
VIRUSES, WORMS,
AND MALWARE

Ben Livshits, Microsoft Research

Overview of Today’s Lecture

 Viruses

 Virus/antivirus
coevolution paper
discussed

 Intrusion detection
Behavioral detection

 Firewalls

Application firewalls

 Worms

2

What is a Virus?

 a program that can
infect other
programs by
modifying them to
include a, possibly
evolved, version of
itself

Fred Cohen, 1983

Malware Timeline
4

Virus/Antivirus Coevolution

 Basic idea

 Attacks and
defenses follow
hand in hand

 Attackers are
usually one step
ahead of the game

5

Coevolution: Basic Setup

 Wait for user to
execute an infected file

 Infect other (binary)
files

 Spread that way

 Identify a sequence of
instructions or data

 Formulate a signature

 Scan all files

 Look for signature
found verbatim

 Bottleneck: scanning
speed

6

Virus Antivirus

Basic Virus Signature Matching
7

Simple Virus Strategy
8

Coevolution: Entry Point Scanning

 Place virus at the
entry point or make it
directly reachable
from the entry point

 Make virus small to
avoid being easily
noticed by user

 Entry point scanning

 Do exploration of
reachable instruction
starting with the entry
point of the program

 Continue until no more
instructions are found

9

Virus Antivirus

Coevolution: Virus Encryption

 Decryption routine

 Virus body

 Decrypt into memory, not
do disk

 Set PC to the beginning of
the decryption buffer

 Encrypt with a different
key before adding virus to
new executable

 Decryption (and encryption)
routines (packers) used by
viruses are easy to fingerprint

 Develop signatures to match
these routines

 Attempt to decrypt the virus
body to perform a secondary
verification (x-raying)

10

Virus Antivirus

Coevolution: Polymorphic

 Use a mutation engine to generate
a (decryption routine, encryption
routine) pair

 Functionally similar or the same,
but syntactically very different

 Use the encryption routine to
encode the body of the virus

 No fixed part of the virus preserved
(decryption, encryption, body)

 Custom detection program
designed to recognize specific
detection engines

 Generic decryption (GD)
 Emulator

 Signature matching engine

 Scan memory/disk at regular
intervals in hopes of finding
decoded virus body

11

Virus Antivirus

GD Challenges
12

 How long to emulate the execution? Viruses use
padding instructions to delay execution. Can also
use sleep for a while to slow down the scanner.

 What is the quality of the emulator? How many
CPUs to support?

 What if decryption starts upon user interactions?
How do we trigger it? What about anti-emulation
tricks?

False Positives in Virus Detection

 In May 2007, a faulty virus signature issued by
Symantec mistakenly removed essential operating
system files, leaving thousands of PCs unable to boot

 Also in May 2007, the executable file required by
Pegasus Mail was falsely detected by Norton AntiVirus
as being a Trojan and it was automatically removed,
preventing Pegasus Mail from running. Norton anti-
virus had falsely identified three releases of Pegasus
Mail as malware, and would delete the Pegasus Mail
installer file when that happened n response to this
Pegasus Mail stated:

 On the basis that Norton/Symantec has done this for
every one of the last three releases of Pegasus Mail,
we can only condemn this product as too flawed to
use, and recommend in the strongest terms that our
users cease using it in favor of alternative, less buggy
anti-virus packages

 In April 2010, McAfee VirusScan detected svchost.exe,
a normal Windows binary, as a virus on machines
running Windows XP with Service Pack 3, causing a
reboot loop and loss of all network access

 In December 2010, a faulty update on the AVG anti-
virus suite damaged 64-bit versions of Windows 7,
rendering it unable to boot, due to an endless boot
loop created

 In October 2011, Microsoft Security Essentials
removed the Google Chrome browser, rival to
Microsoft's own Internet Explorer. MSE flagged
Chrome as a Zbot banking trojan

13

• A "false positive" is when antivirus software identifies a non-malicious file as a
virus. When this happens, it can cause serious problems.

• For example, if an antivirus program is configured to immediately delete or
quarantine infected files, a false positive in an essential file can render the
operating system or some applications unusable.

