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Part II. Treewidth applications



Properties of treewidth

Fact: The treewidth of G1 ∪G2 is the maximum of tw(G1) and

tw(G2).



Properties of treewidth

Fact: The treewidth of the complete graph Kk is k − 1.



Properties of treewidth

Fact: Treewidth does not increase if we delete edges or delete

vertices



Graph Minors

Definition: Graph H is a minor G (H ≤ G) if H can be obtained

from G by deleting edges, deleting vertices, and contracting edges.

Graph Minors

Definition: Graph H is a minor G (H ! G ) if H can be obtained from G by

deleting edges, deleting vertices, and contracting edges.
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Example: A triangle is a minor of a graph G if and only if G has a cycle (i.e., it is

not a forest).
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Example: A triangle is a minor of a graph G if and only if G has a

cycle (i.e., it is not a forest).



Graph minors

Equivalent definition: Graph H is a minor of G if there is a

mapping φ that maps each vertex of H to a connected subset of G

such that

I φ(u) and φ(v) are disjoint if u 6= v, and

I if uv ∈ E(G), then there is an edge between φ(u) and φ(v).

Graph minors

Equivalent definition: Graph H is a minor of G if there is a mapping φ that maps

each vertex of H to a connected subset of G such that

φ(u) and φ(v) are disjoint if u != v , and

if uv ∈ E (G), then there is an edge between φ(u) and φ(v).
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Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete

vertices or contract edges.

Hence, if H ≤ G then tw(H) ≤ tw(G).

If G contains a complete graph Kk+1 as a minor, then tw(G) ≥ k.



Properties of treewidth

Fact: If G contains a complete graph Kk+1 as a minor, then

tw(G) ≥ k.

If the treewidth of a graph is large, does it contain a large clique as

a minor?



Properties of treewidth

Fact: If G contains a complete graph Kk+1 as a minor, then

tw(G) ≥ k.

If the treewidth of a graph is large, does it contain a large clique as

a minor?



Properties of treewidth

Fact: For every k ≥ 2, the treewidth of

the k × k grid is exactly k.



Graph Minors

If a graph contains large grid as a minor, its treewidth is also large.



Graph Minors

If a graph contains large grid as a minor, its treewidth is also large.

What is much more surprising, is that the converse is also true:

every graph of large treewidth contains a large grid as a minor.

Neil Robertson Paul Seymour



Excluded Grid Theorem A : Planar Graph

Our set of treewidth applications is based on the following

Theorem (Planar Excluded Grid Theorem, Robertson,

Seymour and Thomas; Guo and Tamaki)

Let t ≥ 0 be an integer. Every planar graph G of treewidth at least
9
2 t, contains �t as a minor. Furthermore, there exists a

polynomial-time algorithm that for a given planar graph G either

outputs a tree decomposition of G of width 9
2 t or constructs a

minor model of �t in G.



Grid Theorem: Sketch of the proof

The proof is based on Menger’s Theorem

Theorem (Menger 1927)

Let G be a finite undirected graph and x and y two nonadjacent

vertices. The size of the minimum vertex cut for x and y (the

minimum number of vertices whose removal disconnects x and y)

is equal to the maximum number of pairwise vertex-disjoint paths

from x to y.



Grid Theorem: Sketch of the proof

Let G be a plane graph that has no (`× `)-grid as a minor.
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Grid Theorem: Sketch of the proof

If East cannot be separated from West, and South from North by

removing at most ` vertices, then by Menger’s theorem there are `

vertex disjoint paths from South to North and from East to West.
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Grid Theorem: Sketch of the proof

We can construct Ω(`)×Ω(`) grid minor-model from disjoint paths
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Grid Theorem: Sketch of the proof

If East can be separated from West, or South from North by `

vertices, we can proceed recursively by constructing a tree

decomposition of width O(`)...
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Excluded Grid Theorem: Planar Graphs
One more Excluded Grid Theorem, this time not for minors but just for edge contractions.

Figure : A triangulated grid Γ4.

For an integer t > 0 the graph Γt is obtained from the grid �t by

adding for every 1 ≤ x, y ≤ t− 1, the edge (x, y), (x+ 1, y + 1),

and making the vertex (t, t) adjacent to all vertices with x ∈ {1, t}
and y ∈ {1, t}.



