


Properties of treewidth

Fact: The treewidth of G; U Gy is the maximum of tw(G1) and
tW(GQ).



Properties of treewidth

Fact: The treewidth of the complete graph is



Properties of treewidth

Fact: Treewidth does not increase if we delete edges or delete
vertices



Graph Minors

Definition: Graph H is a minor G (H < G) if H can be obtained
from G by deleting edges, deleting vertices, and contracting edges.
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Example: A triangle is a minor of a graph G if and only if G has a
cycle (i.e., it is not a forest).



Graph minors

Equivalent definition: Graph H is a minor of G if there is a
mapping ¢ that maps each vertex of H to a connected subset of GG
such that

> ¢(u) and ¢(v) are disjoint if u # v, and
» if uv € E(G), then there is an edge between ¢(u) and ¢(v).




Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete
vertices or contract edges.

Hence, if H < G then tw(H) < tw(G).

If G contains a complete graph K} 1 as a minor, then tw(G) > k.



Properties of treewidth

Fact: If G contains a complete graph Kj1 as a minor, then
tw(G) > k.



Properties of treewidth

Fact: If G contains a complete graph Kj1 as a minor, then
tw(G) > k.
If the treewidth of a graph is large, does it contain a large clique as

a minor?



Properties of treewidth

Fact: For every , the treewidth of
the grid is exactly




Graph Minors

If a graph contains , its treewidth is also large.



Graph Minors

If a graph contains , its treewidth is also large.

What is much more surprising, is that the converse is also true:
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every graph of large treewidth contains a




Excluded Grid Theorem A : Planar Graph

Our set of treewidth applications is based on the following

Theorem (Planar Excluded Grid Theorem, Robertson,
Seymour and Thomas; Guo and Tamaki)

Let t > 0 be an integer. Every planar graph G of treewidth at least
%t, contains B; as a minor. Furthermore, there exists a
polynomial-time algorithm that for a given planar graph G either
outputs a tree decomposition of G of width %t or constructs a
minor model of B; in G.



Grid Theorem: Sketch of the proof

The proof is based on Menger’'s Theorem

Theorem (Menger 1927)

Let G be a finite undirected graph and x and y two nonadjacent
vertices. The size of the minimum vertex cut for x and y (the
minimum number of vertices whose removal disconnects x and y)
is equal to the maximum number of pairwise vertex-disjoint paths
from x to y.



Grid Theorem: Sketch of the proof

Let G be a plane graph that has no (¢ x ¢)-grid as a minor.
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Grid Theorem: Sketch of the proof

If East cannot be separated from West, and South from North by
removing at most ¢ vertices, then by Menger's theorem there are ¢

vertex disjoint paths from South to North and from East to West.
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Grid Theorem: Sketch of the proof

We can construct Q(£) x €(¢) grid minor-model from disjoint paths




Grid Theorem: Sketch of the proof

If East can be separated from West, or South from North by ¢

vertices, we can proceed recursively by constructing a tree

decomposition of width O(¥)...
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Excluded Grid Theorem: Planar Graphs

One more Excluded Grid Theorem, this time not for minors but just for edge contractions.

Figure : A triangulated grid I'y.

For an integer t > 0 the graph I'; is obtained from the grid H; by
adding for every 1 < z,y <t — 1, the edge (z,y),(x + 1,y + 1),
and making the vertex (¢,t) adjacent to all vertices with = € {1,¢}
and y € {1,t}.



Excluded Grid Theorem: Planar Graph

One more Excluded Grid Theorem, this time not for minors but
just for edge contractions.

Theorem

For any connected planar graph G and integert > 0, if

tw(G) > 9(t + 1), then G contains I'; as a contraction.
Furthermore there exists a polynomial-time algorithm that given G
either outputs a tree decomposition of G of width 9(t + 1) or a set
of edges whose contraction result in T';.




Proof sketch




Shifting Techniques



Locally bounded treewidth

For vertex v of a graph G and integer » > 1, we denote by G, the
subgraph of G induced by vertices within distance r from v in G.



Locally bounded treewidth

For vertex v of a graph G and integer r > 1, we denote by G}, the
subgraph of G induced by vertices within distance 7 from v in G.

Lemma
Let G be a planar graph, v € V(G) and r > 1. Then
tw(Gy) < 18(r +1).

Proof.

Hint: use contraction-grid theorem. O



Locally bounded treewidth

For vertex v of a graph G and integer » > 1, we denote by G, the
subgraph of G induced by vertices within distance 7 from v in G.

Lemma
Let G be a planar graph, v € V(G) and r > 1. Then
tw(G)) < 18(r+1).

Proof.

Hint: use contraction-grid theorem. O

18(r + 1) in the above lemma can be made 3r + 1.



Locally bounded treewidth

Lemma
Let v be a vertex of a planar graph G and let
L=L;ULi1U---UL;; be j consecutive levels of BFS run from

v. Thentw(L) <3j+1.

Proof.