Top 20 Malware on Internet/user Computer

14

http://www.securelist.com/en/analysis/204792170/Monthly_Malware_Statistics_March_2011

http://www.securelist.com/en/analysis/204792170/Monthly_Malware_Statistics_March_2011

Vulnerability Gap
15

 As long as user has the right virus signatures and computer has recently
been scanner, detection will likely work

 But the virus landscape changes fast

 This calls for monitoring techniques for unknown viruses

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

CVE-2009-4324: December 2009
16

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

Exploit in the PDF Unfolding…
17

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

Automatic Zero-Day Blocking
18

 Scanning engine recognizes the newPlayer() vulnerability (checked in red)

 Because this is a zero-day vulnerability, the newPlayer() vulnerability would be
considered unknown

 Subsequently, the M86 Secure Web Gateway falls back to its behavioral analysis capability

 Below, the behavior of the JavaScript is suspicious; therefore it is blocked by this default rule,
requiring no update

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

Proactive Detection Techniques
19

 heuristic analyzer

 policy-based security

 intrusion detection/prevention systems

 etc.

http://www.securelist.com/en/downloads/vlpdfs/wp_nikishin_proactive_en.pdf

http://www.securelist.com/en/downloads/vlpdfs/wp_nikishin_proactive_en.pdf

Heuristic Analyzers
20

 A heuristic analyzer looks at
 code of executable files

 Macros

 Scripts

 memory or boot sectors

to detect malicious programs that cannot be identified using the
usual (signature-based) methods

 Heuristic analyzers search for unknown malicious software

 Detection rates are usually low: 20-30% at most

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

http://www.m86security.com/documents/pdfs/security_labs/m86_security_labs_vulnerability_report.pdf

Policy-based Security
 Use an overall security policy

to restrict certain types of
actions on the machine

 For instance
 Don’t open email

attachments

 Don’t open files from the
internet whose reputation is
unknown

 Only allow access to a
whitelist of web sites

 Disallow software installation

 The Cisco-Microsoft approach
 Scan computers of users

connecting to the network

 Limit network access from
machines that are not found
to be fully compliant (i.e.
virus definitions are out of
date)

 Force access to an update
server

 “Shepherd” the user into
compliance

21

Behavioral Monitoring Techniques
22

IDS: Intrusion Detection Systems

 What it is

 Security guards and
“beware of dog” signs
are forms of IDS

 Serve two purposes:

 Detect something bad
was happening

 deter the perpetrator

 Components

Collect signals

Process and
create alerts

Notify system
operators

23

Host-Based vs. Network-Based IDS

 Log analyzers

 Signature-based
sensors

 System call analyzers

 Application behavior
analyzers

 File integrity checkers

 Scan incoming and
outgoing traffic

 Primarily signature-
based

 Combined into
firewalls

 Can be located on a
different machine

24

Host-Based Intrusion Detection

Entry(f) Entry(g)

Exit(f) Exit(g)

open()

close()

exit()

getuid() geteuid()

f(int x) {

 x ? getuid() : geteuid();

 x++

}

g() {

 fd = open("foo", O_RDONLY);

 f(0); close(fd); f(1);

 exit(0);

}

If the observed code behavior is inconsistent with the statically inferred model,

something is wrong

Firewalls: Network and App-level

Elizabeth D. Zwicky

Simon Cooper

D. Brent Chapman

Michael Becher

Basic Firewall Concept
 Separate local area net from internet

Router

Firewall

All packets between LAN and internet routed through firewall

Local network Internet

Firewall Goals
 Prevent malicious attacks

on hosts
 Port sweeps, ICMP echo to

broadcast addr, syn flooding,
…

 Worm propagation

 Prevent general disruption
of internal network

 Monitor and control
quality of service (QoS)

 Provide defense in depth
 Programs contain bugs and

are vulnerable to attack

 Network protocols may
contain;
 Design weaknesses (SSH CRC)

 Implementation flaws (SSL,
NTP, FTP, SMTP...)

 Control traffic between
“zones of trusts”
 Can control traffic between

separate local networks, etc.