Excluded Grid Theorem: Planar Graph

One more Excluded Grid Theorem, this time not for minors but

just for edge contractions.

Theorem
For any connected planar graph G and integer t ≥ 0, if

tw(G) ≥ 9(t+ 1), then G contains Γt as a contraction.

Furthermore there exists a polynomial-time algorithm that given G

either outputs a tree decomposition of G of width 9(t+ 1) or a set

of edges whose contraction result in Γt.



Proof sketch

Figure 3: The steps of the proof of Lemma 5. The two first steps are the boundary contraction

of a partial triangulation of a (9 × 9)-grid. The third step is the contraction to Γ4.

The proof of the following lemma is based on Lemmata 4 and 5 and Proposition 5.

Lemma 6. Let G be a graph embedded in a surface of Euler genus γ and let k be a positive

integer. If the treewidth of G is more than 12 · (γ + 1)3/2 · (2k + 4), then G contains Γk as a

v-smooth contraction with v being one of the corners of Γk.

Proof. Applying Lemma 4 for r = (γ +1)1/2 · (2k +4), we deduce that G contains an (r × r)-

grid H as a surface minor. This implies that after a sequence of vertex/edge removals or

contractions G, can be transformed to H. If we apply only the contractions in this sequence,

we end up with some graph G′ in Σ which contains H as a subgraph. The embedding of G′ in

Σ induces an embedding of H in this surface. By Proposition 5, some ((2k + 3) × (2k + 3))-

subgrid H ′ of H is embedded in a close disk D of Σ in a way that the boundary cycle of

H ′ is the boundary of D. For each internal face F of H ′ in D we do the following: contract

each component of the graph induced by vertices of G laying inside F into a single vertex,

choose an edge which joins this vertex with a vertex of H and contract it. Let G′′ be the

obtained graph. Notice that G′ ∩ D is contracted to some partial triangulation H ′′ of the

grid H ′. Then we perform the boundary contraction of the graph G′′ to H ′′. Thus we have

contracted G′′ to a ((2k + 1) × (2k + 1))-grid Γ and the described contraction is a v-smooth

contraction, where v is a corner of Γ. It remains to apply Lemma 5 to conclude the proof of

the lemma.

Lemma 7. There is a constant c such that if G is a graph h-nearly embedded in a surface of

Euler genus γ without apices, where tw(G) ≥ c ·γ3/2 ·h3/2 ·k, then G contains as a v-smooth

contraction the graph Γk with the loaded corner v.

Proof. We choose c such that c·γ3/2 ·h3/2·k ≥ (12·(γ+1)3/2 ·(2·$h1/2%·(k+2)+4)+1)·(h+1)−1.

Let Σ be a surface of Euler genus γ with cycles C1, . . . , Ch, such that each cycle Ci is the

border of an open disc ∆i in Σ and such that G is h-nearly embedded in Σ. Let also

G = G0 ∪ G1 ∪ · · · ∪ Gh, where G0 is embedded in Σ and G1, . . . , Gh are vortices. We
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Shifting Techniques



Locally bounded treewidth

For vertex v of a graph G and integer r ≥ 1, we denote by Gr
v the

subgraph of G induced by vertices within distance r from v in G.



Locally bounded treewidth

For vertex v of a graph G and integer r ≥ 1, we denote by Gr
v the

subgraph of G induced by vertices within distance r from v in G.

Lemma
Let G be a planar graph, v ∈ V (G) and r ≥ 1. Then

tw(Gr
v) ≤ 18(r + 1).

Proof.
Hint: use contraction-grid theorem.



Locally bounded treewidth

For vertex v of a graph G and integer r ≥ 1, we denote by Gr
v the

subgraph of G induced by vertices within distance r from v in G.

Lemma
Let G be a planar graph, v ∈ V (G) and r ≥ 1. Then

tw(Gr
v) ≤ 18(r + 1).

Proof.
Hint: use contraction-grid theorem.

18(r + 1) in the above lemma can be made 3r + 1.



Locally bounded treewidth

Lemma
Let v be a vertex of a planar graph G and let

L = Li ∪Li+1 ∪ · · · ∪Li+j be j consecutive levels of BFS run from

v. Then tw(L) ≤ 3j + 1.

Proof.



Useful viewpoint

Lemma (Coloring Lemma)

Let G be a planar graph and k be an integer, 1 ≤ k ≤ |V (G)|.
Then the vertex set of G can be partitioned into k sets such that

any k − 1 of the sets induces a graph of treewidth at most 3k − 2.

