\\ Applied Parallel Computing LLC
NI

http://parallel-computing.pro

OpenACC Interoperation

Dr. Aleksei lvakhnenko

March 11, 2018



http://parallel-computing.pro

m OpenACC interoperation with CUDA C, CUDA Fortran and GPU-enabled libraries

- host_data
- deviceptr

m External dependencies in OpenACC kernels, functions inlining
- OpenACC routine directive, separate compilation and procedure calls

m Accessing global variables

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 1/12



The host _data directive

This construct is used to make the device address
of data available in host code.

The only valid clause is: m Fortran:
!$acc host_data clause-list

use_device (var-list) e
1$acc end host_data clause-list
The use_device tells the compiler to use the

device address of any variable or array in the var- s C
list in code within the construct. In particular, this #pragma acc host_data clause-list
may be used to pass the device address of vari- for loop

ables or arrays to optimized procedures written in
a lower-level API.

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 2/12



The deviceptr clause

m The deviceptr clause is used to declare that the pointers in the var-list are device pointers:
- the data need not be allocated or moved between the host and device for this pointer.

m In Cand C++, the variables in var-list must be pointer variables.

m In Fortran, the variable in var-list must be dummy arguments (arrays or scalars), and may not have the
Fortran pointer, allocatable or value attributes.

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 3/12



host data vs deviceptr

host_data (directive): .
deviceptr (data clause):
m When you have allocated memory (e.g. by

#pragma acc declare
device_resident) on the device.

m When you have allocated memory in CUDA
C/Fortran code (e.g. by cudaMalloc()) or by

GPU enabled library on the device.
m You may pass this pointer to CUDA C/Fortran

Y thi inter to OpenACC.
code or to GPU enabled library. W YouMay pass this pointer fo Lpen

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 4/12



The routine directive

The routine directive is used to tell the
compiler to compile a given procedure
for an accelerator as well as the host.
In a file or routine with a procedure
call, the routine directive tells the im-
plementation the attributes of the pro-
cedure when called on the accelerator.

Dr. Aleksei Ivakhnenko (APC LLC)

m Fortran:
1$acc routine clause-list

!$acc routine ( name ) clause-list

m C
#pragma acc routine clause-list

#pragma acc routine ( name ) clause-list

OpenACC Interoperation March 11, 2018 5/12



The routine directive

m In Cand C++, the routine directive without a name may appear immediately before a function definition
or just before a function prototype and applies to that immediately following function or prototype.

- The routine directive with a name may appear anywhere that a function prototype is allowed and applies
to the function in that scope with that name, but must appear before any definition or use of that function.

m In Fortran, the routine directive without a name may appear within the specification part of a
subroutine or function definition, or within an interface body for a subroutine or function in an
interface block, and applies to the containing subroutine or function.

- The routine directive with a name may appear in the specification part of a subroutine, function or module,
and applies to the named subroutine or function.

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 6/12



The routine directive

Clauses: Restrictions:
" gang m Only the gang, worker, vector, seq and bind clauses
m worker may follow a device_type clause.
m vector m In C and C++, function static variables are not
seqg supported in functions to which a routine directive
bind(name) applies.
bind( string ) m In Fortran, variables with the save attribute, either

explicitly or implicitly, are not supported in subprograms

device_type( device-type-list) ) o )
to which a routine directive applies.

nohost

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 7/12



The routine directive: example

Listing 1: routine.cpp

int n = 1000;

float* a = (float*)malloc(n*sizeof(float));
float* b (float*)malloc(n*sizeof(float));
float* c = (float*)malloc(n*sizeof(float));
for (int 1 = @; i<n; i++)

{

(float)rand() / RAND_MAX;
(float)rand() / RAND_MAX;

a[i]
b[i]

#pragma acc parallel copyout (c[0:1000]), \
copyin(a[@:10007], b[0:10007)
vecadd(a, b, c, n);

free(a);
free(b);
free(c);

Listing 2: routine_vecadd.hpp

void vecadd(
float *a, float *b, float *c, int n);

Listing 3: routine_vecadd.cpp

void vecadd(
float *a, float *b, float *c, int n)

{
for (int 1 = @; i < n; i++)
{
c[i] = a[i] + b[i];
3
3

Dr. Aleksei Ivakhnenko (APC LLC)

OpenACC Interoperation

March 11, 2018

8/12




The routine directive: failure

$ pgc++ no_routine_vecadd.cpp -c -acc -Minfo=accel -ta=nvidia,time -o
no_routine_vecadd.o
no_routine_vecadd.cpp:
pgc++ no_routine.cpp -acc -Minfo=accel -ta=nvidia,time -o no_routine
./no_routine_vecadd.o
no_routine.cpp:
main:
20, Generating copyin(a[:10007],b[:10007])

Generating copyout(c[:10007])

Accelerator kernel generated

Generating Tesla code
nvlink error: Undefined reference to '_Z6vecaddPfS_S_i' in 'no_routine.o'
pgacclnk: child process exit status 2: /opt/pgi/linux86-64/15.7/bin/pgnvd
make: *** [mno_routine] Error 2

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation

March 11, 2018

9/12



The routine directive: solution

Listing 4: routine.cpp

int n = 1000;

float* a = (float*)malloc(n*sizeof(float));
float* b (float*)malloc(n*sizeof(float));
float* ¢ = (float*)malloc(n*sizeof(float));
for (int 1 = @; i<n; i++)

{

(float)rand() / RAND_MAX;
(float)rand() / RAND_MAX;

ali]
b[i]

#pragma acc parallel copyout (c[0:1000]), \
copyin(a[@:10007], b[0:1000])
vecadd(a, b, c, n);

free(a);
free(b);
free(c);

Listing 5: routine_vecadd.hpp

#pragma acc routine gang
void vecadd(
float *a, float *b, float *c, int n);

Listing 6: routine_vecadd.cpp

#pragma acc routine gang
void vecadd(
float *a, float *b, float *c, int n)

{
for (int i = @; i < n; i++)
{
c[i] = a[i] + b[i];
3
3

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018

10/12




The routine directive: solution

$ pgc++ routine_vecadd.cpp -c -acc -Minfo=accel -ta=nvidia,time -o routine_vecadd.o
routine_vecadd.cpp:
vecadd(float *, float *, float *, int):
3, Generating acc routine gang
Generating Tesla code
5, #pragma acc loop gang, vector /* blockIdx.x threadIdx.x */

Loop is parallelizable
pgc++ routine.cpp -acc -Minfo=accel -ta=nvidia,time -o routine ./routine_vecadd.o
routine.cpp:
main:

20, Generating copyin(a[:10007],b[:10007])

Generating copyout(c[:10007])

Accelerator kernel generated

Generating Tesla code

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018

11/12



Global variables

extern float coef;

#pragma acc declare copyin(coef)

The declare directive must appear in any file #pragma acc parallel
that refers to the variable in device code; it must {
also appear in the file that actually declares the
variable without the extern keyword:

float y = sin(coef);

#pragma acc loop
for (i = 0; 1 < n; ++i)
x[i] *=vy;

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 12/12