Review: TCP Protocol Stack

Application

Transport

Network

Link

Application protocol

TCP, UDP protocol

IP protocol

Data
Link

IP

Network
Access

IP protocol

Data
Link

Application

Transport

Network

Link

Transport layer provides ports, logical channels identified by number

Review: Data Formats

Application

Transport (TCP, UDP)

Network (IP)

Link Layer

Application message - data

TCP data TCP data TCP data

TCP Header

data TCP IP

IP Header

data TCP IP ETH ETF

Link (Ethernet)

 Header

Link (Ethernet)

 Trailer

segment

packet

frame

message

Packet Filtering

 Uses transport-layer
information only
 IP Source Address,

Destination Address

 Protocol (TCP, UDP, ICMP,
etc.)

 TCP or UDP source &
destination ports

 TCP Flags (SYN, ACK, FIN, RST,
PSH, etc.)

 ICMP message type

 Examples
 DNS uses port 53

 Block incoming port 53
packets except known trusted
servers

 Issues
 Stateful filtering

 Encapsulation: address
translation, other
complications

 Fragmentation

Firewall Configuration (Incoming)
32

Web Application Firewalls
33

 When it comes to HTTP traffic, regular firewalls are not very
helpful

 Yet we know that most web attacks use regular HTTP
channels: XSS, SQL injection

Worms

Worms: A Working Definition

 A worm is a program that
can run by itself and can
propagate a fully working
version of itself to other
machines

 It is derived from the word
tapeworm, a parasitic
organism that lives inside a
host and saps its resources
to maintain itself

35

The Morris Worm (1988)
36

Robert T. Morris Boston Museum of Science

Morris Worm Account by Spafford (1989)
37

Worms: A Brief History
38

Native

 Morris Worm (1988)

 Melissa (1999)

 Code Red (2001)

 Nimda (2001)

 Blaster (2003)

 SQL Slammer (2003)

JavaScript
 Samy/MySpace (2005)

 xanga.com (2005)

 SpaceFlash/MySpace

 Yamanner/Yahoo! Mail

 QSpace/MySpace

 adultspace.com

 gaiaonline.com

 u-dominion.com (2007)

M
o

rr
is

 W
o

rm

M
el

is
sa

C
o

d
e

re
d

/N
im

d
a

B
la

st
er

/S
la

m
m

er

Sa
m

y

Ya
m

an
n

er

/Y
ah

o
o

!
M

ai
l

1998 1999 2001 2003 2005 2006 …

Morris Worm (1988)

 Damage: 6,000 computers in just a few hours

 What: just copied itself; didn’t touch data

 Exploited:

 buffer overflow in fingerd (UNIX)

 sendmail debug mode (exec arbitrary cmds)

 dictionary of 432 frequently used passwords

Melissa (1999)

 What: just copied itself; did not touch data

 When date=time, “Twenty-two points, plus triple word score, plus

fifty points for using all my letters. Game’s over. I’m outta here.”

 Exploited:

 MS Word Macros (VB)

 MS Outlook Address Book (Fanout = 50)
“Important message from <user name> …”

Code Red (2001)

 Runs on WinNT 4.0 or Windows
2000

 Scans port 80 on up to 100
random IP addresses

 Resides only in RAM; no files

 Exploits buffer overflow in
Microsoft IIS 4.0/5.0
(Virus appeared one month after
advisory went out)

 Two flavors:
 Code Red I: high traffic, web

defacements, DDOS on
whitehouse.gov, crash systems

 Code Red II: high traffic,
backdoor install, crash systems

 Three phases: propagation
(1-19), flood (20-27),
termination (28-31)

 Other victims: Cisco 600
Routers, HP JetDirect Printers

Nimda (2001)

 Multiple methods of spreading
(email, client-to-server, server-to-client, network
sharing)

 Server-to-client: IE auto-executes readme.eml (that is
attached to all HTML files the server sends back to the
client)

 Client-to-server: “burrows”: scanning is local 75% of time

 Email: readme.exe is auto executed upon viewing HTML
email on IE 5.1 or earlier

More on Slammer

 When
 Jan 25 2003

 How
 Exploit Buffer-overflow
 MS SQL/MS SQL Server

Desktop Engine
 known vulnerability,

publicized in July 2002

 Scale
 At least 74,000 hosts

 Feature
 Fast propagation speed

 >55million scans per
second

 two orders of magnitude
faster than Code Red
worm

 No harmful payload

 Countermeasure
 Patch
 Firewall (port blocking)

43

Case Study: Slammer

 Buffer overflow vulnerability in Microsoft SQL Server
(MS02-039).