Moreover, such a partition can be found in linear time.



Useful viewpoint

Lemma (Coloring Lemma)

Let G be a planar graph and k be an integer, 1 ≤ k ≤ |V (G)|.
Then the vertex set of G can be partitioned into k sets such that

any k − 1 of the sets induce a graph of treewidth at most 3k − 2.

Moreover, such a partition can be found in linear time.

Proof.



Example 1: FPT algorithm for Subgraph Isomorphism

Subgraph Isomorphism: given graphs H and G, find a copy of

H in G as subgraph. Parameter k := |V (H)|.

Subgraph Isomorphism can be solved on planar graphs in time

nO(k) by brute-force plus graph isomorphism test.

Fact: There is f(k, t) · n time algorithm for Subgraph

Isomorphism on graphs of treewidth t.

We want: f(k) · n time algorithm for Subgraph Isomorphism

on planar graphs
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Example 1: FPT algorithm for Subgraph Isomorphism

Subgraph Isomorphism: given graphs H and G, find a copy of

H in G as subgraph. Parameter k := |V (H)|.
Subgraph Isomorphism can be solved on planar graphs in time

nO(k) by brute-force plus graph isomorphism test.

Fact: There is f(k, t) · n time algorithm for Subgraph

Isomorphism on graphs of treewidth t.

We want: f(k) · n time algorithm for Subgraph Isomorphism
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Algorithm for SI

I Use Coloring Lemma with k + 1 colors:

V (G) = X1 ∪X2 ∪ · · · ∪Xk+1. For every 1 ≤ i ≤ k + 1,

tw(G−Xi) ≤ 3k.

I If G contains k-vertex graph H as a subgraph, there is a color

Xi such that V (H) ∩Xi = ∅.
I For each 1 ≤ i ≤ k, solve Subgraph Isomorphism for

G−Xi and H.
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Algorithm for SI

I Use Coloring Lemma with k + 1 colors:
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Example 2: PTAS for Independent Set

Independent Set: given graph G, find a maximum independent

set in G.

We want: An algorithm that for any k ≥ 1 finds in time O(2O(k)n)

an independent set of size at least (1− 1/k)OPT on planar

graphs. In other words, an Efficient Polynomial Time

Approximation Scheme (EPTAS) on planar graphs.
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Independent Set: given graph G, find a maximum independent

set in G.
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Algorithm for IS

I Use Coloring Lemma with k colors:

V (G) = X1 ∪X2 ∪ · · · ∪Xk. For every 1 ≤ i ≤ k,

tw(G−Xi) ≤ 3k.

I Let I be a maximum independent set in G. Then there is a

color Xi such that |I ∩Xi| ≤ |I|/k.

I For each 1 ≤ i ≤ k, solve Independent Set for G−Xi.

I The size of the maximum set we found is at least |I| − |I|/k.
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Example 3: Subexponential parameterized algorithm for

Vertex Cover

Vertex Cover: given graph G and integer k. Decide whether G

contains a vertex cover of size at most k.

We want: An algorithm that solves time Vertex Cover in time

O(2O(
√
k)n) on planar graphs.



Example 3: Subexponential parameterized algorithm for

Vertex Cover

Vertex Cover: given graph G and integer k. Decide whether G

contains a vertex cover of size at most k.

We want: An algorithm that solves time Vertex Cover in time

O(2O(
√
k)n) on planar graphs.



Reminder: Grid Theorem

Theorem (Planar Excluded Grid Theorem)

Let t ≥ 0 be an integer. Every planar graph G of treewidth at least
9
2 t, contains �t as a minor. Furthermore, there exists a

polynomial-time algorithm that for a given planar graph G either

outputs a tree decomposition of G of width 9
2 t or constructs a

minor model of �t in G.



Subexponential treewidth

Theorem
The treewidth of an n-vertex planar graph is O(

√
n)

Proof.



Subexponential treewidth: refinement

We want to prove

Theorem
If a planar graph G contains a vertex cover of size k, then the

treewidth of G is O(
√
k)

If we prove it, we are done with O(2O(
√
k)n)-time algorithm. Why?

Given a tree decomposition of width t of G, we solve Vertex Cover

In time 2t · tO(1) · n.
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Vertex Cover

Some questions to ask

(i) How large can be the vertex cover of �t?

