The OpenSMT Solver

Roberto Bruttomesso

Edgar Pek, Natasha Sharygina, Aliaksei Tsitovich
University of Lugano, Switzerland
(Università della Svizzera Italiana)
September 18, 2010

Outline

1 Introduction

2 Architecture
3 A Variable Elimination Techique for SMT
■ DP + FM = DPFM

- A crazy benchmark suite
- Related Work

4 Extending and Using OpenSMT
■ Extending OpenSMT
5 Conclusion

Introduction

- Satisfiability Modulo Theory (SMT) Solvers are key engines of several verification approaches

Introduction

- Satisfiability Modulo Theory (SMT) Solvers are key engines of several verification approaches
- Efficient solvers however are proprietary (Z3, Yices, Barcelogic, MathSAT, ...)

Introduction

- Satisfiability Modulo Theory (SMT) Solvers are key engines of several verification approaches
- Efficient solvers however are proprietary (Z3, Yices, Barcelogic, MathSAT, ...)
- OpenSMT is an effort of providing a simple, extensible, and efficient infrastructure for the development of customized decision procedures

Introduction

- Satisfiability Modulo Theories combines the efficiency of SAT and theory-specific decision procedures

$$
a \wedge((x+y \leq 0) \vee \neg a) \wedge((x=1) \vee b)
$$

Introduction

- Satisfiability Modulo Theories combines the efficiency of SAT and theory-specific decision procedures

$$
a \wedge((x+y \leq 0) \vee \neg a) \wedge((x=1) \vee b)
$$

Introduction

- Satisfiability Modulo Theories combines the efficiency of SAT and theory-specific decision procedures

$$
a \wedge((x+y \leq 0) \vee \neg a) \wedge((x=1) \vee b)
$$

Introduction

- Satisfiability Modulo Theories combines the efficiency of SAT and theory-specific decision procedures

$$
a \wedge(\underbrace{(x+y \leq 0)}_{c} \vee \neg a) \wedge(\underbrace{(x=1)}_{d} \vee b)
$$

Introduction

- We need to reason about Boolean combinations of atoms in a theory T (LRA for instance)

Introduction

- We need to reason about Boolean combinations of atoms in a theory T (LRA for instance)

Introduction

- We need to reason about Boolean combinations of atoms in a theory T (LRA for instance)

Linear Arithmetic (e.g. Simplex)
$a_{1} x_{1}+\ldots+a_{n} x_{n}+b \leq 0$
$\longrightarrow \leq 0$
$\longrightarrow \leq 0$
$\longrightarrow \leq 0$
$\longrightarrow \leq 0$

Introduction

- $\mathrm{DPLL}+\mathrm{LRA} \Rightarrow \mathrm{DPLL}(\mathrm{LRA})$

DPLL(LRA)

Introduction

- $\mathrm{DPLL}+\mathrm{LRA} \Rightarrow \mathrm{DPLL}(\mathrm{LRA})$

DPLL(LRA)

opensmt

Introduction

- $\mathrm{DPLL}+\mathrm{LRA} \Rightarrow \mathrm{DPLL}(\mathrm{LRA})$

DPLL(LRA)
opensmt

Introduction

- $\mathrm{DPLL}+\mathrm{LRA} \Rightarrow \mathrm{DPLL}(\mathrm{LRA})$

opensmt

Introduction

- $\mathrm{DPLL}+\mathrm{LRA} \Rightarrow \mathrm{DPLL}(\mathrm{LRA})$

opensmt

Introduction

- $\mathrm{DPLL}+\mathrm{LRA} \Rightarrow \operatorname{DPLL}(\mathrm{LRA})$

opensmt

Introduction

- $\mathrm{DPLL}+\mathrm{LRA} \Rightarrow \operatorname{DPLL}(\mathrm{LRA})$

opensmt

Introduction

- DPLL $+\mathrm{LRA} \Rightarrow \mathrm{DPLL}(\mathrm{LRA})$

opensmt

Introduction

- $\mathrm{DPLL}+\mathrm{LRA} \Rightarrow \mathrm{DPLL}(\mathrm{LRA})$

opensmt

Introduction

- DPLL(LRA) seems easy to achieve
- Let DPLL enumerate Boolean models
- Check LRA constraints with Simplex

Introduction

- DPLL(LRA) seems easy to achieve
- Let DPLL enumerate Boolean models
- Check LRA constraints with Simplex
- However a lot more has to be done to make it efficient
- Don't wait for complete Boolean model
- Theory Propagation
- Preprocessing
- Conversion to CNF
- Theory Layering
- . . .

Introduction

$$
e(\operatorname{DPLL}(\mathrm{~T}))=\mathrm{e}(\mathrm{DPLL})+\mathrm{e}(\mathrm{~T})+\mathrm{e}(\mathrm{COMM})
$$

Introduction

$$
e(\operatorname{DPLL}(T))=e(D P L L)+e(T)+e(C O M M)
$$

Introduction

$\mathrm{e}(\operatorname{DPLL}(\mathrm{T})) \approx \mathrm{e}(\mathrm{T})$

Outline

1 Introduction

2 Architecture

```
3 A Variable Elimination Techique for SMT
    ■ DP + FM = DPFM
    _ A crazy benchmark suite
    - Related Work
```

4 Extending and Using OpenSMT
- Extending OpenSMT
5 Conclusion

Architecture

Architecture

Architecture

Outline

1 Introduction

2 Architecture

3 A Variable Elimination Techique for SMT
■ DP + FM = DPFM

- A crazy benchmark suite
- Related Work

4 Extending and Using OpenSMT ■ Extending OpenSMT

5 Conclusion

A Generic Template for Variable Elimination Procedures

Variable Types: T_{1}, T_{2}, \ldots
Resolution Rules: R_{1}, R_{2}, \ldots
Algorithm:
Input: a set of constraints
Repeat
Choose a variable X of type T_{i} to eliminate
Combine positive and negative occurrences of X , using R_{i}

The Davis-Putnam Procedure [DP60]

Variable Types:
Resolution Rules:
Algorithm:
Input:
Repeat
Choose a variable X of type to eliminate
Combine positive and negative occurrences of X, using

The Davis-Putnam Procedure [DP60]

Variable Types: Bool

Resolution Rules:
Algorithm:
Input:
Repeat
Choose a variable X of type to eliminate
Combine positive and negative occurrences of X, using

The Davis-Putnam Procedure [DP60]

Variable Types: Bool

Resolution Rules: Boolean Resolution (BR)
Algorithm:
Input:
Repeat
Choose a variable X of type to eliminate
Combine positive and negative occurrences of X, using

The Davis-Putnam Procedure [DP60]

Variable Types: Bool

Resolution Rules: Boolean Resolution (BR)
Algorithm:
Input: a set of Boolean clauses
Repeat
Choose a variable X of type to eliminate
Combine positive and negative occurrences of X, using

The Davis-Putnam Procedure [DP60]

Variable Types: Bool

Resolution Rules: Boolean Resolution (BR)
Algorithm:
Input: a set of Boolean clauses
Repeat
Choose a variable X of type Bool to eliminate
Combine positive and negative occurrences of X, using