 Vulnerability of the following kind:

ProcessUDPPacket() {

 char SmallBuffer[100];

 UDPRecv(LargeBuff);

 strcpy(SmallBuf, LargeBuf);

 …

}

Slammer Propagation Map
45

Heap-Based Exploitation: 3-Step Process

1. Force the right x86
code to be
allocated on the
program heap

2. Exploit

3. Force a jump to
the heap

 All parts are
challenging
 First can be done

with JavaScript

 Second part is tough

 Third is unreliable

46

Advanced Malware Techniques

Heap spraying

Heap feng shui

 JIT spraying

47

Stack Overflow Exploit

48

NOP sled

shellcode

return
address

Stack

Heap Corruption Exploit

49

<IFRAME

SRC=file://BBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBB …

NAME="CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC …

഍഍"></IFRAME>

1 exploit

2 jump

NOP sled

shellcode

Heap

vtable
pointer

Heap Spraying Exploit

50

2 exploit

sled

shellcode

sled

shellcode

sled

shellcode

sled

shellcode

sled

shellcode

sled

shellcode

vtable
pointer

sled

shellcode

sled

shellcode

sled

shellcode

sled

shellcode

sled

shellcode

1 spray 3 jump

Heap

How to Set Up Heap Spraying?

51

<SCRIPT language="text/javascript">

 shellcode = unescape("%u4343%u4343%...'');

 oneblock = unescape("%u0C0C%u0C0C");

 var fullblock = oneblock;

 while (fullblock.length<0x40000) {

 fullblock += fullblock;

 }

 sprayContainer = new Array();

 for (i=0; i<1000; i++) {

 sprayContainer[i] = fullblock + shellcode;

 }

</SCRIPT>

Advanced Malware Techniques

Heap spraying

Heap feng shui

 JIT spraying

 Heap Feng Shui is a new technique
for precise manipulation of the
browser heap layout using specific
sequences of JavaScript allocations

 This is implemented as a JavaScript
library with functions for setting up
the heap in a controlled state
before triggering a heap corruption
bug

 Using this technique makes it
possible to exploit very difficult
heap corruption vulnerabilities with
great reliability and precision

52

Heap Massaging
<script type="text/javascript"
src="heapLib.js"></script>

<script type="text/javascript">

 // Create a heapLib object for Internet Explorer

 var heap = new heapLib.ie();

 heap.gc(); // Run the garbage collector
before doing any allocations

 // Allocate 512 bytes of memory and fill it with
padding

 heap.alloc(512);

 // Allocate a new block of memory for the string
"AAAAA" and tag the block with "foo"

 heap.alloc("AAAAA", "foo");

 // Free all blocks tagged with "foo"

 heap.free("foo");

</script>

 This program allocates a 16
byte block of memory and
copies the string "AAAAA"
into it

 The block is tagged with
the tag foo, which is later
used as an argument to
free()

 The free() function frees
all memory blocks marked
with this tag

53

Advanced Malware Techniques

Heap spraying

Heap feng shui

JIT spraying

54

JIT Spraying: JavaScript to x86

var y =

(
0x3c54d0d9 ^
0x3c909058 ^
0x3c59f46a ^

0x3c90c801 ^
0x3c9030d9 ^
0x3c53535b ^

...)

addr op imm assembly

0 B8 D9D0543C MOV EAX,3C54D0D9

5 35 5890903C XOR EAX,3C909058

10 35 6AF4593C XOR EAX,3C59F46A

15 35 01C8903C XOR EAX,3C90C801

20 35 D930903C XOR EAX,3C9030D9

25 35 5B53533C XOR EAX,3C53535B

55

Conclusions
 Viruses

 Virus/antivirus
coevolution

 Intrusion detection
 Behavioral detection

 Firewalls

 Application firewalls

 Worms

56