Useful viewpoint

Lemma (Coloring Lemma)

Let G be a planar graph and k be an integer, 1 < k < |V(G)|.
Then the vertex set of G can be partitioned into k sets such that
any k — 1 of the sets induces a graph of treewidth at most 3k — 2.
Moreover, such a partition can be found in linear time.



Useful viewpoint

Lemma (Coloring Lemma)

Let G be a planar graph and k be an integer, 1 < k < |V(G)|.
Then the vertex set of G can be partitioned into k sets such that
any k — 1 of the sets induce a graph of treewidth at most 3k — 2.
Moreover, such a partition can be found in linear time.

Proof.



Example 1: FPT algorithm for Subgraph Isomorphism

SUBGRAPH [SOMORPHISM: given graphs H and G, find a copy of
H in G as subgraph. Parameter k := |V (H)]|.
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Example 1: FPT algorithm for Subgraph Isomorphism

SUBGRAPH [SOMORPHISM: given graphs H and G, find a copy of
H in G as subgraph. Parameter k := |V (H)].

SUBGRAPH [ISOMORPHISM can be solved on planar graphs in time
nOk) by brute-force plus graph isomorphism test.

Fact: Thereis f(k,t) - n time algorithm for SUBGRAPH
IsoMORPHISM on graphs of treewidth

We want: f(k) - n time algorithm for SUBGRAPH ISOMORPHISM
on planar graphs



Algorithm for Sl

» Use Coloring Lemma with k + 1 colors:
V(G)=X1UXoU---UXpyq. Forevery1 <i<k+1,
tW(G — Xz) < 3k.



Algorithm for Sl

» Use Coloring Lemma with k + 1 colors:
V(G)=X1UXoU---UXjyy1. Forevery 1 <i<k+1,
tW(G — Xz) < 3k.

» If G contains k-vertex graph H as a subgraph, there is a color
X; such that V(H) N X; = 0.



Algorithm for Sl

» Use Coloring Lemma with k + 1 colors:
V(G)=X1UXoU---UXjyy1. Forevery 1 <i<k+1,
tW(G — Xz) < 3k.

» If G contains k-vertex graph H as a subgraph, there is a color
X; such that V(H) N X; = 0.

» For each 1 <7 <k, solve SUBGRAPH ISOMORPHISM for
G —X;and H.



Example 2: PTAS for Independent Set

INDEPENDENT SET: given graph G, find a maximum independent
set in G.



Example 2: PTAS for Independent Set

INDEPENDENT SET: given graph G, find a maximum independent
set in G.

We want: An algorithm that for any k& > 1 finds in time O(2°%)p)
an independent set of size at least (1 — 1/k)OPT on planar
graphs. In other words, an Efficient Polynomial Time
Approximation Scheme (EPTAS) on planar graphs.
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Algorithm for IS

» Use Coloring Lemma with & colors:
V(G)=X1UXaU---UXy. Forevery 1 <i<k,

> Let I be a maximum independent set in G. Then there is a
color X; such that [I N X;| < |I|/k.



Algorithm for IS

» Use Coloring Lemma with & colors:
V(G)=X1UXaU---UXy. Forevery 1 <i<k,

> Let I be a maximum independent set in G. Then there is a
color X; such that [I N X;| < |I|/k.

» For each 1 <7 <k, solve INDEPENDENT SET for G — Xj.



Algorithm for IS

» Use Coloring Lemma with & colors:
V(G)=X1UXaU---UXy. Forevery 1 <i<k,

> Let I be a maximum independent set in G. Then there is a
color X; such that [I N X;| < |I|/k.

» For each 1 <7 <k, solve INDEPENDENT SET for G — Xj.

» The size of the maximum set we found is at least |I| — |I|/k.



Example 2: PTAS for Independent Set

INDEPENDENT SET: given graph G, find a maximum independent
set in G.



Example 2: PTAS for Independent Set

INDEPENDENT SET: given graph G, find a maximum independent
set in G.

We want: An algorithm that for any k& > 1 finds in time O(2°%)p)
an independent set of size at least (1 — 1/k)OPT on planar
graphs. In other words, an Efficient Polynomial Time
Approximation Scheme (EPTAS) on planar graphs.



Example 3: Subexponential parameterized algorithm for
VERTEX COVER

VERTEX COVER: given graph G and integer k. Decide whether G
contains a vertex cover of size at most k.



Example 3: Subexponential parameterized algorithm for
VERTEX COVER

VERTEX COVER: given graph G and integer k. Decide whether G
contains a vertex cover of size at most k.

We want: An algorithm that solves time VERTEX COVER in time
0(20(‘@%) on planar graphs.



Reminder: Grid Theorem

Theorem (Planar Excluded Grid Theorem)

Let t > 0 be an integer. Every planar graph G of treewidth at least
%t, contains H; as a minor. Furthermore, there exists a
polynomial-time algorithm that for a given planar graph G either
outputs a tree decomposition of G of width %t or constructs a
minor model of B; in G.



Subexponential treewidth

Theorem
The treewidth of an n-vertex planar graph is O(y/n)

Proof.