The Davis-Putnam Procedure [DP60]

Variable Types: Bool

Resolution Rules: Boolean Resolution (BR)

Algorithm:
Input: a set of Boolean clauses
Repeat
Choose a variable X of type Bool to eliminate
Combine positive and negative occurrences of X, using BR

Boolean Resolution

- Clauses are expressions like ($a \vee \neg b \vee c$), i.e., disjunctions of literals (Boolean variables or negated Boolean variables)

Boolean Resolution

- Clauses are expressions like ($a \vee \neg b \vee c$), i.e., disjunctions of literals (Boolean variables or negated Boolean variables)
- In the following $C_{1}, C_{2}, D_{1}, D_{2}$ are disjunctions of literals

Boolean Resolution

- Clauses are expressions like ($a \vee \neg b \vee c$), i.e., disjunctions of literals (Boolean variables or negated Boolean variables)
- In the following $C_{1}, C_{2}, D_{1}, D_{2}$ are disjunctions of literals

Boolean Resolution for two clauses

$$
\left(C_{1} \vee \mathbf{a} \vee C_{2}\right) \otimes_{a}\left(D_{1} \vee \neg \mathbf{a} \vee D_{2}\right):=\left(C_{1} \vee C_{2} \vee D_{1} \vee D_{2}\right)
$$

Boolean Resolution

- Clauses are expressions like ($a \vee \neg b \vee c$), i.e., disjunctions of literals (Boolean variables or negated Boolean variables)
- In the following $C_{1}, C_{2}, D_{1}, D_{2}$ are disjunctions of literals

Boolean Resolution for two clauses

$$
\left(C_{1} \vee \mathbf{a} \vee C_{2}\right) \otimes_{a}\left(D_{1} \vee \neg \mathbf{a} \vee D_{2}\right):=\left(C_{1} \vee C_{2} \vee D_{1} \vee D_{2}\right)
$$

- Let $S_{a}, S_{\neg a}$ be the set of clauses with positive resp. negative occurrences of a

Boolean Resolution

- Clauses are expressions like ($a \vee \neg b \vee c$), i.e., disjunctions of literals (Boolean variables or negated Boolean variables)
- In the following $C_{1}, C_{2}, D_{1}, D_{2}$ are disjunctions of literals

Boolean Resolution for two clauses

$$
\left(C_{1} \vee \mathbf{a} \vee C_{2}\right) \otimes_{a}\left(D_{1} \vee \neg \mathbf{a} \vee D_{2}\right):=\left(C_{1} \vee C_{2} \vee D_{1} \vee D_{2}\right)
$$

- Let $S_{a}, S_{\neg a}$ be the set of clauses with positive resp. negative occurrences of a

Boolean Resolution for sets of clauses

$$
S_{a} \otimes_{a} S_{\neg a}:=\left\{C_{1} \otimes_{a} C_{2} \mid C_{1} \in S_{a}, C_{2} \in S_{\neg a}\right\}
$$

Boolean Resolution

- Let $S_{a}, S_{\neg a}$ be the set of clauses with positive resp. negative occurrences of a

Boolean Resolution for sets of clauses

$$
S_{a} \otimes_{a} S_{\neg a}:=\left\{C_{1} \otimes_{a} C_{2} \mid C_{1} \in S_{a}, C_{2} \in S_{\neg a}\right\}
$$

Theorem [DP60]

$S_{a} \cup S_{\neg a}$ is equisatisfiable with $S_{a} \otimes_{a} S_{\neg a}$

DP - Example (on var a)

	OLD
$(a \vee b \vee c)$	NEW
$(a \vee \neg b \vee \neg c)$	
$(\neg a \vee \neg b \vee \neg c)$	
$(\neg a \vee \neg b \vee c)$	

DP - Example (on var a)

	OLD	NEW
S_{a}	$(a \vee b \vee c)$	
$S_{\neg a}$	$(a \vee \neg b \vee \neg c)$	
	$(\neg a \vee \neg b \vee \neg c)$	
	$(\neg a \vee \neg b \vee c)$	

DP - Example (on var a)

	OLD	NEW
S_{a}	$(a \vee b \vee c)$	
$S_{\neg a}$	$(a \vee \neg b \vee \neg c)$	
	$(\neg a \vee \neg b \vee \neg c)$	
	$(\neg a \vee \neg b \vee c)$	

DP - Example (on var a)

	OLD	NEW
S_{a}	$(a \vee b \vee c)$	$(b \vee c \vee \neg b \vee \neg c)$
	$(a \vee \neg b \vee \neg c)$	
$S_{\neg a}$	$(\neg a \vee \neg b \vee \neg c)$	
	$(\neg a \vee \neg b \vee c)$	

DP - Example (on var a)

	OLD	NEW
S_{a}	$(a \vee b \vee c)$	$(b \vee c \vee \neg b \vee \neg c)$
	$(a \vee \neg b \vee \neg c)$	
$S_{\neg a}$	$(\neg a \vee \neg b \vee \neg c)$	
	$(\neg a \vee \neg b \vee c)$	

DP - Example (on var a)

	OLD	NEW
S_{a}	$(a \vee b \vee c)$	$(b \vee c \vee \neg b \vee \neg c)$
$S_{\neg a}$	$(a \vee \neg b \vee \neg c)$	$(b \vee c \vee \neg b \vee c)$
$(\neg a \vee \neg b \vee \neg c)$		

DP - Example (on var a)

	OLD	NEW
S_{a}	$(a \vee b \vee c)$	$(b \vee c \vee \neg b \vee \neg c)$
$S_{\neg a}$	$(a \vee \neg b \vee \neg c)$	$(b \vee c \vee \neg b \vee c)$
$(\neg a \vee \neg b \vee \neg c)$		
	$(\neg a \vee \neg b \vee c)$	

DP - Example (on var a)

	OLD	NEW
S_{a}	$(a \vee b \vee c)$	$(b \vee c \vee \neg b \vee \neg c)$
$S_{\neg a}$	$(a \vee \neg b \vee \neg c)$	$(b \vee c \vee \neg b \vee c)$
$(\neg a \vee \neg b \vee \neg c)$	$(\neg b \vee \neg c)$	
$(\neg a \vee \neg b \vee c)$		

DP - Example (on var a)

	OLD	NEW
S_{a}	$(a \vee b \vee c)$	$(b \vee c \vee \neg b \vee \neg c)$
$S_{\neg a}$	$(a \vee \neg b \vee \neg c)$	$(b \vee c \vee \neg b \vee c)$
$(\neg a \vee \neg b \vee \neg c)$	$(\neg b \vee \neg c)$	
$(\neg a \vee \neg b \vee c)$		

DP - Example (on var a)

	OLD	NEW
S_{a}	$(a \vee b \vee c)$	$(b \vee c \vee \neg b \vee \neg c)$
	$(a \vee \neg b \vee \neg c)$	$(b \vee c \vee \neg b \vee c)$
$S_{\neg a}$	$(\neg a \vee \neg b \vee \neg c)$	$(\neg b \vee \neg c)$
$(\neg a \vee \neg b \vee c)$	$(\neg b \vee \neg c \vee c)$	

DP - Example (on var a)

\[

\]

