
Applied Parallel Computing LLC
http://parallel-computing.pro

OpenACC Interoperation

Dr. Aleksei Ivakhnenko

March 11, 2018

http://parallel-computing.pro

Outline

OpenACC interoperation with CUDA C, CUDA Fortran and GPU-enabled libraries
- host_data
- deviceptr

External dependencies in OpenACC kernels, functions inlining
- OpenACC routine directive, separate compilation and procedure calls

Accessing global variables

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 1 / 12

The host_data directive

This construct is used to make the device address
of data available in host code.
The only valid clause is:

use_device (var-list)

The use_device tells the compiler to use the
device address of any variable or array in the var-
list in code within the construct. In particular, this
may be used to pass the device address of vari-
ables or arrays to optimized procedures written in
a lower-level API.

Fortran:
!$acc host_data clause-list

...

!$acc end host_data clause-list

C:
#pragma acc host_data clause-list

for loop

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 2 / 12

The deviceptr clause

The deviceptr clause is used to declare that the pointers in the var-list are device pointers:
- the data need not be allocated or moved between the host and device for this pointer.

In C and C++, the variables in var-list must be pointer variables.

In Fortran, the variable in var-list must be dummy arguments (arrays or scalars), and may not have the
Fortran pointer, allocatable or value attributes.

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 3 / 12

host_data vs deviceptr

host_data (directive):

When you have allocated memory (e.g. by
#pragma acc declare

device_resident) on the device.

You may pass this pointer to CUDA C/Fortran
code or to GPU enabled library.

deviceptr (data clause):

When you have allocated memory in CUDA
C/Fortran code (e.g. by cudaMalloc()) or by
GPU enabled library on the device.

You may pass this pointer to OpenACC.

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 4 / 12

The routine directive

The routine directive is used to tell the
compiler to compile a given procedure
for an accelerator as well as the host.
In a le or routine with a procedure
call, the routine directive tells the im-
plementation the attributes of the pro-
cedure when called on the accelerator.

Fortran:
!$acc routine clause-list

!$acc routine (name) clause-list

C:
#pragma acc routine clause-list

#pragma acc routine (name) clause-list

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 5 / 12

The routine directive

In C and C++, the routine directive without a name may appear immediately before a function de nition
or just before a function prototype and applies to that immediately following function or prototype.

- The routine directive with a name may appear anywhere that a function prototype is allowed and applies
to the function in that scope with that name, but must appear before any de nition or use of that function.

In Fortran, the routine directive without a name may appear within the speci cation part of a
subroutine or function de nition, or within an interface body for a subroutine or function in an
interface block, and applies to the containing subroutine or function.

- The routine directive with a name may appear in the speci cation part of a subroutine, function or module,
and applies to the named subroutine or function.

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 6 / 12

The routine directive

Clauses:

gang

worker

vector

seq

bind(name)

bind(string)

device_type(device-type-list)

nohost

Restrictions:

Only the gang, worker, vector, seq and bind clauses
may follow a device_type clause.

In C and C++, function static variables are not
supported in functions to which a routine directive
applies.

In Fortran, variables with the save attribute, either
explicitly or implicitly, are not supported in subprograms
to which a routine directive applies.

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 7 / 12

The routine directive: example

Listing 1: routine.cpp

int n = 1000;
float* a = (float*)malloc(n*sizeof(float));
float* b = (float*)malloc(n*sizeof(float));
float* c = (float*)malloc(n*sizeof(float));
for (int i = 0; i<n; i++)
{

a[i] = (float)rand() / RAND_MAX;
b[i] = (float)rand() / RAND_MAX;

}

#pragma acc parallel copyout (c[0:1000]), \
copyin(a[0:1000], b[0:1000])
vecadd(a, b, c, n);

free(a);
free(b);
free(c);

Listing 2: routine_vecadd.hpp

void vecadd(
float *a, float *b, float *c, int n);

Listing 3: routine_vecadd.cpp

void vecadd(
float *a, float *b, float *c, int n)

{
for (int i = 0; i < n; i++)
{

c[i] = a[i] + b[i];
}

}

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 8 / 12

The routine directive: failure

$ pgc++ no_routine_vecadd.cpp -c -acc -Minfo=accel -ta=nvidia,time -o
no_routine_vecadd.o
no_routine_vecadd.cpp:
pgc++ no_routine.cpp -acc -Minfo=accel -ta=nvidia,time -o no_routine
./no_routine_vecadd.o
no_routine.cpp:
main:

20, Generating copyin(a[:1000],b[:1000])
Generating copyout(c[:1000])
Accelerator kernel generated
Generating Tesla code

nvlink error: Undefined reference to '_Z6vecaddPfS_S_i' in 'no_routine.o'
pgacclnk: child process exit status 2: /opt/pgi/linux86-64/15.7/bin/pgnvd
make: *** [no_routine] Error 2

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 9 / 12

The routine directive: solution

Listing 4: routine.cpp

int n = 1000;
float* a = (float*)malloc(n*sizeof(float));
float* b = (float*)malloc(n*sizeof(float));
float* c = (float*)malloc(n*sizeof(float));
for (int i = 0; i<n; i++)
{

a[i] = (float)rand() / RAND_MAX;
b[i] = (float)rand() / RAND_MAX;

}

#pragma acc parallel copyout (c[0:1000]), \
copyin(a[0:1000], b[0:1000])
vecadd(a, b, c, n);

free(a);
free(b);
free(c);

Listing 5: routine_vecadd.hpp

#pragma acc routine gang
void vecadd(

float *a, float *b, float *c, int n);

Listing 6: routine_vecadd.cpp

#pragma acc routine gang
void vecadd(

float *a, float *b, float *c, int n)
{

for (int i = 0; i < n; i++)
{

c[i] = a[i] + b[i];
}

}

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 10 / 12

The routine directive: solution

$ pgc++ routine_vecadd.cpp -c -acc -Minfo=accel -ta=nvidia,time -o routine_vecadd.o
routine_vecadd.cpp:
vecadd(float *, float *, float *, int):

3, Generating acc routine gang
Generating Tesla code

5, #pragma acc loop gang, vector /* blockIdx.x threadIdx.x */
Loop is parallelizable

pgc++ routine.cpp -acc -Minfo=accel -ta=nvidia,time -o routine ./routine_vecadd.o
routine.cpp:
main:

20, Generating copyin(a[:1000],b[:1000])
Generating copyout(c[:1000])
Accelerator kernel generated
Generating Tesla code

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 11 / 12

Global variables

The declare directive must appear in any le
that refers to the variable in device code; it must
also appear in the le that actually declares the
variable without the extern keyword:

extern float coef;

#pragma acc declare copyin(coef)
...
#pragma acc parallel
{

float y = sin(coef);

#pragma acc loop
for (i = 0; i < n; ++i)

x[i] *= y;
}

Dr. Aleksei Ivakhnenko (APC LLC) OpenACC Interoperation March 11, 2018 12 / 12