Subexponential treewidth: refinement

We want to prove

Theorem

If a planar graph G contains a vertex cover of size k, then the
treewidth of G is O(V/k)



Subexponential treewidth: refinement

We want to prove

Theorem

If a planar graph G contains a vertex cover of size k, then the
treewidth of G is O(V/k)

If we prove it, we are done with 0(20(\/E)n/)—time algorithm. Why?



Subexponential treewidth: refinement

We want to prove

Theorem

If a planar graph G contains a vertex cover of size k, then the
treewidth of G is O(V/k)

If we prove it, we are done with 0(20(\/E)71/)—time algorithm. Why?

Given a tree decomposition of width ¢ of GG, we solve Vertex Cover
In time 2t - t9W) . .



Vertex Cover

Some questions to ask

(i) How large can be the vertex cover of H;?
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Vertex Cover

Some questions to ask

(i) How large can be the vertex cover of H;? H; contains a

matching of size t?/2, and thus vertex cover of B, is at least
t2/2.

(i) Is Vertex Cover minor-closed?YES!



Vertex Cover

Some questions to ask
(i) How large can be the vertex cover of H;? H; contains a
matching of size t?/2, and thus vertex cover of B, is at least
t2/2.
(i) Is Vertex Cover minor-closed?YES!
(1) + (i1) give

Theorem
If a planar graph G contains a vertex cover of size k, then the
treewidth of G is O(\/k)



What is special in Vertex Cover?

Theorem
If a planar graph G contains a feedback vertex set of size k, then
the treewidth of G is O(\/k)



What is special in Vertex Cover?

Theorem

If a planar graph G contains a feedback vertex set of size k, then
the treewidth of G is O(\/k)

Theorem
If the treewidth of a planar graphG is more than ¢ - \/k for some c,
then G contains a path on k vertices



What is special in Vertex Cover?

Same strategy should work for any problem if

This settles FEEDBACK VERTEX SET and k-PATH. Why not
DOMINATING SET?



Reminder: Contracting to a grid

Figure : A triangulated grid I'y.

Theorem

For any connected planar graph G and integer t > 0, if

tw(G) > 9(t + 1), then G contains T'; as a contraction.
Furthermore there exists a polynomial-time algorithm that given G
either outputs a tree decomposition of G of width 9(t + 1) or a set
of edges whose contraction result in T'y.



Strategy for Dominating Set

Same strategy should work for any problem with:

This settles DOMINATING SET

Theorem

If a planar graph G contains a dominating set of size k, then the
treewidth of G is O(V/k)



Lets try to formalize

Restrict to vertex-subset problems.

Let ¢ be a computable function which takes as an input graph G,
a set S C V(G) and outputs true or false.

For an example, for Dominating Set: ¢(G, S) = true if and only if
N[S] =V(G).



Bidimensionality

Definition (Bidimensional problem)

A vertex subset problem II is bidimensional if it is
contraction-closed, and there exists a constant ¢ > 0 such that

OPTy(T'y) > ck?.



Bidimensionality

Definition (Bidimensional problem)

A vertex subset problem II is bidimensional if it is
contraction-closed, and there exists a constant ¢ > 0 such that
OPTy(T'y) > ck?.

Vertex Cover, Independent Set, Feedback Vertex Set, Induced
Matching, Cycle Packing, Scattered Set for fixed value of d,
k-Path, k-cycle, Dominating Set, Connected Dominating Set,
Cycle Packing, r-Center...



Bidimensionality

Definition ( Bidimensional problem)

A vertex subset problem II is bidimensional if it is
contraction-closed, and there exists a constant ¢ > 0 such that
OPTH(Fk) > Ck2.

Lemma (Parameter-Treewidth Bound)

Let II be a bidimensional problem. Then there exists a constant
agr such that for any connected planar graph G,

tw(G) < an - /OPTu(G). Furthermore, there exists a polynomial
time algorithm that for a given G constructs a tree decomposition

of G of width at most arg - \/OPT11(G).



Bidimensionality: Summing up

Theorem

Let II be a bidimensional problem such that there exists an
algorithm for II with running time 2°®nCW) when a tree
decomposition of the input graph G of width t is given. Then 11 is
solvable in time 200VF)nO0) on connected planar graphs.



Bidimensionality: Remarks

» Polynomial dependence on n can be turned into linear, so all
bidimensionality based algorithms run in time 20k,
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Bidimensionality: Remarks

» Polynomial dependence on n can be turned into linear, so all
bidimensionality based algorithms run in time 20k,

» Is it possible to obtain 2°(VF)nOM) running time for problems
on planar graphs? (NO, unless ETH fails)

> Planarity is used only to exclude a grid. Thus all the
arguments extend to classes of graphs with a similar property.

» Bidimensionality+Separability+MSQ- brings to Linear
kernelization on apex-minor-free graphs. For minor-closed
problems to minor-free graphs.



Something to take home

» What works on trees (usually) works on graphs of small
treewidth

» Excluding a grid is often helpful and can bring to various
WIN/WIN scenarios
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