DP - Example (on var a)

OLD
 NEW

$(a \vee b \vee c)$
$(a \vee \neg b \vee \neg c)$
$(\neg a \vee \neg b \vee \neg c) \quad(\neg b \vee \neg c)$
$(\neg a \vee \neg b \vee c)$

$$
\begin{aligned}
& (b \vee c \vee \neg b \vee \neg c) \\
& (b \vee c \vee \neg b \vee c) \\
& (\neg b \vee \neg c) \\
& (\neg b \vee \neg c \vee c)
\end{aligned}
$$

DP - Example (on var a)

The Fourier-Motzkin Elimination [Fou26]

Variable Types:

Resolution Rules:
Algorithm:
Input:
Repeat
Choose a variable X of type eliminate
Combine positive and negative occurrences of X, using

The Fourier-Motzkin Elimination [Fou26]

Variable Types: Rational

Resolution Rules:
Algorithm:
Input:
Repeat
Choose a variable X of type eliminate
Combine positive and negative occurrences of X, using

The Fourier-Motzkin Elimination [Fou26]

Variable Types: Rational

Resolution Rules: $\mathcal{L} \mathcal{R} \mathcal{A}$ Resolution (RR)
Algorithm:
Input:
Repeat
Choose a variable X of type eliminate
Combine positive and negative occurrences of X, using

The Fourier-Motzkin Elimination [Fou26]

Variable Types: Rational

Resolution Rules: $\mathcal{L R} \mathcal{A}$ Resolution (RR)
Algorithm:
Input: a set of $\mathcal{L R} \mathcal{A}$ constraints
Repeat
Choose a variable X of type eliminate
Combine positive and negative occurrences of X, using

The Fourier-Motzkin Elimination [Fou26]

Variable Types: Rational

Resolution Rules: $\mathcal{L R} \mathcal{A}$ Resolution (RR)
Algorithm:
Input: a set of $\mathcal{L R} \mathcal{A}$ constraints
Repeat
Choose a variable X of type Rational to eliminate
Combine positive and negative occurrences of X, using

The Fourier-Motzkin Elimination [Fou26]

Variable Types: Rational

Resolution Rules: $\mathcal{L R} \mathcal{A}$ Resolution (RR)
Algorithm:
Input: a set of $\mathcal{L R} \mathcal{A}$ constraints
Repeat

> Choose a variable X of type Rational to eliminate
> Combine positive and negative occurrences of X, using RR

$\mathcal{L} \mathcal{R} \mathcal{A}$ Resolution

- $\mathcal{L R} \mathcal{A}$ constraints are expressions like $3 x-5 y+10 z \leq 15$

$\mathcal{L} \mathcal{R} \mathcal{A}$ Resolution

- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints are expressions like $3 x-5 y+10 z \leq 15$
- Notice that \leq is sufficient to represent also $\{=,<\}$ (see [DdM06])

$\mathcal{L} \mathcal{R A}$ Resolution

- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints are expressions like $3 x-5 y+10 z \leq 15$
- Notice that \leq is sufficient to represent also $\{=,<\}$ (see [DdM06])
- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

$\mathcal{L} \mathcal{R A}$ Resolution

- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints are expressions like $3 x-5 y+10 z \leq 15$
- Notice that \leq is sufficient to represent also $\{=,<\}$ (see [DdM06])
- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

$\mathcal{L} \mathcal{R} \mathcal{A}$ Resolution

- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints are expressions like $3 x-5 y+10 z \leq 15$
- Notice that \leq is sufficient to represent also $\{=,<\}$ (see [DdM06])
- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

$\mathcal{L} \mathcal{R} \mathcal{A}$ Resolution for two constraints

$$
(x \leq p) \otimes_{x}(-x \leq q):=(-q \leq p)
$$

$\mathcal{L R} \mathcal{A}$ Resolution

- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints are expressions like $3 x-5 y+10 z \leq 15$
- Notice that \leq is sufficient to represent also $\{=,<\}$ (see [DdM06])
- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

$\mathcal{L} \mathcal{R} \mathcal{A}$ Resolution for two constraints

$$
(x \leq p) \otimes_{x}(-x \leq q):=(-q \leq p)
$$

- Let S_{x}, S_{-x} be the set of upper resp. lower bounds for x

$\mathcal{L} \mathcal{R A}$ Resolution

- $\mathcal{L R} \mathcal{A}$ constraints are expressions like $3 x-5 y+10 z \leq 15$
- Notice that \leq is sufficient to represent also $\{=,<\}$ (see [DdM06])
- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

$\mathcal{L} \mathcal{R} \mathcal{A}$ Resolution for two constraints

$$
(x \leq p) \otimes_{x}(-x \leq q):=(-q \leq p)
$$

- Let S_{x}, S_{-x} be the set of upper resp. lower bounds for x
$\mathcal{L} \mathcal{R} \mathcal{A}$ Resolution for sets of constraints

$$
S_{x} \otimes_{x} S_{-x}:=\left\{(x \leq p) \otimes_{x}(-x \leq q) \mid(x \leq p) \in S_{x},(-x \leq q) \in S_{-x}\right\}
$$

$\mathcal{L} \mathcal{R} \mathcal{A}$ Resolution

- Let S_{x}, S_{-x} be the set of upper resp. lower bounds for x

$\mathcal{L} \mathcal{R} \mathcal{A}$ Resolution for sets of constraints

$$
S_{x} \otimes_{x} S_{-x}:=\left\{(x \leq p) \otimes_{x}(-x \leq q) \mid(x \leq p) \in S_{x},(-x \leq q) \in S_{-x}\right\}
$$

Theorem [Fou26]
$S_{x} \cup S_{-x}$ is equisatisfiable with $S_{x} \otimes_{x} S_{-x}$

FM - Example (on var z)

FM - Example (on var z)

	OLD	NEW
S_{z}	$-x+z \leq-4$	
	$x+z \leq 18$	
S_{-z}	$x-z \leq 6$	
	$-x-z \leq-16$	
	$y \leq 5$	$y \leq 5$
	$-y \leq-3$	$-y \leq-3$

FM - Example (on var z)

	OLD	NEW
S_{z}	$-x+z \leq-4$	$-x+z \leq 18$
S_{-z}	$x-z \leq 6$	
	$-x-z \leq-16$	
	$y \leq 5$	$y \leq 5$
	$-y \leq-3$	$-y \leq-3$

FM - Example (on var z)

	OLD	NEW
S_{z}	$\begin{aligned} & -x+z \leq-4 \\ & x+z \leq 18 \end{aligned}$	$0 \leq 2$
S_{-z}	$\begin{aligned} & x-z \leq 6 \\ & -x-z \leq-16 \end{aligned}$	
	$\begin{aligned} & y \leq 5 \\ & -y \leq-3 \end{aligned}$	$\begin{aligned} & y \leq 5 \\ & -y \leq-3 \end{aligned}$

FM - Example (on var z)

	OLD	NEW
S_{z}	$-x+z \leq-4$ $x+z \leq 18$	$0 \leq 2$
S_{-z}	$x-z \leq 6$ $-x-z \leq-16$	
	$y \leq 5$	$y \leq 5$
	$-y \leq-3$	$-y \leq-3$