�t contains a

matching of size t2/2, and thus vertex cover of �t is at least

t2/2.

(ii) Is Vertex Cover minor-closed?YES!

(i) + (ii) give

Theorem
If a planar graph G contains a vertex cover of size k, then the

treewidth of G is O(
√
k)
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What is special in Vertex Cover?

Theorem
If a planar graph G contains a feedback vertex set of size k, then

the treewidth of G is O(
√
k)

Theorem
If the treewidth of a planar graphG is more than c ·

√
k for some c,

then G contains a path on k vertices



What is special in Vertex Cover?

Theorem
If a planar graph G contains a feedback vertex set of size k, then

the treewidth of G is O(
√
k)

Theorem
If the treewidth of a planar graphG is more than c ·

√
k for some c,

then G contains a path on k vertices



What is special in Vertex Cover?

Same strategy should work for any problem if

(P1) The size of any solution in �t is of order Ω(t2).

(P2) On graphs of treewidth t, the problem is solvable in time

2O(t) · nO(1).

(P3) The problem is minor-closed, i.e. if G has a solution of

size k, then every minor of G also has a solution of size k.

This settles Feedback Vertex Set and k-path. Why not

Dominating Set?



Reminder: Contracting to a grid

Figure : A triangulated grid Γ4.

Theorem
For any connected planar graph G and integer t ≥ 0, if

tw(G) ≥ 9(t+ 1), then G contains Γt as a contraction.

Furthermore there exists a polynomial-time algorithm that given G

either outputs a tree decomposition of G of width 9(t+ 1) or a set

of edges whose contraction result in Γt.



Strategy for Dominating Set

Same strategy should work for any problem with:

(i) The size of any solution in Γt is of order Ω(t2).

(ii) The problem is contraction-closed, i.e. if G has a solution

of size k, then every minor of G also has a solution of size

k.

This settles Dominating Set

Theorem
If a planar graph G contains a dominating set of size k, then the

treewidth of G is O(
√
k)



Lets try to formalize

Restrict to vertex-subset problems.

Let φ be a computable function which takes as an input graph G,

a set S ⊆ V (G) and outputs true or false.

For an example, for Dominating Set: φ(G,S) = true if and only if

N [S] = V (G).



Bidimensionality

Definition (Bidimensional problem)

A vertex subset problem Π is bidimensional if it is

contraction-closed, and there exists a constant c > 0 such that

OPTΠ(Γk) ≥ ck2.

Vertex Cover, Independent Set, Feedback Vertex Set, Induced

Matching, Cycle Packing, Scattered Set for fixed value of d,

k-Path, k-cycle, Dominating Set, Connected Dominating Set,

Cycle Packing, r-Center...
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Bidimensionality

Definition ( Bidimensional problem)

A vertex subset problem Π is bidimensional if it is

contraction-closed, and there exists a constant c > 0 such that

OPTΠ(Γk) ≥ ck2.

Lemma (Parameter-Treewidth Bound)

Let Π be a bidimensional problem. Then there exists a constant

αΠ such that for any connected planar graph G,

tw(G) ≤ αΠ ·
√
OPTΠ(G). Furthermore, there exists a polynomial

time algorithm that for a given G constructs a tree decomposition

of G of width at most αΠ ·
√
OPTΠ(G).



Bidimensionality: Summing up

Theorem
Let Π be a bidimensional problem such that there exists an

algorithm for Π with running time 2O(t)nO(1) when a tree

decomposition of the input graph G of width t is given. Then Π is

solvable in time 2O(
√
k)nO(1) on connected planar graphs.



Bidimensionality: Remarks

I Polynomial dependence on n can be turned into linear, so all

bidimensionality based algorithms run in time 2O(
√
k)n.

I Is it possible to obtain 2o(
√
k)nO(1) running time for problems

on planar graphs? (NO, unless ETH fails)

I Planarity is used only to exclude a grid. Thus all the

arguments extend to classes of graphs with a similar property.

I Bidimensionality+Separability+MSO2 brings to Linear

kernelization on apex-minor-free graphs. For minor-closed

problems to minor-free graphs.
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Something to take home

I What works on trees (usually) works on graphs of small

treewidth

I Excluding a grid is often helpful and can bring to various

WIN/WIN scenarios
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