

Heap-Based Exploitation: 3-Step Process

Force the right x86 All parts are

code to be challenging
allocated on the First can be done
program heap with JavaScript
Second part is tough
Exploit Third is unreliable

Force a jump to
the heap

Advanced Malware Techniques

1Heap spraying

1Heap feng shui

1JIT spraying

function spray(sc)

1

var infect=unescape{sc.replace(/dadong/g, “x25%x75"));
var heapBlockSize=08x100088;

var payLoadSize=infect.length=2;

var szlong=heapBlockSize-{payLoadSize+8x838);
var retlUal=unescape{"%ubfafakubafa™);
retlal=getSampleValue{retVal,szlong};
aaablk=(8xAaBaBaBa-0x108800) /heapBlockSize;
Zzchuck=new Arvay(}); /7 <- heap spray
for{i=8;i{aaablk;i++){zzchuck[i]=retVal+infect}

H
var al=""dadong";

/* shellcode =/

spray{a1+"9a@98"+a1+"dadong?898dadong?89A8dadongE1D9dadong34D9dadoni
dong388Adadong4621dadongFAEZdadong17C9dadong2122dadong4921dadong @
ngé5Dp2dadongF1DPEdadongD7C9dadongPEPEdadongC90PEdadong221Cdadong212-

Stack Overflow Exploit
1

Stack

return
address
NOP sled .

shellcode

48

Heap Corruption Exploit

/ Heap
vtable a jump

pointer

shell\.u\Je

<IFRAME

SRC=file://BBBBBBBBBBBBBBBBBBBBBBBBBBBEBB
BBBEB ...
NAME="CCCCCCCCCCCCCCccC(rcceceizeeeececececcececececc
CCCcCcCC ..

഍഍ "></IFRAME>

G exploit 49

Heap Spraying Exploit

/ Heap

sled sled

shellcode shellcode

vtable

sled

shellcode

sled

shellcode

sled

pointer

sled
sled

shellcode

shellcode

sled

shellcode

shellcode

sled

shellcode

sled

shellcode

sled

shellcode

0

a exploit

50

0

How to Set Up Heap Spraying?
-1

<SCRIPT language="text/javascript">
shellcode = unescape ("%u4343%u4343%..."'");
oneblock = unescape ("%$u0C0C%u0COC") ;
var fullblock = oneblock;
while (fullblock.length<0x40000) {
fullblock += fullblock;

}

sprayContainer = new Array() ;
for (i=0; i<1000; i++) {
sprayContainer[i] = fullblock + shellcode;

}
</SCRIPT>

51

Advanced Malware Techniques

Heap spraying

Heap feng shui

JIT spraying

Heap Feng Shui is a new technique
for precise manipulation of the

browser heap layout using specific
sequences of JavaScript allocations

This is implemented as a JavaScript
library with functions for setting up
the heap in a controlled state
before triggering a heap corruption
bug

Using this technique makes it
possible to exploit very difficult
heap corruption vulnerabilities with
great reliability and precision

Heap Massaging

<script type="text/javascript”
src="heapLib.js"></script>

<script type="text/javascript">

// Create a heaplLib object for Internet Explorer

var heap = new heaplLib.ie();

heap.gc(); // Run the garbage collector
before doing any allocations

// Allocate 512 bytes of memory and fill it with
padding

heap.alloc(512);

// Allocate a new block of memory for the string
"AAAAA" and tag the block with "foo"

heap.alloc("AAAAA", "foo");

// Free all blocks tagged with "foo"
heap.free("foo");

</script>

o1 This program allocates a 16
byte block of memory and
copies the string "AAAAA"
into it

1 The block is tagged with
the tag oo, which is later

used as an argument to
free()

o The free() function frees
all memory blocks marked
with this tag

Advanced Malware Techniques

INTERPRETER ExpLoITATION: POINTER INFERENCE AND JIT

-1Heap spraying

Dion Blazakis <dionfsemantiscope.com>

ABSTRACT

As remote exploits have dwindled and perimeter defenses have become the standard, remote client-side attacks
are the next best choice for an attacker. Modern Windows operating systems have quelled the explosion of client-
side vulnerabilities using mitigation techniques such as data execution prevention (DEP) and address space layout
randomization (ASLR). This wark will illustrate two novel technigues to bypass DEP and ASLR mitigations. These
technigues leverage the attack surface exposed by the advanced script interpreters or virtual machines commonly
[] accessible within the browser. The first technigue, pointer inference, is used to find the memory address of a string
of shellcode within the ActionScript interpreter despite ASLR. The second technique, IIT spraying, is used to write
D shellcode to executable memory by leveraging predictable behaviors of the ActionScript JIT compiler bypassing

DEP. Future research directions and countermeasures for interpreter implementers are discussed.

INTRODUCTION

The difficulty in finding and exploiting a remote vulnerability has motivated attackers to devote their resources to
finding and exploiting client side vulnerabilities. This influx of different client side attackers has pushed Microsoft
to implement robust mitigation technigues to make exploiting these vulnerabilities much harder. Sotirov and Dowd
[1] have described in detail each of the mitigation technigues and their default configurations on versions of
Windows through Windows 7 RC. Their work shows some of the technigues available to bypass these protections
and how the design choices made by Microsoft has influenced the details of these bypasses. One thing that stands
out throughout this paper is how ripe a target the browser is for exploitation — the attacker can use multiple plug-

ins, picking and choosing specific exploitable features, to set-up a reliable exploit scenario.

[]
The classic web browser, bursting at the seams with plug-ins, could not have been designed with more exploitation
potential. It requires a robust parser to parse and attempt to salvage 6 versions of mark-up. With the advent of
“Web 2.0% a browser must now include a high performance scripting environment with the ability to rewrite those
parsed pages dynamically. The library exposed to the scripting runtime continues to grow. Additionally, most

browsers are now taking advantage of recent JIT and garbage collection techniques to speed up Javascript

execution. All this attack surface and we haven't begun to discuss the plug-ins commenly installed.

Rich internet applications (RIAs) are not going away and Adobe currently maintains 2 hold over the market with
Flash — the Flash Player is on 99% of hosts with web browsers installed. Sun’s lava Runtime Environment is another
interpreter commonly installed. Microsoft Silverlight is an RIA framework based upon the .NET runtime and tools.
Silverlight is still struggling to gain market share but could be a contender in the future (e.g. Metflix On-Demand is
starting to use this technology). Each of these plug-ins require & complex parser and expose more attack surface
through a surplus of attacker reachable features. For example, Adobe Flash Player implements features including a
large GUI library, 2 JIT-ing 30 shader language, a RMI system, an ECMAScript based JIT-ing virtual machine,

JIT Spraying: JavaScript to x86

var y =

(

Ox3c54dedo
0x3c909058
Ox3c59f46a

©x3c90c801
©x3c9030d9
©x3c53535b

)

addr

10
15
20
25

op
B8
35
35
35
35
35

imm

D9DO543C
5890903C
6AF4593C
©1C8903C
D930903C
5B53533C

assembly

MOV
XOR
XOR
XOR
XOR
XOR

EAX, 3C54D@D9
EAX, 3C909058
EAX, 3C59F46A
EAX, 3C90C801
EAX, 3C9030D9
EAX,3C535358B

Conclusions

T Viruses

T Virus/antivirus
coevolution

O Intrusion detection
Behavioral detection
Firewalls
Application firewalls

= Worms