FM - Example (on var z)

FM - Example (on var z)

FM - Example (on var z)

	OLD	NEW
S_{z}	$-x+z \leq-4$	$0 \leq 2$
	$x+z \leq 18$	$-x \leq-10$
S_{-z}	$x-z \leq 6$	$x \leq 12$
	$-x-z \leq-16$	
	$y \leq 5$	$y \leq 5$
	$-y \leq-3$	$-y \leq-3$

FM - Example (on var z)

FM - Example (on var z)

	OLD	NEW
S_{z}	$-x+z \leq-4$	$0 \leq 2$
	$x+z \leq 18$	$-x \leq-10$
S_{-z}	$x-z \leq 6$	$x \leq 12$
	$-x-z \leq-16$	$0 \leq 2$
	$y \leq 5$	$y \leq 5$
	$-y \leq-3$	$-y \leq-3$

FM - Example (on var z)

FM - Example (on var z)

OLD	NEW
$-x+z \leq-4$	
$x+z \leq 18$	$-x \leq-10$
$x-z \leq 6$	$x \leq 12$
$-x-z \leq-16$	
$y \leq 5$	$y \leq 5$
$-y \leq-3$	$-y \leq-3$

FM - Example (on var z)

$D P+F M=D P F M$

Variable Types:

Resolution Rules:
Algorithm:
Input:
Repeat
Choose a variable X of type
to eliminate
Combine positive and negative occurrences of X, using

$D P+F M=D P F M$

Variable Types: Bool , Rational

Resolution Rules:
Algorithm:
Input:
Repeat
Choose a variable X of type to eliminate

Combine positive and negative occurrences of X, using

$D P+F M=D P F M$

Variable Types: Bool , Rational

Resolution Rules: BR, SMT ($\mathcal{L R} \mathcal{A}$) Resolution (SR)

Algorithm:
Input:
Repeat
Choose a variable X of type
to eliminate
Combine positive and negative occurrences of X, using

$\mathrm{DP}+\mathrm{FM}=\mathrm{DPFM}$

Variable Types: Bool , Rational

Resolution Rules: BR, SMT($\mathcal{L} \mathcal{R} \mathcal{A})$ Resolution (SR)
Algorithm:
Input: a set of $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$ clauses in OCCF
Repeat
Choose a variable X of type to eliminate
Combine positive and negative occurrences of X, using

$\mathrm{DP}+\mathrm{FM}=\mathrm{DPFM}$

Variable Types: Bool , Rational

Resolution Rules: BR, SMT($\mathcal{L R} \mathcal{A}$) Resolution (SR)
Algorithm:
Input: a set of $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$ clauses in OCCF
Repeat
Choose a variable X of type Bool (Rational) to eliminate
Combine positive and negative occurrences of X, using

$\mathrm{DP}+\mathrm{FM}=\mathrm{DPFM}$

Variable Types: Bool , Rational

Resolution Rules: BR, SMT($\mathcal{L R} \mathcal{A}$) Resolution (SR)
Algorithm:
Input: a set of $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$ clauses in OCCF
Repeat
Choose a variable X of type Bool (Rational) to eliminate
Combine positive and negative occurrences of X, using BR (SR)

One Constraint per Clause Form (OCCF)

- DPFM requires clauses in OCCF, clauses that contain at most one $\mathcal{L} \mathcal{R} \mathcal{A}$ constraint

One Constraint per Clause Form (OCCF)

- DPFM requires clauses in OCCF, clauses that contain at most one $\mathcal{L} \mathcal{R} \mathcal{A}$ constraint
- it is easy to transform clauses in OCCF, by means of auxiliary Boolean variables

One Constraint per Clause Form (OCCF)

- DPFM requires clauses in OCCF, clauses that contain at most one $\mathcal{L} \mathcal{R} \mathcal{A}$ constraint
- it is easy to transform clauses in OCCF, by means of auxiliary Boolean variables
- E.g. $(a \vee(x \leq 3) \vee b \vee(x+y \leq 10))$ can be rewritten as $(a \vee(x \leq 3) \vee b \vee c)$ and $(\neg c \vee(x+y \leq 10))$

SMT (LR \mathcal{R}) Resolution

- negated $\mathcal{L} \mathcal{R} \mathcal{A}$ constr. can be expressed in terms of \leq
- e.g. $\neg(x \leq 10)$ is equiv. to $-x \leq-10-\delta, \quad(\delta>0)($ see $[\mathrm{DdM06]})$

SMT $(\mathcal{L R A})$ Resolution

- negated $\mathcal{L R} \mathcal{A}$ constr. can be expressed in terms of \leq
- e.g. $\neg(x \leq 10)$ is equiv. to $-x \leq-10-\delta, \quad(\delta>0)($ see [DdM06])
- $\mathcal{L R} \mathcal{A}$ constraints in $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$ clauses can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

SMT $(\mathcal{L R} \mathcal{A})$ Resolution

- negated $\mathcal{L R} \mathcal{A}$ constr. can be expressed in terms of \leq
- e.g. $\neg(x \leq 10)$ is equiv. to $-x \leq-10-\delta, \quad(\delta>0)($ see [DdM06])
- $\mathcal{L R} \mathcal{A}$ constraints in $\operatorname{SMT}(\mathcal{L} \mathcal{R} \mathcal{A})$ clauses can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

SMT ($\mathcal{L R} \mathcal{A})$ Resolution for two clauses in OCCF

$\left(C_{1} \vee(x \leq p) \vee C_{2}\right) \otimes_{x}\left(D_{1} \vee(-x \leq q) \vee D_{2}\right):=C_{1} \vee C_{2} \vee(-q \leq p) \vee D_{1} \vee D_{2}$

SMT $(\mathcal{L} \mathcal{R} \mathcal{A})$ Resolution

- negated $\mathcal{L R} \mathcal{A}$ constr. can be expressed in terms of \leq
- e.g. $\neg(x \leq 10)$ is equiv. to $-x \leq-10-\delta, \quad(\delta>0)($ see [DdM06] $)$
- $\mathcal{L R} \mathcal{A}$ constraints in $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$ clauses can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

SMT ($\mathcal{L R} \mathcal{A})$ Resolution for two clauses in OCCF

$\left(C_{1} \vee(x \leq p) \vee C_{2}\right) \otimes_{x}\left(D_{1} \vee(-x \leq q) \vee D_{2}\right):=C_{1} \vee C_{2} \vee(-q \leq p) \vee D_{1} \vee D_{2}$

- Let S_{x}, S_{-x} be the set of $\operatorname{SMT}(\mathcal{L} \mathcal{R} \mathcal{A})$ clauses where x appears upper bounded resp. lower bounded

SMT $(\mathcal{L} \mathcal{R} \mathcal{A})$ Resolution

- negated $\mathcal{L} \mathcal{R} \mathcal{A}$ constr. can be expressed in terms of \leq
- e.g. $\neg(x \leq 10)$ is equiv. to $-x \leq-10-\delta, \quad(\delta>0)$ (see [DdM06])
- $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints in $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$ clauses can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

SMT ($\mathcal{L R} \mathcal{A})$ Resolution for two clauses in OCCF

$\left(C_{1} \vee(x \leq p) \vee C_{2}\right) \otimes_{x}\left(D_{1} \vee(-x \leq q) \vee D_{2}\right):=C_{1} \vee C_{2} \vee(-q \leq p) \vee D_{1} \vee D_{2}$

- Let S_{x}, S_{-x} be the set of $\operatorname{SMT}(\mathcal{L} \mathcal{R} \mathcal{A})$ clauses where x appears upper bounded resp. lower bounded

SMT $(\mathcal{L R} \mathcal{A})$ Resolution for sets of clauses in OCCF

$$
S_{x} \otimes_{x} S_{-x}:=\left\{C_{1} \otimes_{x} C_{2} \mid C_{1} \in S_{x}, C_{2} \in S_{-x}\right\}
$$

SMT ($\mathcal{L R A}$) Resolution

- Let S_{x}, S_{-x} be the set of $\operatorname{SMT}(\mathcal{L} \mathcal{R} \mathcal{A})$ clauses where x appears upper bounded resp. lower bounded

SMT $(\mathcal{L} \mathcal{R} \mathcal{A})$ Resolution for sets of clauses in OCCF

$$
S_{x} \otimes_{x} S_{-x}:=\left\{C_{1} \otimes_{x} C_{2} \mid C_{1} \in S_{x}, C_{2} \in S_{-x}\right\}
$$

Theorem
$S_{x} \cup S_{-x}$ is equisatisfiable with $S_{x} \otimes_{x} S_{-x}$

DPFM - Example (on var z)

$$
\begin{array}{ll}
\neg a_{1} \vee(-z \leq-3) & a_{1} \vee(z \leq 3-\delta) \vee a_{2} \\
\neg a_{1} \vee(-x \leq-3) & \neg a_{2} \vee(x \leq 3-\delta) \vee a_{3} \\
\neg a_{1} \vee(-y \leq-3) & \neg a_{3} \vee(y \leq 3-\delta) \vee a_{4} \\
\neg a_{1} \vee(y \leq 5) & \neg a_{4} \vee(-y \leq 5-\delta) \vee a_{5} \\
\neg a_{1} \vee(x \leq 5) & \neg a_{5} \vee(-x \leq 5-\delta) \vee a_{6} \\
\neg a_{1} \vee(z \leq 5) & \neg a_{6} \vee(-z \leq 5-\delta) \\
\neg b_{1} \vee(-z \leq-2) & b_{1} \vee(z \leq 2-\delta) \vee b_{2} \\
\neg b_{1} \vee(-x \leq-2) & \neg b_{2} \vee(x \leq 2-\delta) \vee b_{3} \\
\neg b_{1} \vee(-y \leq-2) & \neg b_{3} \vee(y \leq 2-\delta) \vee b_{4} \\
\neg b_{1} \vee(y \leq 4) & \neg b_{4} \vee(-y \leq 4-\delta) \vee b_{5} \\
\neg b_{1} \vee(x \leq 4) & \neg b_{5} \vee(-x \leq 4-\delta) \vee b_{6} \\
\neg b_{1} \vee(z \leq 4) & \neg b_{6} \vee(-z \leq 4-\delta) \\
a_{1} \vee b_{1} &
\end{array}
$$

DPFM - Example (on var z)

$$
\begin{array}{ll}
\neg a_{1} \vee(-z \leq-3) & a_{1} \vee(z \leq 3-\delta) \vee a_{2} \\
\neg a_{1} \vee(-x \leq-3) & \neg a_{2} \vee(x \leq 3-\delta) \vee a_{3} \\
\neg a_{1} \vee(-y \leq-3) & \neg a_{3} \vee(y \leq 3-\delta) \vee a_{4} \\
\neg a_{1} \vee(y \leq 5) & \neg a_{4} \vee(-y \leq-5-\delta) \vee a_{5} \\
\neg a_{1} \vee(x \leq 5) & \neg a_{5} \vee(-x \leq-5-\delta) \vee a_{6} \\
\neg a_{1} \vee(z \leq 5) & \neg a_{6} \vee(-z \leq-5-\delta) \\
\neg b_{1} \vee(-z \leq-2) & b_{1} \vee(z \leq 2-\delta) \vee b_{2} \\
\neg b_{1} \vee(-x \leq-2) & \neg b_{2} \vee(x \leq 2-\delta) \vee b_{3} \\
\neg b_{1} \vee(-y \leq-2) & \neg b_{3} \vee(y \leq 2-\delta) \vee b_{4} \\
\neg b_{1} \vee(y \leq 4) & \neg b_{4} \vee(-y \leq-4-\delta) \vee b_{5} \\
\neg b_{1} \vee(x \leq 4) & \neg b_{5} \vee(-x \leq-4-\delta) \vee b_{6} \\
\neg b_{1} \vee(z \leq 4) & \neg b_{6} \vee(-z \leq-4-\delta) \\
a_{1} \vee b_{1} &
\end{array}
$$

DPFM - Example (on var z)

OLD	NEW	
	$\neg a_{1} \vee(z \leq 5)$	
	$\neg b_{1} \vee(z \leq 4)$	
$a_{1} \vee(z \leq 3-\delta) \vee a_{2}$		
	$b_{1} \vee(z \leq 2-\delta) \vee b_{2}$	
$\neg a_{6} \vee(-z \leq-5-\delta)$		
$\neg b_{6} \vee(-z \leq-4-\delta)$		
	$\neg a_{1} \vee(-z \leq-3)$	
$\neg b_{1} \vee(-z \leq-2)$		

DPFM - Example (on var z)

	OLD	NEW
	$\neg a_{1} \vee(z \leq 5)$	
S_{z}	$\neg b_{1} \vee(z \leq 4)$	
	$a_{1} \vee(z \leq 3-\delta) \vee a_{2}$	
	$b_{1} \vee(z \leq 2-\delta) \vee b_{2}$	
	$\neg a_{6} \vee(-z \leq-5-\delta)$	
S_{-z}	$\neg b_{6} \vee(-z \leq-4-\delta)$	
	$\neg a_{1} \vee(-z \leq-3)$	
	$\neg b_{1} \vee(-z \leq-2)$	

DPFM - Example (on var z)

	OLD	NEW
	$\neg a_{1} \vee(z \leq 5)$	
S_{z}	$\neg b_{1} \vee(z \leq 4)$	
	$a_{1} \vee(z \leq 3-\delta) \vee a_{2}$	
	$b_{1} \vee(z \leq 2-\delta) \vee b_{2}$	
	$\neg a_{6} \vee(-z \leq-5-\delta)$	
S_{-z}	$\neg b_{6} \vee(-z \leq-4-\delta)$	
	$\neg a_{1} \vee(-z \leq-3)$	
	$\neg b_{1} \vee(-z \leq-2)$	

DPFM - Example (on var z)

	OLD	NEW
	$\neg a_{1} \vee(z \leq 5)$	$\neg a_{1} \vee(0 \leq-\delta) \vee \neg a_{6}$
S_{z}	$\neg b_{1} \vee(z \leq 4)$	
	$a_{1} \vee(z \leq 3-\delta) \vee a_{2}$	
	$b_{1} \vee(z \leq 2-\delta) \vee b_{2}$	
	$\neg a_{6} \vee(-z \leq-5-\delta)$	
S_{-z}	$\neg b_{6} \vee(-z \leq-4-\delta)$	
	$\neg a_{1} \vee(-z \leq-3)$	
	$\neg b_{1} \vee(-z \leq-2)$	

DPFM - Example (on var z)

	OLD	NEW
S_{z}	$\neg a_{1} \vee(z \leq 5)$	$\neg a_{1} \vee(0 \leq-\delta) \vee \neg a_{6}$
	$\neg b_{1} \vee(z \leq 4)$	$\neg a_{1} \vee(0 \leq 1-\delta) \vee \neg b_{6}$
	$a_{1} \vee(z \leq 3-\delta) \vee a_{2}$	$\neg a_{1} \vee(0 \leq 2)$
	$b_{1} \vee(z \leq 2-\delta) \vee b_{2}$	$\neg a_{1} \vee(0 \leq 3) \vee \neg b_{1}$
S_{-z}	$\neg a_{6} \vee(-z \leq-5-\delta)$	$\neg b_{1} \vee(0 \leq-1-\delta) \vee \neg a_{6}$
	$\neg b_{6} \vee(-z \leq-4-\delta)$	$\neg b_{1} \vee(0 \leq-\delta) \vee \neg b_{6}$
	$\neg a_{1} \vee(-z \leq-3)$	$\neg b_{1} \vee(0 \leq 1) \vee \neg a_{1}$
	$\neg b_{1} \vee(-z \leq-2)$	$\neg b_{1} \vee(0 \leq 2)$
		$a_{1} \vee(0 \leq-2-\delta) \vee a_{2} \vee \neg a_{6}$
		$a_{1} \vee(0 \leq-1-\delta) \vee a_{2} \vee \neg b_{6}$
		$a_{1} \vee(0 \leq-\delta) \vee \neg a_{1} \vee a_{2}$
		$a_{1} \vee(0 \leq 1-\delta) \vee \neg b_{1} \vee a_{2}$
		$b_{1} \vee(0 \leq-3-\delta) \vee b_{2} \vee \neg a_{6}$
		$b_{1} \vee(0 \leq-2-\delta) \vee b_{2} \vee \neg b_{6}$
		$b_{1} \vee(0 \leq-1-\delta) \vee \neg a_{1} \vee b_{2}$
		$b_{1} \vee(0 \leq-\delta) \vee \neg b_{1} \vee b_{2}$

DPFM - Example (on var z)

OLD	NEW
$\neg a_{1} \vee(z \leq 5)$	$\neg a_{1} \vee \neg a_{6}$
$\neg b_{1} \vee(z \leq 4)$	
$a_{1} \vee(z \leq 3-\delta) \vee a_{2}$	
$b_{1} \vee(z \leq 2-\delta) \vee b_{2}$	
$\neg a_{6} \vee(-z \leq-5-\delta)$	$\neg b_{1} \vee \neg a_{6}$
$\neg b_{6} \vee(-z \leq-4-\delta)$	$\neg b_{1} \vee \neg b_{6}$
$\neg a_{1} \vee(-z \leq-3)$	
$\neg b_{1} \vee(-z \leq-2)$	$a_{1} \vee a_{2} \vee \neg a_{6}$
	$a_{1} \vee a_{2} \vee \neg b_{6}$
	$b_{1} \vee b_{2} \vee \neg a_{6}$
	$b_{1} \vee b_{2} \vee \neg b_{6}$
	$b_{1} \vee \neg a_{1} \vee b_{2}$

DPFM - Example (on var z)

Variable Elimination - Complexity

- High worst-case complexity

Variable Elimination - Complexity

- High worst-case complexity
- Suppose we have n variables and m initial clauses

Variable Elimination - Complexity

- High worst-case complexity
- Suppose we have n variables and m initial clauses
- Suppose we eliminate a_{1} : in the worst case $\left|S_{a_{1}}\right|=\left|S_{\neg a_{1}}\right|=\frac{m}{2}$

Variable Elimination - Complexity

- High worst-case complexity
- Suppose we have n variables and m initial clauses
- Suppose we eliminate a_{1} : in the worst case $\left|S_{a_{1}}\right|=\left|S_{\neg a_{1}}\right|=\frac{m}{2}$
- After elim. a_{1} we have $\frac{m}{2} \times \frac{m}{2}=\frac{m^{2}}{4}$ clauses

Variable Elimination - Complexity

- High worst-case complexity
- Suppose we have n variables and m initial clauses
- Suppose we eliminate a_{1} : in the worst case $\left|S_{a_{1}}\right|=\left|S_{\neg a_{1}}\right|=\frac{m}{2}$
- After elim. a_{1} we have $\frac{m}{2} \times \frac{m}{2}=\frac{m^{2}}{4}$ clauses
- After elim. a_{2} we have $\frac{m^{2}}{8} \times \frac{m^{2}}{8}=\frac{m^{4}}{4^{3}}$ clauses

Variable Elimination - Complexity

- High worst-case complexity
- Suppose we have n variables and m initial clauses
- Suppose we eliminate a_{1} : in the worst case $\left|S_{a_{1}}\right|=\left|S_{\neg a_{1}}\right|=\frac{m}{2}$
- After elim. a_{1} we have $\frac{m}{2} \times \frac{m}{2}=\frac{m^{2}}{4}$ clauses
- After elim. a_{2} we have $\frac{m^{2}}{8} \times \frac{m^{2}}{8}=\frac{m^{4}}{4^{3}}$ clauses
- After elim. a_{n} we have $\frac{m^{2^{n-1}}}{4^{\left(2^{n-1}-\frac{1}{2}\right)}} \times \frac{m^{2^{n-1}}}{4^{\left(2^{n-1}-\frac{1}{2}\right)}}=\frac{m^{2^{n}}}{4^{2^{n}-1}}$ clauses

Variable Elimination - Complexity

- High worst-case complexity
- Suppose we have n variables and m initial clauses
- Suppose we eliminate a_{1} : in the worst case $\left|S_{a_{1}}\right|=\left|S_{\neg a_{1}}\right|=\frac{m}{2}$
- After elim. a_{1} we have $\frac{m}{2} \times \frac{m}{2}=\frac{m^{2}}{4}$ clauses
- After elim. a_{2} we have $\frac{m^{2}}{8} \times \frac{m^{2}}{8}=\frac{m^{4}}{4^{3}}$ clauses
- After elim. a_{n} we have $\frac{m^{2^{n-1}}}{4^{\left(2^{n-1}-\frac{1}{2}\right)}} \times \frac{m^{2^{n-1}}}{4^{\left(2^{n-1}-\frac{1}{2}\right)}}=\frac{m^{2^{n}}}{4^{2^{n}-1}}$ clauses

Formula Simplification and Preprocessing

- Variable Elimination technique for $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$

Formula Simplification and Preprocessing

- Variable Elimination technique for $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$
- We apply it for preprocessing, similarly to the SATElite [EB05] preprocessor
- Variable elimination rule (among other rules) is applied in a controlled manner so that it does not produce too many clauses

Formula Simplification and Preprocessing

- Variable Elimination technique for $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$
- We apply it for preprocessing, similarly to the SATElite [EB05] preprocessor
- Variable elimination rule (among other rules) is applied in a controlled manner so that it does not produce too many clauses
- In our case we use two upper bounds for two parameters concerning Rational variables

Formula Simplification and Preprocessing

- Variable Elimination technique for $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$
- We apply it for preprocessing, similarly to the SATElite [EB05] preprocessor
- Variable elimination rule (among other rules) is applied in a controlled manner so that it does not produce too many clauses
- In our case we use two upper bounds for two parameters concerning Rational variables
- Centrality (for x) : number of distinct variables that appear in some constraint with x

Formula Simplification and Preprocessing

- Variable Elimination technique for $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$
- We apply it for preprocessing, similarly to the SATElite [EB05] preprocessor
- Variable elimination rule (among other rules) is applied in a controlled manner so that it does not produce too many clauses
- In our case we use two upper bounds for two parameters concerning Rational variables
- Centrality (for x) : number of distinct variables that appear in some constraint with x
- Trade-off (for x) : amount of new clauses that we want to "trade" for eliminating x

Formula Simplification - (Centrality 2, Trade-off 128)

OpenSMT on QF_IDL/qlock Benchmarks - Structural Data								
	P.Time (s)		Clauses		TAtoms		TVars	
Bench	WO	W	WO	W	WO	W	WO	W
Ind 37	1.08	6.57	41137	35299	6129	5285	829	185
Ind 38	1.16	6.62	42265	36244	6299	5423	851	188
Ind 39	1.19	7.02	43381	37150	6467	5562	873	189
Ind 40	1.17	7.05	44457	38114	6619	5702	895	203
Base 18	0.80	1.87	18630	16314	2867	2559	375	137
Base 19	0.82	2.31	19780	17269	3045	2702	397	150
Base 20	0.95	2.47	20914	18246	3215	2851	419	151
Base 21	0.94	2.54	22052	19193	3389	2995	441	155

Formula Simplification - (Centrality 2, Trade-off 128)

OpenSMT on QF_IDL/qlock Benchmarks - Structural Data								
	P.Time (s)		Clauses		TAtoms		TVars	
Bench	WO	W	WO	W	WO	W	WO	W
Ind 37	1.08	6.57	41137	35299	6129	5285	829	185
Ind 38	1.16	6.62	42265	36244	6299	5423	851	188
Ind 39	1.19	7.02	43381	37150	6467	5562	873	189
Ind 40	1.17	7.05	44457	38114	6619	5702	895	203
Base 18	0.80	1.87	18630	16314	2867	2559	375	137
Base 19	0.82	2.31	19780	17269	3045	2702	397	150
Base 20	0.95	2.47	20914	18246	3215	2851	419	151
Base 21	0.94	2.54	22052	19193	3389	2995	441	155

OpenSMT on QF_IDL/qlock Benchmarks - Solving Time

OpENSMT on QF_IDL/qlock Benchmarks - Solving Time					
Bench	Time WO (s)	Time W (s)	Bench	Time WO (s)	Time W (s)
Base 18	61.3	$\mathbf{5 9 . 0}$	Ind 37	90.5	$\mathbf{1 8 . 0}$
Base 19	146.1	$\mathbf{1 3 8 . 4}$	Ind 38	105.7	$\mathbf{5 4 . 6}$
Base 20	>1800	$\mathbf{9 4 0 . 1}$	Ind 39	64.4	$\mathbf{4 6 . 7}$
Base 21	1367.9	$\mathbf{7 6 5 . 0}$	Ind 40	98.3	$\mathbf{3 7 . 3}$

Mixed Boolean-Theory Static Learning

OpenSMT on QF_IDL/job_shop/jobshop12-2-6-6-2-4-9.smt

Centr.	Trade-Off	VE	P.Time	Clauses	TAtoms	BAtoms	T.Time (s)
-	-	0	0.05	216	612	0	>1800
12	64	0	0.05	216	612	0	>1800
12	256	2	0.06	458	832	22	180.0
12	1024	4	0.04	1094	968	42	91.4
12	4096	6	0.09	3076	1032	60	67.2
12	16384	6	0.10	3076	1032	60	67.1
18	64	0	0.02	216	612	0	>1800
18	256	4	0.02	714	1054	56	192.3
18	1024	8	0.07	2005	1566	109	105.6
18	4096	12	0.15	5702	2254	156	125.6
18	16384	12	0.16	5702	2254	156	125.9
24	64	0	0.02	216	612	0	>1800
24	256	4	0.03	781	1108	66	193.2
24	1024	8	0.07	1978	1638	117	157.1
24	4096	11	0.19	5005	2198	153	89.4
24	16384	12	0.32	5519	2294	163	92.2

A crazy benchmark suite

Fractal Diamonds

Our preprocessor is effective for those formulæ that are difficult to solve with the initial fixed set of theory atoms

A crazy benchmark suite

Fractal Diamonds

Our preprocessor is effective for those formulæ that are difficult to solve with the initial fixed set of theory atoms

A crazy benchmark suite

Fractal Diamonds

Our preprocessor is effective for those formulæ that are difficult to solve with the initial fixed set of theory atoms

A crazy benchmark suite

Fractal Diamonds

Our preprocessor is effective for those formulæ that are difficult to solve with the initial fixed set of theory atoms

A crazy benchmark suite

Fractal Diamonds

Our preprocessor is effective for those formulæ that are difficult to solve with the initial fixed set of theory atoms

A crazy benchmark suite

Fractal Diamonds

Our preprocessor is effective for those formulæ that are difficult to solve with the initial fixed set of theory atoms

A crazy benchmark suite

Fractal Diamonds (Centrality 18, Trade-off 8192)
B = BARCELogic (SMTCOMP'08 1st place for IDL)
$\mathrm{Z}=\mathrm{Z} 3$ (SMTCOMP'08 2nd place for IDL)
$\mathrm{O}=\mathrm{OpEnSMT}$ (with DPFM based preprocessor)

Fractal Diamonds - Solving time (s) - TO = 1200 s					
	1	2	3	4	5
Or.	B Z O	B Z O	B Z O	B Z O	B Z O

A crazy benchmark suite

Fractal Diamonds (Centrality 18, Trade-off 8192)
B = BARCELOGIC (SMTCOMP'08 1st place for IDL)
$\mathrm{Z}=\mathrm{Z} 3$ (SMTCOMP'08 2nd place for IDL)
$\mathrm{O}=$ OpenSMT (with DPFM based preprocessor)

Fractal Diamonds - Solving time (s) - TO = 1200 s														
	1		2			3			4			5		
Or.	B	Z O	B	Z	0	B	Z	0	B	Z	0	B	Z	0
1	0	00	0	0	0	0	0	0	0	0	0	0	0	0

A crazy benchmark suite

Fractal Diamonds (Centrality 18, Trade-off 8192)
B = BARCELOGIC (SMTCOMP'08 1st place for IDL)
$\mathrm{Z}=\mathrm{Z} 3$ (SMTCOMP'08 2nd place for IDL)
$\mathrm{O}=$ OpenSMT (with DPFM based preprocessor)

Fractal Diamonds - Solving time (s) - TO = 1200 s															
	1			2			3			4			5		
Or.	B	Z	0	B	Z	0	B	Z	0	B	Z	0	B	Z	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	118	13	1		T	3	T	T	7

A crazy benchmark suite

Fractal Diamonds (Centrality 18, Trade-off 8192)
B = BARCELOGIC (SMTCOMP'08 1st place for IDL)
$\mathrm{Z}=\mathrm{Z} 3$ (SMTCOMP'08 2nd place for IDL)
$\mathrm{O}=$ OpenSMT (with DPFM based preprocessor)

Fractal Diamonds - Solving time (s) - TO = 1200 s															
	1			2			3			4			5		
Or.	B	Z	0	B	Z	0	B	Z	0	B	Z	0	B	Z	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	118	13	1	T	T	3	T	T	7
3	0	0	0	0	T	2	T	T	153	M	T	T	T	T	T

Related Work

- O. Strichman: "Deciding Disjunctive Linear Arithmetic with SAT" [Str04]
- Eager reduction to SAT, using a procedure based on FM

Related Work

- O. Strichman: "Deciding Disjunctive Linear Arithmetic with SAT" [Str04]
- Eager reduction to SAT, using a procedure based on FM
- N. Eén, A. Biere: "Effective Preprocessing in SAT Through Variable and Clause Elimination" [EB05]
- SATElite algorithm for SAT preprocessing

Related Work

- O. Strichman: "Deciding Disjunctive Linear Arithmetic with SAT" [Str04]
- Eager reduction to SAT, using a procedure based on FM
- N. Eén, A. Biere: "Effective Preprocessing in SAT Through Variable and Clause Elimination" [EB05]
- SATElite algorithm for SAT preprocessing
- K. McMillan et al.: "Generalizing DPLL to Richer Logics" [MKS09]
- "Shadow Rule" similar to our notion of $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$ resolution: one application of the shadow rule is equiv. to many applications of $\operatorname{SMT}(\mathcal{L} \mathcal{R} \mathcal{A})$ resolution

Outline

1 Introduction

2 Architecture

3 A Variable Elimination Techique for SMT
■ DP + FM = DPFM

- A crazy benchmark suite
- Related Work

4 Extending and Using OpenSMT
■ Extending OpenSMT

5 Conclusion

Extending OpenSMT

$\mathrm{e}(\operatorname{DPLL}(\mathrm{T})) \approx \mathrm{e}(\mathrm{T})$

Extending OpenSMT

$\mathrm{e}(\operatorname{DPLL}(\mathrm{T})) \approx \mathrm{e}(\mathrm{T})$

opensmt

Extending OpenSMT

- To create an empty template for a new theory solver use script create_tsolver.sh

Extending OpenSMT

- To create an empty template for a new theory solver use script create_tsolver.sh
- Creates a new directory with basic class files

Extending OpenSMT

- To create an empty template for a new theory solver use script create_tsolver.sh
- Creates a new directory with basic class files
- Creates/Sets up Makefile for compilation

Extending OpenSMT

- To create an empty template for a new theory solver use script create_tsolver.sh
- Creates a new directory with basic class files
- Creates/Sets up Makefile for compilation
- Adds a new logic

Extending OpenSMT

- To create an empty template for a new theory solver use script create_tsolver.sh
- Creates a new directory with basic class files
- Creates/Sets up Makefile for compilation
- Adds a new logic
- Integrates the new solver with the core

Extending OpenSMT

- To create an empty template for a new theory solver use script create_tsolver.sh
- Creates a new directory with basic class files
- Creates/Sets up Makefile for compilation
- Adds a new logic
- Integrates the new solver with the core
- Basically, it creates an incomplete solver

Extending OpenSMT

```
class TSolver
{
    void inform (Enode *);
    bool assertLit (Enode *);
    bool check (bool );
    void pushBktPoint ();
    void popBktPoint ();
    bool belongsToT ( Enode*);
    void computeModel ( );
    vector< Enode * > & explanation;
    vector< Enode * > & deductions;
    vector< Enode * > & suggestions;
}
```


Other Features

- C API: you can compile a library and call OpenSMT via the C API

Other Features

- C API: you can compile a library and call OpenSMT via the C API
- Interpolation: given two mutually unsatisfiable formulæ A and B, an interpolant [Cra57] is a formula I such that
- $A \rightarrow I$
- $B \wedge I$ is unsatisfiable
- l is defined on the variables that are common to A and B

Other Features

- C API: you can compile a library and call OpenSMT via the C API
- Interpolation: given two mutually unsatisfiable formulæ A and B, an interpolant [Cra57] is a formula I such that
- $A \rightarrow I$
- $B \wedge I$ is unsatisfiable
- l is defined on the variables that are common to A and B
- Basically I is an "overapproximation" of A, that is still unsatisfiable with B

Other Features

- C API: you can compile a library and call OpenSMT via the C API
- Interpolation: given two mutually unsatisfiable formulæ A and B, an interpolant [Cra57] is a formula I such that
- $A \rightarrow I$
- $B \wedge I$ is unsatisfiable
- I is defined on the variables that are common to A and B
- Basically I is an "overapproximation" of A, that is still unsatisfiable with B
- It has applications in Model Checking [McM04]

Other Features

- C API: you can compile a library and call OpenSMT via the C API
- Interpolation: given two mutually unsatisfiable formulæ A and B, an interpolant [Cra57] is a formula I such that
- $A \rightarrow I$
- $B \wedge I$ is unsatisfiable
- l is defined on the variables that are common to A and B
- Basically I is an "overapproximation" of A, that is still unsatisfiable with B
- It has applications in Model Checking [McM04]
- OpenSMT can compute interpolants for propositional formulæ and some arithmetic fragments

Conclusion

- OpenSMT website http://www.verify.inf.unisi.ch/opensmt
- Source repository http://code.google.com/p/opensmt
- Discussion group http://groups.google.com/group/opensmt
W. Craig.

Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory.
J. Symb. Log., pages 269-285, 1957.
B. Dutertre and L. M. de Moura.

A Fast Linear-Arithmetic Solver for DPLL(T).
In CAV'06, pages 81-94, 2006.
T- Martin Davis and Hilary Putnam.
A Computing Procedure for Quantification Theory.
J. ACM, 7(3):201-215, 1960.
N. Eén and A. Biere.

Effective Preprocessing in SAT Through Variable and Clause Elimination.
In SAT, pages 61-75, 2005.
J.B.J. Fourier.

Solution d'une question particulire du calcul des angalits.
Oevres, II:314-328, 1826.
K. L. McMillan.

Applications of Craig Interpolation to Model Checking.
In CSL, pages 22-23, 2004.
뭉
K. L. McMillan, A. Kuehlmann, and M. Sagiv.

Generalizing dpll to richer logics.
In CAV, pages 462-476, 2009.
O. Strichman.

Deciding Disjunctive Linear Arithmetic with SAT. CoRR, 2004.

